JPH07261855A - Temperature control unit - Google Patents

Temperature control unit

Info

Publication number
JPH07261855A
JPH07261855A JP5078494A JP5078494A JPH07261855A JP H07261855 A JPH07261855 A JP H07261855A JP 5078494 A JP5078494 A JP 5078494A JP 5078494 A JP5078494 A JP 5078494A JP H07261855 A JPH07261855 A JP H07261855A
Authority
JP
Japan
Prior art keywords
circuit
temperature
voltage dividing
voltage
dividing circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5078494A
Other languages
Japanese (ja)
Other versions
JP3540002B2 (en
Inventor
Katsuro Fukazawa
勝郎 深沢
Iwao Momose
巌 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dennetsu Co Ltd
Original Assignee
Nihon Dennetsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dennetsu Co Ltd filed Critical Nihon Dennetsu Co Ltd
Priority to JP05078494A priority Critical patent/JP3540002B2/en
Publication of JPH07261855A publication Critical patent/JPH07261855A/en
Application granted granted Critical
Publication of JP3540002B2 publication Critical patent/JP3540002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)

Abstract

PURPOSE:To perform stable temperature control with high precision by comparing the resistance of a resistor temperature sensor wire with a reference resistance by using the crest value of the output signal of a peak holding circuit. CONSTITUTION:Voltages held by peak holding circuits 18 and 19 are pulses generated when a leak current is nearly zero, and signals inputted to a comparator 15a are the crest values of the voltage-divided pulse signal VT outputted by a temperature signal voltage dividing circuit 13 and the voltage-divided pulse signal Vc outputted by a reference voltage dividing circuit 14, so a value corresponding to the resistance value (namely, temperature of heater wire 1) of the resistor temperature sensor line 5 can be detected without being affected by a leak current. The voltage developed between voltage division points 13a and 13c owing to the leak current varies with the temperature of the heater wire 1 and other circuit element conditions, but that can be coped with by setting at the design stage of the voltage-divided pulse signals VT and Vc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、温度制御装置に関し、
更に詳細には温度により抵抗値が変化する抵抗体温度セ
ンサを用い、電気採暖具の温度制御に適した温度制御装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature control device,
More specifically, the present invention relates to a temperature control device that uses a resistor temperature sensor whose resistance value changes with temperature and is suitable for controlling the temperature of an electric heating tool.

【0002】[0002]

【従来の技術】従来の電気カーペットなどの採暖具の温
度を検出する手段として、温度検出手段と、温度センサ
の取り付け手段との組み合わせ方によって、大きく分け
て4つの手段が用いられている。即ち温度検出手段とし
ては、温度によりインピーダンスが変化する絶縁体、例
えば塩化ビニール(PVC):ナイロンなどのインピー
ダンスを検出する手段と、温度により抵抗の変化する金
属導体、例えばニッケル線(以下抵抗体温度センサとい
う)を用いる手段とであり、温度センサ線の取り付け手
段としては、発熱線と温度センサ線とを別々に形成する
手段と、発熱線と温度センサ線とを1体に纏めたヒータ
ー線を使用する手段とである。
2. Description of the Related Art As a conventional means for detecting the temperature of a warming tool such as an electric carpet, there are roughly used four means depending on how the temperature detecting means and the temperature sensor mounting means are combined. That is, as the temperature detecting means, an insulator whose impedance changes with temperature, for example, a means for detecting impedance such as vinyl chloride (PVC): nylon, and a metal conductor whose resistance changes with temperature, such as nickel wire (hereinafter referred to as resistor temperature As a means for attaching the temperature sensor wire, a means for separately forming the heating wire and the temperature sensor wire, and a heater wire in which the heating wire and the temperature sensor wire are integrated into one body And the means used.

【0003】ところで、絶縁層のインピーダンスを検出
するには、絶縁層を介して2本の電極線(内1本は発熱
線を使用することができる)を配置し、電圧を加え絶縁
層に流れる電流を検出する必要がある。その際、絶縁層
に直流分が加わると分極してインピーダンス特性に経時
変化が起こるので、2本の電極線間には直流分のない完
全な交流を加えなければならず、回路構成が複雑になる
という問題がある。その点、抵抗体温度センサを用いる
手段は、電源に制約を受けないという利点がある反面、
温度変化に対する金属導体の抵抗変化が小さいため、抵
抗温度センサ線やブリッジ回路部品の抵抗値のバラツキ
が検出誤差に大きく影響されるとう問題がある。
By the way, in order to detect the impedance of the insulating layer, two electrode wires (one of which can be a heating wire can be used) are arranged through the insulating layer, and a voltage is applied to the electrode layer to flow into the insulating layer. It is necessary to detect the current. At that time, when a direct current component is applied to the insulating layer, polarization occurs and the impedance characteristic changes with time. Therefore, a complete alternating current without a direct current component must be applied between the two electrode wires, which complicates the circuit configuration. There is a problem of becoming. On the other hand, the means using the resistor temperature sensor has an advantage that the power source is not restricted, but
Since the resistance change of the metal conductor with respect to the temperature change is small, there is a problem that variations in the resistance value of the resistance temperature sensor line and the bridge circuit component are greatly affected by the detection error.

【0004】また発熱線と温度センサ線とを別体とする
前記方法は、2本の線を配線することになり、生産性が
悪く、コスト高になるという問題がある。また発熱線と
温度センサ線とを1本にする前記方法は、生産性の面で
は2本の場合より改善されるが、この手段と抵抗体温度
センサとを組み合わせると、発熱体との間を絶縁する絶
縁層を通じて発熱線からの漏れ電流が抵抗温度センサ線
に流れ込む影響で、精度が低下し、温度制御が誤作動と
するという問題がある。この問題は、一定の温度で溶融
する樹脂(例えばナイロン)を前記絶縁層に使用し、採
暖具の温度が過昇すると溶融して、発熱線と抵抗体温度
センサ線とを短絡させ温度ヒューズを溶断させる安全機
能を持たせた場合などに特に問題となる。
Further, the above-mentioned method in which the heating wire and the temperature sensor wire are separated from each other involves the wiring of two wires, resulting in poor productivity and high cost. Further, the above method of using one heating wire and one temperature sensor wire is improved from the viewpoint of productivity in comparison with the case of two wires, but if this means is combined with a resistor temperature sensor, the space between the heating element and the heating element is improved. There is a problem in that the leakage current from the heating wire flows into the resistance temperature sensor wire through the insulating layer that insulates, the accuracy is lowered, and the temperature control malfunctions. The problem is that a resin (for example, nylon) that melts at a constant temperature is used for the insulating layer, and when the temperature of the warming tool rises excessively, it melts, short-circuiting the heating wire and the resistor temperature sensor wire, and the thermal fuse. This is a particular problem when a safety function is provided to blow out.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記問題に
着目してなされたものであり、直流電源を使用して測温
ができる抵抗体温度センサを用い、しかも発熱体と抵抗
温度センサとを一体としたヒーターを使用した場合の温
度制御装置を提供することを目的としている。本発明の
別の目的は、発熱体から絶縁層を介して抵抗体温度セン
サ線に漏れる漏れ電流によって誤差を生じない抵抗測定
手段を採用した温度制御装置を提供することを目的とし
ている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and uses a resistor temperature sensor capable of measuring a temperature using a DC power source, and further includes a heating element and a resistance temperature sensor. It is an object of the present invention to provide a temperature control device when using a heater integrated with a heater. Another object of the present invention is to provide a temperature control device that employs resistance measuring means that does not cause an error due to a leak current leaking from a heating element to a resistor temperature sensor wire through an insulating layer.

【0006】更に本発明の別の目的は、抵抗体温度セン
サの抵抗値のバラツキによる分圧電圧のバラツキを、最
小となるように抵抗検出用ブリッジ回路を形成した温度
制御装置を提供することを目的としている。また別の本
発明の目的は、小さな回路電流で抵抗値を正確に検出で
きる抵抗測定回路を有する温度制御装置を提供すること
を目的としている。
Still another object of the present invention is to provide a temperature control device in which a resistance detecting bridge circuit is formed so as to minimize variations in the divided voltage due to variations in the resistance value of the resistor temperature sensor. Has an aim. Still another object of the present invention is to provide a temperature control device having a resistance measuring circuit capable of accurately detecting a resistance value with a small circuit current.

【0007】[0007]

【課題を解決するための手段】以上の目的を達成するた
めの本発明の温度制御装置の構成は、発熱線と、温度に
よって抵抗が変化する抵抗温度センサ線とを絶縁層を介
して配置してヒーター線を形成し、前記発熱線と、発熱
線の通電を制御する電力制御手段とを交流電源に接続
し、前記絶縁層を通じて抵抗温度センサ線に漏洩する電
流がゼロに近い時点の交流電源の位相に同期してパルス
を発生する同期パルス電源回路を形成し、この同期パル
ス電源回路の出力するパルス電圧を、前記抵抗温度セン
サ線と分圧抵抗とで形成した温度信号分圧回路と、基準
分圧回路とに与え、この温度信号分圧回路と基準分圧回
路とから出力する分圧信号を比較する比較回路を、前記
温度信号分圧回路の分圧電圧のピーク値を保持するピー
クホールド回路と、前記基準分圧回路の分圧電圧のピー
ク値を保持するピークホールド回路と、それぞれのピー
クホールド回路の出力信号を比較する比較器とによって
形成し、比較器の出力信号を前記電力制御手段に与える
ようにしたものである。
In order to achieve the above object, the structure of the temperature control device of the present invention is such that a heating wire and a resistance temperature sensor wire whose resistance changes with temperature are arranged via an insulating layer. To form a heater wire, the heating wire and a power control means for controlling energization of the heating wire are connected to an AC power supply, and the AC power supply when the current leaking to the resistance temperature sensor wire through the insulating layer is close to zero A synchronous pulse power supply circuit that generates a pulse in synchronization with the phase of the pulse voltage output from the synchronous pulse power supply circuit, the temperature signal voltage dividing circuit formed by the resistance temperature sensor line and the voltage dividing resistor, A reference voltage divider circuit is provided with a comparison circuit for comparing the divided voltage signals output from the temperature signal voltage divider circuit and the reference voltage divider circuit, and a peak value for holding the peak value of the divided voltage of the temperature signal voltage divider circuit. Hold circuit, It is formed by a peak hold circuit that holds the peak value of the divided voltage of the reference voltage divider circuit and a comparator that compares the output signals of the respective peak hold circuits, and the output signal of the comparator is given to the power control means. It was done like this.

【0008】前記の交流電源に同期してパルスを発生さ
せる手段としては、例えば交流電源のゼロクロス検出回
路など、抵抗体温度センサに漏洩する電流が比較的ゼロ
に近い時点にパルスを発生させる回路を使用することが
できる。パルス電源回路の出力する電源のパルス幅を、
通常200μs〜1msと小さい値とすることができる
ので、実質的に回路に流れる電流をこのように小さな値
にできる。そのため前記温度信号分圧回路の総抵抗値を
比較的小さな値にできるので、ブリッジ回路の最大感度
が得られる条件、即ち抵抗体温度センサと前記抵抗との
比を1:1に近い値にすることによって、抵抗値のバラ
ツキによる制御温度のバラツキを最小限にすることがで
きる。
As means for generating a pulse in synchronization with the AC power supply, for example, a circuit for generating a pulse when the current leaking to the resistor temperature sensor is relatively close to zero, such as a zero-cross detection circuit of the AC power supply, is used. Can be used. The pulse width of the power output from the pulse power circuit is
Usually, the value can be as small as 200 μs to 1 ms, so that the current flowing through the circuit can be substantially as small as this. Therefore, the total resistance value of the temperature signal voltage dividing circuit can be set to a relatively small value, so that the maximum sensitivity of the bridge circuit can be obtained, that is, the ratio between the resistor temperature sensor and the resistor is set to a value close to 1: 1. As a result, the variation in the control temperature due to the variation in the resistance value can be minimized.

【0009】前記ピークホールド回路は、従来から使用
されている回路を適宜使用することができる。本発明の
温度制御装置の温度設定回路を、前記温度信号分圧回路
の分圧信号のピーク値を保持する前記ピークホールド回
路の時定数設定抵抗を、温度設定抵抗と分圧抵抗とで形
成した分圧回路によって形成することができる。したが
って、温度設定回路の合成抵抗値は、漏洩電流のピーク
値より余裕をもって高い値にピークホールドできる時定
数となる抵抗値を選定すればよい。
As the peak hold circuit, a conventionally used circuit can be appropriately used. In the temperature setting circuit of the temperature control device of the present invention, the time constant setting resistor of the peak hold circuit for holding the peak value of the voltage division signal of the temperature signal voltage dividing circuit is formed by the temperature setting resistor and the voltage dividing resistor. It can be formed by a voltage dividing circuit. Therefore, as the combined resistance value of the temperature setting circuit, a resistance value which is a time constant capable of peak-holding a value higher than the peak value of the leakage current with a margin can be selected.

【0010】[0010]

【作用】発熱体と抵抗体温度センサとを絶縁層を介して
配置したヒーター線を交流電源で発熱させ、温度検出
を、絶縁層を通じて発熱体から抵抗体温度センサに漏洩
する電流がほぼゼロとなる時点の交流電源の位相に同期
して、パルス電源電圧を前記ブリッジ回路に与え、ブリ
ッジ回路からの出力パルス信号をピークホールドし、前
記信号のせん頭値を比較して、温度を検出するようにし
た前記構成は、パルスせん頭より低いせん頭値の漏れ電
流が発生しても、ピークホールド電圧に影響を与えない
ので高い精度で温度を検出することができる。
The heater wire in which the heating element and the resistor temperature sensor are arranged via the insulating layer is heated by the AC power source, and the temperature detection detects that the current leaking from the heating element to the resistor temperature sensor through the insulating layer is almost zero. In synchronization with the phase of the AC power supply at a certain point, the pulse power supply voltage is applied to the bridge circuit, the output pulse signal from the bridge circuit is peak-held, the peak value of the signal is compared, and the temperature is detected. In the above configuration, even if a leakage current having a peak value lower than that of the pulse peak is generated, it does not affect the peak hold voltage, so that the temperature can be detected with high accuracy.

【0011】前記ブリッジ回路に与える電源をパルス電
圧とする前記手段は、パルス幅を狭くしてブリッジ回路
に流れる実効電流を小さくできるから、小容量のパルス
電源回路とすることができる。また、温度信号分圧回路
の各辺の抵抗、即ち前記抵抗体温度センサと分圧抵抗と
をほぼ1:1とすることによる総抵抗値の低下によって
パルス電流のの増加があっても、実行電流は小さいので
供給可能となる。
The means for applying a pulse voltage to the power supply to the bridge circuit can narrow the pulse width to reduce the effective current flowing in the bridge circuit, and thus can be used as a small capacity pulse power supply circuit. Further, even if the pulse current increases due to a decrease in the total resistance value due to the resistance of each side of the temperature signal voltage dividing circuit, that is, the resistor temperature sensor and the voltage dividing resistance being set to approximately 1: 1, Since the current is small, it can be supplied.

【0012】前記ピークホールド回路の時定数を決定す
る抵抗によって温度設定回路を形成する前記手段は、可
変抵抗器など低抵抗で高精度に作ることが難しい商品で
構成しても、高精度に作り安い値の回路構成で済むの
で、精度を維持できる。
The means for forming the temperature setting circuit by the resistance for determining the time constant of the peak hold circuit is highly accurate even if it is made of a product such as a variable resistor which has a low resistance and is difficult to make with high accuracy. Since the circuit configuration with a cheap value is sufficient, the accuracy can be maintained.

【0013】[0013]

【実施例】以下、添付の図面を参照して一実施例により
本発明を具体的に説明する。本実施例に使用したヒータ
ー線1は、図2に示すとおり芯糸2に発熱線3を巻装
し、その上にナイロンなどの絶縁層4を形成し、温度に
より抵抗値が変化する金属線導体からなる抵抗体温度セ
ンサ線5を、前記絶縁層4の外側に巻装し、その外側を
絶縁被覆層6で形成したものである。なお本実施例では
抵抗体温度センサ線5に600〜800Ωの抵抗値のも
のを使用したが、本発明はこれに限定されない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail by way of an embodiment with reference to the accompanying drawings. As shown in FIG. 2, the heater wire 1 used in this example is a metal wire in which a heating wire 3 is wound around a core yarn 2 and an insulating layer 4 such as nylon is formed on the core wire 2 so that the resistance value changes with temperature. The resistance temperature sensor wire 5 made of a conductor is wound around the outside of the insulating layer 4, and the outside is formed of an insulating coating layer 6. In the present embodiment, the resistor temperature sensor wire 5 has a resistance value of 600 to 800Ω, but the present invention is not limited to this.

【0014】本実施例の温度制御回路は、図1に示すと
おり交流電源8に、前記ヒーター線1の発熱線3、電力
制御手段であるリレー9の接点9a及び温度ヒューズ10
を直列に接続し、ヒーター線1の温度を制御する回路
は、直流電源回路11、同期パルス電源回路12、温度信号
分圧回路13、基準分圧回路14及び比較回路15によって構
成した。
As shown in FIG. 1, the temperature control circuit of this embodiment includes an AC power source 8, a heating wire 3 of the heater wire 1, a contact 9a of a relay 9 as a power control means, and a temperature fuse 10.
Is connected in series and controls the temperature of the heater wire 1 by a DC power supply circuit 11, a synchronous pulse power supply circuit 12, a temperature signal voltage dividing circuit 13, a reference voltage dividing circuit 14 and a comparison circuit 15.

【0015】前記直流電源回路11は、温度制御回路を作
動させる電源であり、交流電源電圧を整流ダイオード11
a〜11dによって全波整流し、抵抗11e、ツェナーダイ
オード11f及び平滑コンデンサー11gによって所定の直
流電圧を発生させ、リレー9と同期パルス電源回路12と
に与える。同期パルス電源回路12は、分圧抵抗12a,12
bによって分圧された交流電圧をトランジスタ16a及び
抵抗16bからなるゼロクロス検出回路16に与え、ゼロク
ロス信号が出力されるとトランジスタ17a,17b及び抵
抗17c,17dからなる出力回路17からパルス電圧vを出
力するように構成している。
The DC power supply circuit 11 is a power supply for operating the temperature control circuit, and rectifies the AC power supply voltage with the rectifier diode 11
Full-wave rectification is performed by a to 11d, and a predetermined DC voltage is generated by the resistor 11e, the Zener diode 11f, and the smoothing capacitor 11g, and applied to the relay 9 and the synchronous pulse power supply circuit 12. The synchronous pulse power supply circuit 12 includes voltage dividing resistors 12a, 12
The AC voltage divided by b is applied to the zero-cross detection circuit 16 including the transistor 16a and the resistor 16b, and when the zero-cross signal is output, the pulse voltage v is output from the output circuit 17 including the transistors 17a and 17b and the resistors 17c and 17d. It is configured to do.

【0016】前記温度信号分圧回路13は、抵抗体温度セ
ンサ線5と固定抵抗からなる分圧抵抗13aとで構成し、
また前記基準分圧回路14は分圧抵抗14a,14bで構成
し、それぞれの分圧点13bに発生する分圧パルス信号V
T を、分圧点14cに発生する分圧パルス信号VC とを、
それぞれダイオード18a,19a を通じて比較回路15に与え
るようにした。なお、以下温度信号分圧回路13及び基準
分圧回路14の二つの分圧回路を総称するときは、単に分
圧回路13,14 と記載する。
The temperature signal voltage dividing circuit 13 comprises a resistor temperature sensor line 5 and a voltage dividing resistor 13a composed of a fixed resistor,
The reference voltage dividing circuit 14 is composed of voltage dividing resistors 14a and 14b, and the voltage dividing pulse signal V generated at each voltage dividing point 13b.
T is the divided voltage pulse signal V C generated at the dividing point 14c,
The comparison circuit 15 is provided through the diodes 18a and 19a, respectively. When the two voltage dividing circuits, the temperature signal voltage dividing circuit 13 and the reference voltage dividing circuit 14, are generically referred to below, they are simply referred to as voltage dividing circuits 13 and 14.

【0017】前記比較回路15は、分圧パルス信号VT
ピークホールド回路18、分圧パルス信号VC のピークホ
ールド回路19及びオペアンプからなる比較器15aとによ
って構成し、比較器15aの出力をリレーコイル9bに与
えるように構成した。ピークホールド回路18,19は、そ
れぞれ、前記ダイオード18a,19a 、温度設定抵抗18bと
抵抗18c 及び抵抗19b 並びに電解コンデンサ18d,19c に
よって構成し、比較器15a の反転入力端子とピークホー
ルド回路18との間に抵抗15b を接続し、また比較器15a
の非反転入力端子とピークホールド回路19との間に抵抗
15cを接続した。本実施例の温度設定回路は、温度設定
抵抗18bと抵抗18cとによる分圧回路によって形成し、
これらの抵抗値は、ピークホールド回路18の必要な時定
数を得る大きな抵抗値のものを使用した。本実施例では
前記時定数を30〜100msの範囲に設定した。
The comparison circuit 15 comprises a peak hold circuit 18 for the divided pulse signal V T , a peak hold circuit 19 for the divided pulse signal V C , and a comparator 15a consisting of an operational amplifier, and the output of the comparator 15a. It is configured to be applied to the relay coil 9b. The peak hold circuits 18 and 19 are composed of the diodes 18a and 19a, temperature setting resistors 18b and resistors 18c and 19b, and electrolytic capacitors 18d and 19c, respectively, and are connected to the inverting input terminal of the comparator 15a and the peak hold circuit 18, respectively. Connect a resistor 15b between the comparator 15a
There is a resistor between the non-inverting input terminal and the peak hold circuit 19.
15c was connected. The temperature setting circuit of this embodiment is formed by a voltage dividing circuit including temperature setting resistors 18b and 18c,
As these resistance values, those having large resistance values for obtaining the necessary time constant of the peak hold circuit 18 were used. In this embodiment, the time constant is set within the range of 30 to 100 ms.

【0018】温度ヒューズ溶断抵抗10aは、発熱して温
度ヒューズ10を溶断する抵抗体であり、前記分圧回路1
3,14 とグランドGとの間に接続し、ヒーター線1の温
度が過昇すると、絶縁層4のナイロンが溶け、発熱線3
と抵抗体温度センサ線5とが短絡して流れた電流により
発熱し、温度ヒューズ10を溶断し、電源をオフするよう
に取り付けた。
The thermal fuse fusing resistor 10a is a resistor that heats and blows the thermal fuse 10. The voltage dividing circuit 1
When connecting between 3,14 and the ground G and the temperature of the heater wire 1 rises excessively, the nylon of the insulating layer 4 melts and the heating wire 3
The resistor temperature sensor wire 5 and the resistor temperature sensor wire 5 were short-circuited to generate heat by the flowing current, and the temperature fuse 10 was melted and attached so as to turn off the power.

【0019】次に、図1,3によって本実施例の温度制
御装置の動作を説明する。図3の横軸は時間軸であり、
符号20は、ヒーター線1の絶縁層4を通じて発熱線3か
ら抵抗体温度センサ線5に流れる漏洩電流により分圧点
13bに発生する電圧であり、21は絶縁層4を破産で発熱
線3と抵抗温度センサ線5との間に加わる電圧(ハッチ
を施した部分)を示している。なお符号21を点線で示し
たのは、負側の交流電源電圧8と区別するためである 前記漏れ電流は基準分圧回路14の分圧点14cにも一定の
電圧を発生させている。ところで、ピークホールド回路
18,19 にホールドされた電圧は、漏洩電流がほぼゼロ時
点で発生させたパルスのものであることと、比較器15a
に入力する信号は、温度信号分圧回路13の出力する前記
分圧パルス信号VT 及び基準分圧回路14の出力する前記
分圧パルス信号VC のせん頭値なので、漏れ電流に影響
されず、もっぱら抵抗体温度センサ線5の抵抗値(即ち
ヒーター線1の温度)に対応した値を検出することがで
きる。なお、前記漏洩電流により分圧点13b,14cに発
生する電圧は、ヒーター線1の温度、その他の回路要素
条件によって一定しないが、分圧パルス信号VT,C
設計段階での設定によって対応することができる。
Next, the operation of the temperature control device of this embodiment will be described with reference to FIGS. The horizontal axis of FIG. 3 is the time axis,
Reference numeral 20 is a voltage dividing point due to a leakage current flowing from the heating wire 3 to the resistor temperature sensor wire 5 through the insulating layer 4 of the heater wire 1.
Reference numeral 21 denotes a voltage generated in 13b, and 21 denotes a voltage (hatched portion) applied between the heating wire 3 and the resistance temperature sensor wire 5 due to bankruptcy of the insulating layer 4. The reference numeral 21 is indicated by a dotted line in order to distinguish it from the negative side AC power supply voltage 8. The leakage current also causes a constant voltage to be generated at the voltage dividing point 14c of the reference voltage dividing circuit 14. By the way, the peak hold circuit
The voltage held at 18, 19 is that of the pulse generated when the leakage current is almost zero, and that the comparator 15a
The signal input to is a peak value of the divided voltage pulse signal V T output by the temperature signal voltage dividing circuit 13 and the divided voltage pulse signal V C output by the reference voltage dividing circuit 14, and therefore is not affected by leakage current. The value corresponding to the resistance value of the resistor temperature sensor wire 5 (that is, the temperature of the heater wire 1) can be detected exclusively. Although the voltage generated at the voltage dividing points 13b and 14c due to the leakage current is not constant depending on the temperature of the heater wire 1 and other circuit element conditions, it depends on the setting of the voltage dividing pulse signals V T and V C at the design stage. Can respond.

【0020】したがって、図3の左側の最上段に示す設
定温度よりヒーター温度が低い場合には、比較器15a の
入力信号は、下から2段目に示すようにヒーター温度信
号電圧が基準電圧を下回り、リレー9にオン信号が比較
器15a から出力され、また図3の右側の最上段に示す設
定温度よりヒーター温度が高い場合には、比較器15aの
入力信号は、下から2段目に示すようにヒーター温度信
号電圧が基準電圧を上回り、リレー9にオフ信号が比較
器15a から出力されるので、安定した高い精度でヒータ
ー線1の温度を設定温度に制御することができる。
Therefore, when the heater temperature is lower than the set temperature shown in the uppermost row on the left side of FIG. 3, the input signal of the comparator 15a is the heater temperature signal voltage which is the reference voltage as shown in the second row from the bottom. If the ON signal is output from the comparator 15a to the relay 9 and the heater temperature is higher than the set temperature shown in the uppermost row on the right side of FIG. 3, the input signal of the comparator 15a is the second row from the bottom. As shown, the heater temperature signal voltage exceeds the reference voltage, and the OFF signal is output to the relay 9 from the comparator 15a, so that the temperature of the heater wire 1 can be controlled to the set temperature with stable and high accuracy.

【0021】図3はトランジスタ18e,19dのエミッタ
ホロワによるピークホールド回路を示しており、図1に
示すピークホールド回路18,19 に変えて使用することが
できる。本回路には、同じ回路要素には図1と同じ符号
を付し説明を省略する。また温度設定は、原理的には温
度信号分圧回路13,基準分圧回路14の各抵抗を可変抵抗
に変えて行わせることもできる。例えば温度センサ線5
と直列に可変抵抗を接続して温度設定してもよい。但し
可変抵抗器など低抵抗で高精度のものが入手しにくいの
で、本実施例では、温度信号分圧回路13及び基準分圧回
路14によるブリッジ回路と温度設定回路とを別回路とし
て温度検出精度を向上させるようにした。
FIG. 3 shows a peak hold circuit using an emitter follower of the transistors 18e and 19d, which can be used in place of the peak hold circuits 18 and 19 shown in FIG. In this circuit, the same circuit elements as those in FIG. In principle, the temperature can also be set by changing the resistances of the temperature signal voltage dividing circuit 13 and the reference voltage dividing circuit 14 to variable resistors. For example, temperature sensor line 5
The temperature may be set by connecting a variable resistor in series with. However, since it is difficult to obtain a low resistance and high accuracy such as a variable resistor, in this embodiment, the temperature detection accuracy is obtained by using the temperature signal voltage dividing circuit 13 and the reference voltage dividing circuit 14 as a bridge circuit and a temperature setting circuit as separate circuits. I tried to improve.

【0022】[0022]

【発明の効果】以上説明した本発明の温度制御装置は、
絶縁層を通じて、発熱線から抵抗体温度センサ線に漏洩
する電流がゼロ又は極めて小さいときの交流電源位相に
同期させてヒーター線の温度を抵抗体温度センサ線で検
出し、且つ抵抗体温度センサ線の抵抗と基準抵抗との比
較を、ピークホールド回路による出力信号のせん頭値に
よって比較するようにしたので、出力電圧を漏洩電流の
ピーク電圧より大きく設定すれば、漏洩電流の影響を無
視できるため、高い精度で安定した温度制御を行うこと
がてきる。しかも、抵抗体温度センサ線を過熱検知線と
兼用させることができるので、生産性を向上させること
ができる。
The temperature control device of the present invention described above,
Through the insulating layer, the temperature of the heater wire is detected by the resistance temperature sensor wire in synchronization with the AC power supply phase when the current leaking from the heating wire to the resistance temperature sensor wire is zero or extremely small, and Since the comparison between the resistance of No.1 and the reference resistance is made according to the peak value of the output signal by the peak hold circuit, the effect of leakage current can be ignored if the output voltage is set higher than the peak voltage of leakage current. Therefore, stable temperature control can be performed with high accuracy. Moreover, since the resistor temperature sensor wire can also be used as the overheat detection wire, the productivity can be improved.

【0023】本発明は、前記のとおり温度信号分圧回路
と基準分圧回路で構成するブリッジ回路の電源パルス電
源としたので、抵抗体温度センサ線の抵抗値を基準抵抗
と比較する際の電流が小さくて済み、抵抗体温度センサ
線と分圧抵抗との比を、ブリッジ回路の最大感度が得ら
れるほぼ1:1になるところまで総抵抗値を小さくして
もパルス電源を供給でき、抵抗値のバラツキによる影響
を可及的に小さくすることができる。
Since the present invention uses the power supply pulse power supply of the bridge circuit composed of the temperature signal voltage dividing circuit and the reference voltage dividing circuit as described above, the current for comparing the resistance value of the resistor temperature sensor line with the reference resistance. Can be small, and the pulse power can be supplied even if the total resistance value is reduced to the point where the ratio between the resistor temperature sensor line and the voltage dividing resistor becomes approximately 1: 1 at which the maximum sensitivity of the bridge circuit is obtained. It is possible to minimize the influence of variation in the value.

【0024】温度設定回路をピークホールド回路と比較
回路との間に取り付ける本発明の請求項2の手段は、温
度設定抵抗をブリッジ回路内に取り付けた場合に比べ、
ブリッジ回路がシンプルで精度を損なうことなく構成で
き、しかも比較的高抵抗で精度の高い可変抵抗を使用が
可能となり、高精度の温度設定回路が得られる。
According to the means of claim 2 of the present invention in which the temperature setting circuit is mounted between the peak hold circuit and the comparison circuit, compared with the case where the temperature setting resistor is mounted in the bridge circuit,
The bridge circuit is simple and can be configured without impairing the accuracy, and a variable resistor having a relatively high resistance and a high accuracy can be used, and a highly accurate temperature setting circuit can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による温度制御回路図であ
る。
FIG. 1 is a temperature control circuit diagram according to an embodiment of the present invention.

【図2】図1の温度制御回路に使用したヒーター線を一
部破断して示した部分斜視図である。
FIG. 2 is a partial perspective view showing a heater wire used in the temperature control circuit of FIG.

【図3】図1に示す温度制御回路の動作を説明するため
のグラフ図である。
FIG. 3 is a graph diagram for explaining the operation of the temperature control circuit shown in FIG.

【図4】図1に示すピークホールド回路の変形例の回路
図である。
FIG. 4 is a circuit diagram of a modified example of the peak hold circuit shown in FIG.

【符号の説明】[Explanation of symbols]

1 ヒーター線 3 発熱線 4 絶縁層 5 抵抗体温度
センサ線 8 交流電源 9 リレー 12 同期パルス電源回路源 13 温度信号分
圧回路 14 基準分圧回路 15 比較回路 15a 比較器 15b 温度設定抵
抗 16 ゼロクロス検出回路 18 ピークホー
ルド回路 19 ピークホールド回路 VC 制圧パルス
信号 VT 分圧パルス信号 v パルス電圧
1 Heater wire 3 Heat generation wire 4 Insulation layer 5 Resistor temperature sensor wire 8 AC power supply 9 Relay 12 Synchronous pulse power supply circuit source 13 Temperature signal voltage dividing circuit 14 Reference voltage dividing circuit 15 Comparison circuit 15a Comparator 15b Temperature setting resistance 16 Zero cross detection Circuit 18 Peak hold circuit 19 Peak hold circuit V C Control pulse signal V T Divided pulse signal v Pulse voltage

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発熱線と、温度によって抵抗が変化する
抵抗温度センサ線とを絶縁層を介して配置してヒーター
線を形成し、前記発熱線と、発熱線の通電を制御する電
力制御手段とを交流電源に接続し、前記絶縁層を通じて
抵抗温度センサ線に漏洩する電流がゼロに近い時点の交
流電源の位相に同期してパルスを発生する同期パルス電
源回路を形成し、この同期パルス電源回路の出力するパ
ルス電圧を、前記抵抗温度センサ線と分圧抵抗とで形成
した温度信号分圧回路と、基準分圧回路とに与え、この
温度信号分圧回路と基準分圧回路とから出力する分圧信
号を比較する比較回路を、前記温度信号分圧回路の分圧
電圧のピーク値を保持するピークホールド回路と、前記
基準分圧回路の分圧電圧のピーク値を保持するピークホ
ールド回路と、それぞれのピークホールド回路の出力信
号を比較する比較器とによって形成し、比較器の出力信
号を前記電力制御手段に与えるようにした温度制御装
置。
1. A power control means for forming a heater wire by arranging a heating wire and a resistance temperature sensor wire whose resistance changes with temperature via an insulating layer, and controlling the energization of the heating wire and the heating wire. And an AC power supply, and forms a synchronous pulse power supply circuit that generates a pulse in synchronization with the phase of the AC power supply when the current leaking to the resistance temperature sensor line through the insulating layer is close to zero. The pulse voltage output from the circuit is given to a temperature signal voltage dividing circuit formed by the resistance temperature sensor line and the voltage dividing resistor and a reference voltage dividing circuit, and output from the temperature signal voltage dividing circuit and the reference voltage dividing circuit. A comparison circuit that compares the divided voltage signals, a peak hold circuit that holds the peak value of the divided voltage of the temperature signal voltage dividing circuit, and a peak hold circuit that holds the peak value of the divided voltage of the reference voltage dividing circuit. And that A temperature control device formed by a comparator for comparing the output signals of the respective peak hold circuits and applying the output signal of the comparator to the power control means.
【請求項2】 前記温度信号分圧回路の分圧信号を与え
るピークホールド回路の時定数設定抵抗を分圧回路によ
って形成し、この分圧回路を、可変抵抗からなる温度設
定抵抗と固定抵抗とによって形成し、この分圧回路の分
圧信号を前記比較器に与えまるようにした請求項1の温
度制御装置。
2. A time constant setting resistor of a peak hold circuit for giving a voltage dividing signal of the temperature signal voltage dividing circuit is formed by a voltage dividing circuit, and the voltage dividing circuit includes a temperature setting resistor composed of a variable resistor and a fixed resistor. 3. The temperature control device according to claim 1, wherein the temperature control device is formed by a voltage dividing circuit, and the divided voltage signal of the voltage dividing circuit is applied to the comparator.
【請求項3】 前記温度信号分圧回路を形成する抵抗温
度センサ及び分圧抵抗との抵抗値の割合をほぼ1対1に
した請求項1又は2の温度制御装置。
3. The temperature control device according to claim 1, wherein the resistance temperature sensor forming the temperature signal voltage dividing circuit and the voltage dividing resistor have a resistance value ratio of approximately 1: 1.
JP05078494A 1994-03-22 1994-03-22 Temperature control device Expired - Fee Related JP3540002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05078494A JP3540002B2 (en) 1994-03-22 1994-03-22 Temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05078494A JP3540002B2 (en) 1994-03-22 1994-03-22 Temperature control device

Publications (2)

Publication Number Publication Date
JPH07261855A true JPH07261855A (en) 1995-10-13
JP3540002B2 JP3540002B2 (en) 2004-07-07

Family

ID=12868453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05078494A Expired - Fee Related JP3540002B2 (en) 1994-03-22 1994-03-22 Temperature control device

Country Status (1)

Country Link
JP (1) JP3540002B2 (en)

Also Published As

Publication number Publication date
JP3540002B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
US4546239A (en) Non-continuous sensing apparatus for a temperature control
US4549074A (en) Temperature controller for providing a rapid initial heating cycle using a variable reference voltage
JPH01108615A (en) Temperature controller
JPH07261855A (en) Temperature control unit
JPH0782902B2 (en) Heating element
JP2591178B2 (en) Cordless iron
JPH081590Y2 (en) Heating sheet
KR870001657B1 (en) Temperature controller
JP3197985B2 (en) Heater control device
JPH0353297Y2 (en)
JPH0353296Y2 (en)
JPH04296484A (en) Temperature control unit of heater
JPH06111923A (en) Temperature control device
JPH0424283Y2 (en)
JPH0254574B2 (en)
JP2002373762A (en) Temperature regulating device for heating
JPS5937712Y2 (en) temperature detection circuit
JPH0755835Y2 (en) Heating device
JPH02196312A (en) Temperature controller
JP2516954B2 (en) Electric heater temperature control device
JP2712822B2 (en) Cordless iron
JP2591179B2 (en) Cordless iron
JPS5916024A (en) Temperature controller
JP3031362B1 (en) Induction heating cooker
JPH04183500A (en) Cordless iron

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040316

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040324

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees