JPH07260755A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH07260755A
JPH07260755A JP7809594A JP7809594A JPH07260755A JP H07260755 A JPH07260755 A JP H07260755A JP 7809594 A JP7809594 A JP 7809594A JP 7809594 A JP7809594 A JP 7809594A JP H07260755 A JPH07260755 A JP H07260755A
Authority
JP
Japan
Prior art keywords
vibrator
inspected
probe
defects
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7809594A
Other languages
Japanese (ja)
Inventor
Tadahiro Nomura
忠宏 野村
Tatsuya Akama
辰也 赤間
Takeshi Kusakari
岳 草刈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokimec Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP7809594A priority Critical patent/JPH07260755A/en
Publication of JPH07260755A publication Critical patent/JPH07260755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable transmitting and receiving high frequency and improve the detection capability of small defects and defects near the surface of a material to be inspected by using lithium iodate vibrator for the probe. CONSTITUTION:A vibrator 2 is excited by the transmission wave output from the main body of an ultrasonic flaw detector and the like and ultrasonic pulses are transmitted from a matching layer 3 into the material to be inspected. The ultrasonic pulse reflected at defects in and the bottom of the material to be inspected is received with the vibrator 2 to be converted to electric signal and transmitted from a connector 9 to the main body of the ultrasonic flaw detector and the like. The matching layer 3 adjust the acoustic impedance with the material to be inspected and prevents the vibrator 2 from directly contacting the inspecting material and failing. A damper 4 mechanically suppresses free vibration of the vibrator 2 and improves the resolution of the probe. Thus, by using lithium iodate piezoelectric vibrator for the vibrator 2, electrostatic capacity becomes small and the detection capability of small defects and defects near the surface of material to be inspected is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は超音波探傷装置、超音
波厚さ計並びに超音波映像装置等においてセンサとして
用いられる超音波探触子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe used as a sensor in an ultrasonic flaw detector, an ultrasonic thickness gauge, an ultrasonic imager and the like.

【0002】[0002]

【従来の技術】超音波探傷においては、超音波探触子
(以下「探触子」という)の送受信周波数の選択は、検
出すべき最小欠陥(検出可能な欠陥の大きさの下限は、
被検査材中における超音波の波長の1/2程度である)
及び被検査材中における超音波の減衰度(探触子の送受
信周波数が高い程、減衰度が大きくなる)等を考慮して
行われる。鋼等の一般金属材料または金属製品の超音波
探傷装置においては、通常、上記の点を考慮して、送受
信周波数が2MHzから5MHzまでの範囲にある探触
子が使用されている。
2. Description of the Related Art In ultrasonic flaw detection, the transmission / reception frequency of an ultrasonic probe (hereinafter referred to as "probe") is selected by the minimum defect to be detected (the lower limit of the size of the detectable defect is
It is about 1/2 of the wavelength of ultrasonic waves in the material to be inspected
And the degree of attenuation of ultrasonic waves in the material to be inspected (the higher the transmission / reception frequency of the probe, the greater the degree of attenuation). In the ultrasonic flaw detector for general metal materials such as steel or metal products, a probe having a transmission / reception frequency in the range of 2 MHz to 5 MHz is usually used in consideration of the above points.

【0003】送受信周波数が前記範囲にある探触子にお
いては、探触子の主要部品である圧電振動子(以下「振
動子」という)の材料として、従来、ジルコン酸チタン
酸鉛系及びチタン酸鉛系が多く用いられてきた。また、
ニオブ酸リチウム系も用いられるようになってきた。
In a probe having a transmission / reception frequency within the above range, as a material for a piezoelectric vibrator (hereinafter referred to as “vibrator”) which is a main component of the probe, conventionally, lead zirconate titanate-based materials and titanic acid have been used. Lead-based materials have been widely used. Also,
Lithium niobate-based materials have also been used.

【0004】[0004]

【発明が解決しようとする課題】超音波探傷の対象が金
属材料・部品からフアインセラミック材等に広がり、直
径0.1mm以下の微小欠陥の検出が要求されるように
なった。微小な欠陥を検出するには、超音波の波長を短
くする、すなわち探触子の送受信周波数を高くする必要
がある。また、極力、被検査材の表面近傍の欠陥も検出
することが要求されるようになった。そのためにも、探
触子の送受信周波数を高くする必要がある。探触子の送
受信周波数は振動子の厚さ方向共振周波数に大きく依存
する。振動子の性能を表す特性値のうちで特に重要なの
が電気機械結合係数、周波数定数及び比誘電率である。
これらの特性値の各種振動子材料における1例を図3に
示す。
The object of ultrasonic flaw detection has spread from metal materials and parts to fine ceramic materials and the like, and it has become necessary to detect minute defects having a diameter of 0.1 mm or less. In order to detect minute defects, it is necessary to shorten the wavelength of ultrasonic waves, that is, increase the transmission / reception frequency of the probe. Moreover, it has become necessary to detect defects near the surface of the material to be inspected as much as possible. Therefore, it is necessary to increase the transmission / reception frequency of the probe. The transmission / reception frequency of the probe largely depends on the resonance frequency in the thickness direction of the transducer. The electromechanical coupling coefficient, the frequency constant, and the relative permittivity are particularly important among the characteristic values representing the performance of the vibrator.
FIG. 3 shows an example of various oscillator materials having these characteristic values.

【0005】電気機械結合係数は振動子の電気エネルギ
ー及び機械エネルギー相互間の変換効率を表す特性値で
あって、大きい方が望ましい。周波数定数は振動子の厚
さ方向共振周波数と厚さの積であって、探触子の製作仕
様として周波数が与えられたとき、この定数から振動子
の厚さを計算する。周波数定数をN[kHz・mm]、探触子
の周波数をf[kHz]、振動子の厚さをt[mm]とする
と、 t=N/f [kHz・mm] (式1) である。
The electromechanical coupling coefficient is a characteristic value representing the conversion efficiency between the electric energy and the mechanical energy of the vibrator, and the larger the value, the better. The frequency constant is the product of the resonance frequency in the thickness direction of the vibrator and the thickness, and when the frequency is given as the manufacturing specifications of the probe, the thickness of the vibrator is calculated from this constant. Assuming that the frequency constant is N [kHz · mm], the frequency of the probe is f [kHz], and the thickness of the transducer is t [mm], then t = N / f [kHz · mm] (Equation 1) .

【0006】比誘電率は振動子の電極間の静電容量(以
下「静電容量」という)を決定する特性値である。振動
子の静電容量をC[pF]、比誘電率をε、振動子電極の
面積をS[mm2]とする。真空中の誘電率は8.85×
10-12 [F/m]=8.85×10-3[pF/mm]であるか
ら、 C=8.85×10-3・ε・S/t [pF] =8.85×10-3・ε・Sf/N [pF] (式2) となる。
The relative permittivity is a characteristic value that determines the electrostatic capacitance between electrodes of the vibrator (hereinafter referred to as "electrostatic capacitance"). The capacitance of the vibrator is C [pF], the relative permittivity is ε, and the area of the vibrator electrode is S [mm 2 ]. Dielectric constant in vacuum is 8.85 ×
Since 10 −12 [F / m] = 8.85 × 10 −3 [pF / mm], C = 8.85 × 10 −3 · ε · S / t [pF] = 8.85 × 10 − 3 · ε · Sf / N [pF] (Equation 2)

【0007】振動子は上記式2で計算されるような静電
容量をもち、高周波領域になると、前記静電容量と超音
波探傷器等の送受信回路とを接続するリード線との間に
共振を生じ、目的の周波数の送受信に悪影響を及ぼす。
例えば探触子の振動子と、超音波探傷器の送受信部とを
長さ15cm、直径0.04cm(この値は実用的な最
低限の値である)のリード線により接続したとする。前
記リード線のインダクタンスは約0.2μHである(荒
木庸夫著、東京電機大学出版局刊(昭和52年7月)
「電磁妨害と防止対策」の第55頁による)。振動子の
静電容量が大きいと、それと前記リード線のインダクタ
ンスとの間の共振周波数が低下し、目的とする周波数よ
り低い周波数での送受信となってしまい、特に微小欠陥
を検出する能力が低下する。
The vibrator has a capacitance as calculated by the above equation 2, and in the high frequency region, resonance occurs between the capacitance and a lead wire connecting a transmission / reception circuit such as an ultrasonic flaw detector. And adversely affect the transmission and reception of the target frequency.
For example, it is assumed that the transducer of the probe and the transmitting / receiving section of the ultrasonic flaw detector are connected by a lead wire having a length of 15 cm and a diameter of 0.04 cm (this value is a practical minimum value). The inductance of the lead wire is about 0.2 μH (Takeo Araki, published by Tokyo Denki University Press (July 1977))
(See page 55 of "Electromagnetic Interference and Preventive Measures"). If the electrostatic capacitance of the vibrator is large, the resonance frequency between it and the inductance of the lead wire will decrease, and transmission and reception will occur at a frequency lower than the target frequency, especially the ability to detect minute defects will decrease. To do.

【0008】図3に記載の各種振動子材料について、振
動子の周波数を50MHz、その形状を直径5mmの円
板形としたときの静電容量、及びその静電容量と上記リ
ード線のインダクタンスとの共振周波数を図4に示す。
Regarding the various oscillator materials shown in FIG. 3, the capacitance when the oscillator frequency is 50 MHz and the shape is a disk shape with a diameter of 5 mm, and the capacitance and the inductance of the lead wire. The resonance frequency of is shown in FIG.

【0009】ジルコン酸チタン酸鉛系振動子の共振周波
数は3.7MHz、チタン酸鉛系振動子の共振周波数は
12MHzであり、周波数50MHzの送受信は不可能
である。ニオブ酸リチウム系振動子の静電容量はチタン
酸鉛系振動子の静電容量に比しても、著しく小さくなる
が、それでも、共振周波数は41MHzであり、50M
Hzでの送信は不可能である。
The resonance frequency of the lead zirconate titanate-based oscillator is 3.7 MHz, and the resonance frequency of the lead titanate-based oscillator is 12 MHz, so that transmission / reception at a frequency of 50 MHz is impossible. The capacitance of the lithium niobate-based oscillator is significantly smaller than that of the lead titanate-based oscillator, but the resonance frequency is still 41 MHz and is 50M.
Transmission at Hz is not possible.

【0010】[0010]

【課題を解決するための手段】本発明は、このような従
来の問題に着目してなされたもので、探触子の振動子に
ヨウ素酸リチウム振動子を使用することにより、上記の
問題を解決することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem. By using a lithium iodate vibrator as a vibrator of a probe, the above problems are solved. The purpose is to resolve.

【0011】[0011]

【作用】ジルコン酸チタン酸鉛系振動子、チタン酸鉛系
振動子及びニオブ酸リチウム系振動子の静電容量と共振
周波数とを求めた前記計算と同じ条件において、ヨウ素
酸リチウム振動子の静電容量と共振周波数とを計算した
結果を図4に示す。
[Function] Under the same conditions as the above calculation for obtaining the capacitance and the resonance frequency of the lead zirconate titanate type oscillator, the lead titanate type oscillator and the lithium niobate type oscillator, the static state of the lithium iodate oscillator is determined. The result of calculating the capacitance and the resonance frequency is shown in FIG.

【0012】この静電容量の大きさは、前記のニオブ酸
リチウム系振動子の静電容量の大きさに比しても1/2
以下である。共振周波数は61MHzとなり、周波数5
0MHzでの送受信には充分な値となり、微小欠陥及び
被検査材表面近傍の欠陥を検出する能力が向上する。
The magnitude of this capacitance is 1/2 of that of the lithium niobate-based oscillator described above.
It is the following. Resonance frequency is 61MHz, frequency 5
This is a sufficient value for transmission / reception at 0 MHz, and the ability to detect minute defects and defects near the surface of the inspected material is improved.

【0013】[0013]

【実施例】図1は通常の垂直型探触子の構造を示す図で
ある。は垂直型探触子である。2は振動子、3は整合
層、4はダンパー、5は充填剤、6は保持体、7はケー
ス、8−1及び8−2はリード線、9はコネクタであ
る。コネクタ9は図示しないケーブルにより図示しない
超音波探傷器等の本体と接続される。コネクタ9と振動
子2とはリード線8−1及び8−2により接続されてい
る。超音波探傷器等の本体から出力される送信波により
振動子2が励振され、整合層3から図示しない被検査材
中に超音波パルスが送信される。被検査材中の欠陥及び
被検査材の底面にて反射した超音波パルスは振動子2で
受信されて電気信号に変換される。そしてコネクタ9か
ら超音波探傷器等の本体に送信される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the structure of a normal vertical probe. Reference numeral 1 is a vertical probe. Reference numeral 2 is a vibrator, 3 is a matching layer, 4 is a damper, 5 is a filler, 6 is a holder, 7 is a case, 8-1 and 8-2 are lead wires, and 9 is a connector. The connector 9 is connected to a main body such as an ultrasonic flaw detector (not shown) by a cable (not shown). The connector 9 and the vibrator 2 are connected by lead wires 8-1 and 8-2. The oscillator 2 is excited by the transmission wave output from the main body of the ultrasonic flaw detector or the like, and the ultrasonic pulse is transmitted from the matching layer 3 into the inspection material (not shown). Defects in the inspection material and ultrasonic pulses reflected by the bottom surface of the inspection material are received by the transducer 2 and converted into electric signals. Then, it is transmitted from the connector 9 to the main body such as the ultrasonic flaw detector.

【0014】整合層3は、振動子と被検査材との音響イ
ンピーダンスの整合をとるとともに、振動子2が被検査
材と直接接触して破損するのを防いでいる。ダンパー4
は振動子2の自由振動を機械的に抑圧することにより探
触子の分解能を向上させる。通常、ダンパー4はタング
ステン、アルミナ等の微小粉体を混合したエポキシ系硬
化性注型材をプレス型にて加圧硬化して製作する。保持
体6は一体に構成された振動子2、整合層3及びダンパ
ー4と充填材5をケース7内に保持する。
The matching layer 3 provides acoustic impedance matching between the vibrator and the material to be inspected, and also prevents the vibrator 2 from directly contacting the material to be inspected and being damaged. Damper 4
Improves the resolution of the probe by mechanically suppressing the free vibration of the vibrator 2. Usually, the damper 4 is manufactured by press-curing an epoxy-based curable casting material mixed with fine powder such as tungsten or alumina with a press die. The holder 6 holds the vibrator 2, the matching layer 3, the damper 4 and the filler 5 which are integrally formed in the case 7.

【0015】図2は通常の水浸型探触子の構造を示す図
である。20は水浸型探触子である。音響レンズ21
は、送信された超音波のビームを被検査材の一点に収束
する。保持体22は一体に構成された振動子2、音響レ
ンズ21及びダンパー4をケース23に保持する。
FIG. 2 is a diagram showing the structure of a normal water immersion type probe. Reference numeral 20 is a water immersion type probe. Acoustic lens 21
Focuses the transmitted ultrasonic beam on one point of the material to be inspected. The holding body 22 holds the vibrator 2, the acoustic lens 21, and the damper 4, which are integrally formed, in the case 23.

【0016】以上垂直型探触子及び水浸型探触子におけ
る実施例を説明したが、この発明の実施はそれらに限定
されない。この発明は分割型探触子、斜角型探触子、タ
イヤ型探触子等にも実施可能である。
Although the embodiments of the vertical type probe and the water immersion type probe have been described above, the practice of the present invention is not limited to them. The present invention can be applied to a split type probe, a beveled type probe, a tire type probe and the like.

【0017】[0017]

【発明の効果】ヨウ素酸リチウム圧電振動子を使用する
ことにより、高周波数の送受信が可能で、微小欠陥及び
被検査材表面近傍の欠陥の検出能力に優れた超音波探触
子を提供できる。
By using the lithium iodate piezoelectric vibrator, it is possible to provide an ultrasonic probe capable of transmitting and receiving at a high frequency and having an excellent ability to detect minute defects and defects near the surface of the material to be inspected.

【図面の簡単な説明】[Brief description of drawings]

【図1】通常の垂直型探触子の構造を示す図である。FIG. 1 is a diagram showing a structure of a normal vertical probe.

【図2】図2は通常の水浸型探触子の構造を示す図であ
る。
FIG. 2 is a diagram showing a structure of a normal water-immersion type probe.

【図3】各種振動子材料における特性値の1例を示す図
である。
FIG. 3 is a diagram showing an example of characteristic values of various oscillator materials.

【図4】各種振動子材料における静電容量と共振周波数
の1例を示す図である。
FIG. 4 is a diagram showing an example of capacitance and resonance frequency in various oscillator materials.

【符号の説明】 は垂直型探触子である。2は振動子、3は整合層、4
はダンパー、5は充填剤、6は保持体、7はケース、8
−1及び8−2はリード線、9はコネクタである。20
は水浸型探触子である。21は音響レンズ、22は保持
体、23はケースである。
[Description of Reference Signs] 1 is a vertical probe. 2 is a vibrator, 3 is a matching layer, 4
Is a damper, 5 is a filler, 6 is a holder, 7 is a case, 8
-1 and 8-2 are lead wires, and 9 is a connector. 20
Is a water-immersion type probe. Reference numeral 21 is an acoustic lens, 22 is a holder, and 23 is a case.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ヨウ素酸リチウム圧電振動子を使用した
ことを特徴とする超音波探触子
1. An ultrasonic probe using a lithium iodate piezoelectric vibrator.
JP7809594A 1994-03-24 1994-03-24 Ultrasonic probe Pending JPH07260755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7809594A JPH07260755A (en) 1994-03-24 1994-03-24 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7809594A JPH07260755A (en) 1994-03-24 1994-03-24 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH07260755A true JPH07260755A (en) 1995-10-13

Family

ID=13652314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7809594A Pending JPH07260755A (en) 1994-03-24 1994-03-24 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH07260755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367732A (en) * 2016-03-22 2017-11-21 株式会社电装 Ultrasonic sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367732A (en) * 2016-03-22 2017-11-21 株式会社电装 Ultrasonic sensor
CN107367732B (en) * 2016-03-22 2021-09-28 株式会社电装 Ultrasonic sensor

Similar Documents

Publication Publication Date Title
CA2144597C (en) Improved emat probe and technique for weld inspection
US7460439B2 (en) Ultrasonic transducer for ranging measurement with high directionality using parametric transmitting array in air and a method for manufacturing same
US4703656A (en) Temperature independent ultrasound transducer device
EP0602949A2 (en) Curvilinear interleaved longitudinal-mode ultrasound transducers
US5339290A (en) Membrane hydrophone having inner and outer membranes
JP2003185517A (en) Distance and pressure measurement within air spring
CN104622512A (en) Capacitance type micro-ultrasonic sensor ring array with oval diaphragm unit structure and circuit system thereof
JPH0421139B2 (en)
CN2615666Y (en) Phased array probe for solid material ultrasound nondestructive testing
Papadakis et al. 2 Fabrication and characterization of transducers
US5569854A (en) Apparatus and method for transmitting and receiving ultrasonic waves having an acoustoelectric, ultrasonic transducer
EP1824611A1 (en) Ultrawideband ultrasonic transducer
JPH07260755A (en) Ultrasonic probe
CN100399596C (en) Phased array probe for scanning imager
CN112285202A (en) Variable-curvature PBX surface crack oriented nondestructive testing method and sensor
Herzog et al. Aluminum nitride thin films for high frequency smart ultrasonic sensor systems
JP3640532B2 (en) Ultrasonic probe
CA2092929A1 (en) Ultrasonic transducer
JPH03194462A (en) Ultrasonic probe
JPH04132498A (en) Ultrasonic sensor
JPH0835954A (en) Ultrasonic probe
EP0277785A2 (en) Acoustic transducer
JP3141625B2 (en) Acoustic emission sensor
JPS6321582A (en) Ultrasonic transmitter/receiver
SU1368677A1 (en) Pressure transducer