JPH07258861A - Electroless bismuth plating bath - Google Patents

Electroless bismuth plating bath

Info

Publication number
JPH07258861A
JPH07258861A JP6050610A JP5061094A JPH07258861A JP H07258861 A JPH07258861 A JP H07258861A JP 6050610 A JP6050610 A JP 6050610A JP 5061094 A JP5061094 A JP 5061094A JP H07258861 A JPH07258861 A JP H07258861A
Authority
JP
Japan
Prior art keywords
plating
plating bath
bismuth
electroless
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6050610A
Other languages
Japanese (ja)
Inventor
Yoshihiko Takano
良比古 高野
Kazuhiro Morita
一弘 森田
Atsuo Senda
厚生 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP6050610A priority Critical patent/JPH07258861A/en
Publication of JPH07258861A publication Critical patent/JPH07258861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

PURPOSE:To enable electroless plating of bismuth which is heretofore difficult. CONSTITUTION:Electroless plating of the bismuth is made 3 by using an electroless plating bath contg. a tervalent bismuth salt, a bivalent water-soluble compd. of tin as a reducing agent and a complexing agent. The pH of the plating bath is adjusted by an aq. sodium carbonate soln. and hydrochloric acid to 7.0, by which plating is executed at a low complexing agent salt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は無電解ビスマスめっき浴
に関する。
FIELD OF THE INVENTION The present invention relates to an electroless bismuth plating bath.

【0002】[0002]

【従来の技術】無電解めっきは、金属のカソ−ド析出反
応と還元剤のアノ−ド酸化反応との並列反応を利用す
る。従来、還元剤としては、次亜リン酸ナトリウム、ホ
ルマリン、水素化ホウ素ナトリウム、ジメチルアミンボ
ランなどが用いられ、ニッケルやコバルトなどの金属に
おいて無電解めっきが実用化されている。
2. Description of the Related Art Electroless plating utilizes a parallel reaction between a metal cathodic deposition reaction and a reducing agent anodic oxidation reaction. Conventionally, sodium hypophosphite, formalin, sodium borohydride, dimethylamine borane, etc. have been used as reducing agents, and electroless plating has been put to practical use on metals such as nickel and cobalt.

【0003】このような無電解めっきにおいて、めっき
反応が起こるための条件としては、平衡論的には、析出
金属の可逆電位が還元剤の酸化還元電位よりも「貴」で
なければならない。この点では、ビスマスの可逆電位は
+0.314(vs.N.H.E.)と、前述した次亜
リン酸ナトリウムなどの還元剤で無電解めっき可能な元
素であるニッケルやコバルトなどの電位−0.236
V、−0.287V(ともにvs.N.H.E.)より
も十分「貴」な値を示しており、めっき析出が可能と考
えることができる。
In such electroless plating, the condition for the plating reaction to occur is that the reversible potential of the deposited metal must be "noble" than the redox potential of the reducing agent in equilibrium theory. In this respect, the reversible potential of bismuth is +0.314 (vs.N.H.E.), and the potential of nickel or cobalt, which is an element that can be electrolessly plated with a reducing agent such as sodium hypophosphite described above. -0.236
V and -0.287 V (both vs. N.H.E.) are sufficiently "noble" values, and it can be considered that plating deposition is possible.

【0004】しかし、無電解めっき反応の可能性を大き
く支配するのは、還元剤のアノ−ド酸化反応速度であ
り、その速度は、電極金属に大きく依存する。これは、
素地が析出金属によって覆われていくので、定常的にめ
っきが進行するには、析出金属自体が還元剤の酸化反応
に対して十分な触媒活性を有していなければならないこ
とによる。ニッケルやコバルトは遷移元素に属するが、
カドミウム、鉛、アンチモン、インジウム、ビスマスは
典型元素に属している。典型元素はその電子配列の状態
から、触媒活性が低い、あるいは触媒毒として作用する
事が知られている。したがって、無電解めっきによるカ
ドミウム、鉛、アンチモン、インジウム、ビスマスなど
の皮膜の形成は不可能であるとされていた。
However, it is the anodic oxidation reaction rate of the reducing agent that largely controls the possibility of the electroless plating reaction, and the rate greatly depends on the electrode metal. this is,
This is because the base metal is covered with the deposited metal, and for the plating to proceed steadily, the deposited metal itself must have sufficient catalytic activity for the oxidation reaction of the reducing agent. Nickel and cobalt belong to the transition elements,
Cadmium, lead, antimony, indium and bismuth belong to the typical elements. It is known that a typical element has low catalytic activity or acts as a catalyst poison due to its electronic arrangement. Therefore, it has been considered impossible to form a film of cadmium, lead, antimony, indium, bismuth, etc. by electroless plating.

【0005】しかしながら、本発明の発明者らによれば
特開平3−191070に示すように、従来無電解めっ
きが不可能とされていた典型元素に属するカドミウム、
鉛、アンチモン、インジウム等の無電解めっきを、還元
剤としてチタンの三価の水溶性化合物および錯化剤をふ
くむめっき浴を用いることにより可能にした。
However, according to the inventors of the present invention, as disclosed in Japanese Patent Application Laid-Open No. 3-191070, cadmium, which belongs to a typical element which has been considered impossible to perform electroless plating,
Electroless plating of lead, antimony, indium, etc. has been made possible by using a plating bath containing a trivalent water-soluble compound of titanium as a reducing agent and a complexing agent.

【0006】以下に三塩化チタンを還元剤として用い
て、カドミウムを無電解めっきするときの条件を示す。
なお、ここで用いた薬品はすべて試薬特級である。
The conditions for electroless plating of cadmium using titanium trichloride as a reducing agent are shown below.
The chemicals used here are all special grade reagents.

【0007】まず、めっき皮膜を形成するための例えば
アルミナなどのセラミック基板もしくはポリイミドなど
の高分子樹脂基板を準備する。前記基板をセンシタイジ
ング−アクチベ−ション法により、塩化第二スズ水溶液
と塩酸の混合溶液中で、二価のSnイオンを基板表面に
吸着させる。続いて塩化パラジウムと塩酸の混合溶液中
でレドックス反応を起こさせて基板表面にPd核を沈着
させる。もしくはキャタリスト−アクセレ−タ法で塩化
パラジウム、塩化第一スズおよび塩酸の混合溶液中でレ
ドックス反応を起こさせて基板表面にPd核と四価のS
nイオンを吸着させる。続いて塩酸もしくは硫酸により
前記Snイオンを基板表面より除去し、基板表面にPd
核を形成する。
First, a ceramic substrate such as alumina or a polymer resin substrate such as polyimide for forming a plating film is prepared. Divalent Sn ions are adsorbed on the surface of the substrate by a sensitizing-activation method in a mixed solution of an aqueous stannic chloride solution and hydrochloric acid. Then, a redox reaction is caused to occur in a mixed solution of palladium chloride and hydrochloric acid to deposit Pd nuclei on the surface of the substrate. Alternatively, a redox reaction is caused to occur in a mixed solution of palladium chloride, stannous chloride and hydrochloric acid by the catalyst-accelerator method to form Pd nuclei and tetravalent S on the substrate surface.
Adsorb n ions. Then, the Sn ions are removed from the substrate surface with hydrochloric acid or sulfuric acid, and Pd is deposited on the substrate surface.
Form a nucleus.

【0008】一方めっき液として、エチレンジアミン四
酢酸二ナトリウム(EDTA−2Na・2H2 O)、ク
エン酸三ナトリウム(Citrate−3Na・2H2
O)、およびニトリロ三酢酸(NTA)の各錯化剤を、
60℃に加熱した純水に溶解し、28%アンモニア水に
てpH10.5に調整したのち、塩化カドミウム(Cd
Cl2 ・5/2H2 O)を添加する。塩化カドミウム
(CdCl2 ・5/2H2 O)が完全に溶解したの
ち、三塩化チタン(TiCl3 )の20%塩酸溶液を添
加し、めっき温度に加温しつつ再びアンモニア水により
pHを10.5に調整してめっき浴とする。前記めっき
浴組成およびめっき条件を表1に示す。
On the other hand, as a plating solution, disodium ethylenediaminetetraacetate (EDTA-2Na · 2H 2 O), trisodium citrate (Citrate-3Na · 2H 2)
O) and nitrilotriacetic acid (NTA) complexing agents,
After dissolving in pure water heated to 60 ° C and adjusting the pH to 10.5 with 28% ammonia water, cadmium chloride (Cd
Cl 2 · 5 / 2H 2 O) is added. After cadmium chloride (CdCl 2 · 5 / 2H 2 O) was completely dissolved, a 20% hydrochloric acid solution of titanium trichloride (TiCl 3 ) was added, and the pH was adjusted to 10. Adjust to 5 to make a plating bath. The plating bath composition and plating conditions are shown in Table 1.

【0009】[0009]

【表1】 [Table 1]

【0010】内容積500mlのビ−カをめっき漕と
し、めっき液を70±1℃に制御すると同時に、アンモ
ニア水を滴下してめっき液のpHが10.5±0.5に
なるように制御する。めっき反応の進行中は、マグネチ
ックスタ−ラでめっき液を撹拌する。
Using a beaker with an internal volume of 500 ml as a plating tank, the plating solution is controlled at 70 ± 1 ° C., and at the same time ammonia water is dropped to control the pH of the plating solution to 10.5 ± 0.5. To do. While the plating reaction is in progress, the plating solution is stirred with a magnetic stirrer.

【0011】以上の条件のもとでめっき処理を60分間
行うと所定厚みのカドミウム皮膜が得られる。
When the plating treatment is performed for 60 minutes under the above conditions, a cadmium film having a predetermined thickness can be obtained.

【0012】また鉛めっきは前記カドミウム皮膜のめっ
きと同様に、以下に説明するような方法で達成できる。
The lead plating can be achieved by the method described below, like the plating of the cadmium film.

【0013】まずエチレンジアミン四酢酸二ナトリウム
(EDTA−2Na・2H2 O)、クエン酸三ナトリウ
ム(Citrate−3Na・2H2 O)、およびニト
リロ三酢酸(NTA)の各錯化剤を、60℃に加熱した
純水に溶解し、28%アンモニア水にてpH9.0に調
整したのち、塩化鉛(PbCl2 )を添加した。塩化鉛
(PbCl2 )が完全に溶解したのち、三塩化チタン
(20%塩酸溶液)を添加し、めっき温度に加温しつつ
再びアンモニア水によりpHを9.0に調整してめっき
浴とした。
First, disodium ethylenediaminetetraacetate (EDTA-2Na · 2H 2 O), trisodium citrate (Citrate-3Na · 2H 2 O), and nitrilotriacetic acid (NTA) complexing agents were added to 60 ° C. After dissolved in heated pure water and adjusted to pH 9.0 with 28% aqueous ammonia, lead chloride (PbCl 2 ) was added. After lead chloride (PbCl 2 ) was completely dissolved, titanium trichloride (20% hydrochloric acid solution) was added, and the pH was adjusted to 9.0 with ammonia water again while warming to the plating temperature to obtain a plating bath. .

【0014】内容積500mlのビ−カをめっき漕と
し、めっき液を60±1℃に制御すると同時に、アンモ
ニア水を滴下してめっき液のpHが9.0±0.5にな
るように制御する。めっき反応の進行中は、マグネチッ
クスタ−ラでめっき液を撹拌する。
Using a beaker with an internal volume of 500 ml as a plating tank, the plating solution was controlled at 60 ± 1 ° C., and at the same time ammonia water was dropped to control the pH of the plating solution to 9.0 ± 0.5. To do. While the plating reaction is in progress, the plating solution is stirred with a magnetic stirrer.

【0015】以上の条件のもとでめっき処理を60分間
行うと、所定厚みの鉛皮膜が得られる。
When the plating treatment is carried out for 60 minutes under the above conditions, a lead film having a predetermined thickness can be obtained.

【0016】[0016]

【発明が解決しようとする課題】しかしながら従来の方
法には次に述べるような問題点がある。
However, the conventional method has the following problems.

【0017】還元剤としてチタンの三価の水溶性化合物
をもちいても、エレクトロニクスの機能性材料として重
要なビスマスの無電解めっきは困難である。
Even if a trivalent water-soluble compound of titanium is used as a reducing agent, electroless plating of bismuth, which is important as a functional material for electronics, is difficult.

【0018】また液のpH調整にアンモニア水を用いて
いるので、pH変動が大きくめっきを安定して行う事が
困難であるし、析出速度を向上させるためにめっき液の
濃度や温度を高く設定する必要があり、さらにアンモニ
ア水を用いるため安全性や環境面で問題がある。
Further, since ammonia water is used to adjust the pH of the solution, it is difficult to perform stable plating due to large fluctuations in pH, and the concentration and temperature of the plating solution are set high in order to improve the deposition rate. In addition, since ammonia water is used, there is a problem in safety and environment.

【0019】だから本発明ではビスマスの無電解めっき
を可能にするとともに、安全性や環境面で優れためっき
浴を提供する。
Therefore, the present invention enables electroless plating of bismuth and provides a plating bath excellent in safety and environment.

【0020】[0020]

【課題を解決するための手段】本発明の請求項1にかか
る無電解ビスマスめっき浴は、三価のビスマス塩と還元
剤としてスズの二価の水溶性化合物と錯化剤とを含むこ
とを特徴とする。
The electroless bismuth plating bath according to claim 1 of the present invention comprises a trivalent bismuth salt, a divalent water-soluble compound of tin as a reducing agent, and a complexing agent. Characterize.

【0021】本発明の請求項2にかかる無電解ビスマス
めっき浴は、三価のビスマス塩と還元剤としてスズの二
価の水溶性化合物と錯化剤とpH調整剤として炭酸塩を
含むことを特徴とする。
The electroless bismuth plating bath according to claim 2 of the present invention comprises a trivalent bismuth salt, a divalent water-soluble compound of tin as a reducing agent, a complexing agent and a carbonate as a pH adjusting agent. Characterize.

【0022】[0022]

【作用】請求項1記載の無電解ビスマスめっき浴は、還
元剤としてスズの二価の水溶性化合物を用いることによ
り、従来困難であるとされていたビスマスの無電解めっ
きを可能にする。
The electroless bismuth plating bath according to claim 1 enables electroless plating of bismuth, which has been conventionally considered difficult, by using a divalent tin water-soluble compound as a reducing agent.

【0023】請求項2記載の無電解ビスマスめっき浴
は、炭酸塩によりめっき浴のpH調整を行うために、p
Hを弱酸性から弱アルカリ性の範囲とすることができ
る。したがって、アンモニアアルカリ性のめっき浴に比
べて、めっき浴の濃度、特に錯化剤の濃度を低減でき、
めっき浴の温度も下げることができると共に、安定性の
優れためっき浴を与えることができる。しかも、被めっ
き物を変質させるという懸念を低減できると共に、めっ
き液からアンモニアガスが発生しないので作業上の安全
性も向上できる。
In the electroless bismuth plating bath according to the second aspect of the present invention, since the pH of the plating bath is adjusted with carbonate, p
H can range from weakly acidic to weakly alkaline. Therefore, the concentration of the plating bath, particularly the concentration of the complexing agent, can be reduced as compared with the ammonia alkaline plating bath,
The temperature of the plating bath can be lowered and a plating bath having excellent stability can be provided. In addition, it is possible to reduce the concern that the material to be plated will be deteriorated, and the working safety can be improved because no ammonia gas is generated from the plating solution.

【0024】[0024]

【実施例】以下に本発明の実施例を表2を用いて説明す
る。表2に本発明の基本浴組成およびめっき条件を示
す。ここで用いる薬品はすべて試薬特級である。
EXAMPLES Examples of the present invention will be described below with reference to Table 2. Table 2 shows the basic bath composition and plating conditions of the present invention. All chemicals used here are special grade reagents.

【0025】[0025]

【表2】 [Table 2]

【0026】まずエチレンジアミン四酢酸二ナトリウム
(EDTA−2Na・2H2 O)、クエン酸三ナトリウ
ム(Citrate−3Na・2H2 O)、およびニト
リロ三酢酸(NTA)の各錯化剤を、60℃に加熱した
純水に溶解し、20%炭酸ナトリウム水溶液および2%
塩酸でpH7.0に調整したのち、三塩化ビスマス(B
iCl3 )を添加した。三塩化ビスマス(BiCl3
が完全に溶解したのち、25℃に冷却後、塩化第一スズ
(SnCl2 ・2H2 O)の20%塩酸溶液を添加し、
めっき温度に加温しつつ再び20%炭酸ナトリウム水溶
液および2%塩酸によりpHを7.0に調整してめっき
浴とした。
First, disodium ethylenediaminetetraacetate (EDTA-2Na · 2H 2 O), trisodium citrate (Citrate-3Na · 2H 2 O), and nitrilotriacetic acid (NTA) complexing agents were added to 60 ° C. Dissolve in heated pure water, 20% sodium carbonate solution and 2%
After adjusting the pH to 7.0 with hydrochloric acid, bismuth trichloride (B
iCl 3 ) was added. Bismuth trichloride (BiCl 3 )
Was completely dissolved, and after cooling to 25 ° C., a 20% hydrochloric acid solution of stannous chloride (SnCl 2 .2H 2 O) was added,
While warming to the plating temperature, the pH was adjusted again to 7.0 with a 20% aqueous sodium carbonate solution and 2% hydrochloric acid to prepare a plating bath.

【0027】内容積500mlのビ−カをめっき漕と
し、めっき浴を50℃±1℃に制御しつつ、めっき反応
を進行させた。めっき反応の進行中はめっき浴のpHを
20%炭酸ナトリウム水溶液および2%塩酸によりpH
を7.0±0.5に制御した。まためっき液の撹拌は、
マグネチックスタ−ラにより行った。金属塩化物の濃度
は、めっき液の安定性から決定し、めっき時の浴安定性
が維持できる上限濃度とした。
A beaker having an internal volume of 500 ml was used as a plating tank, and the plating reaction was allowed to proceed while controlling the plating bath at 50 ° C. ± 1 ° C. While the plating reaction is in progress, adjust the pH of the plating bath with 20% sodium carbonate aqueous solution and 2% hydrochloric acid.
Was controlled to 7.0 ± 0.5. The stirring of the plating solution is
It was performed by a magnetic stirrer. The concentration of the metal chloride was determined from the stability of the plating solution, and was set as the upper limit concentration that can maintain the bath stability during plating.

【0028】めっき皮膜を形成するための試験片とし
て、例えばアルミナ基板もしくはポリイミド膜などの試
料に、センシタイジング−アクチベ−ション法もしくは
キャタリスト−アクセレ−タ法でPd核を形成させた。
前記試験片に45分のめっき処理を施し、およそ2μm
のビスマス皮膜を得た。
As a test piece for forming a plating film, a Pd nucleus was formed on a sample such as an alumina substrate or a polyimide film by a sensitizing-activation method or a catalyst-accelerator method.
Approximately 2 μm after the test piece was plated for 45 minutes
A bismuth film of

【0029】なお本発明を実施するにあたりめっき浴の
pH、温度は前記実施例に限定されるものではなくpH
が5〜8、温度が40〜70℃の範囲で目的を達成する
ことができる。
In carrying out the present invention, the pH and temperature of the plating bath are not limited to those in the above examples, and the pH is not limited to the above examples.
5 to 8 and a temperature of 40 to 70 ° C can achieve the object.

【0030】[0030]

【発明の効果】本発明のめっき浴は、三価のビスマス塩
と還元剤としてスズの二価の水溶性化合物と錯化剤とを
含むために、従来困難であったビスマスの無電解めっき
が可能になった。また前記めっき浴は炭酸塩でpHを調
整するようにしたので、pHを弱酸性から弱アルカリ性
の範囲とすることができるようになり、被めっき物を変
質させるという懸念を低減できる。またアンモニアアル
カリ性のめっき浴に比べて、めっき浴の濃度、特に錯化
剤の濃度を低減でき、めっき浴の温度も下げることがで
きると共に、安定性の優れためっき浴を与えることがで
きるようになった。さらにアンモニアを使わないため作
業上の安全性も向上できる。
The plating bath of the present invention contains a trivalent bismuth salt, a divalent water-soluble compound of tin as a reducing agent, and a complexing agent. It became possible. Moreover, since the pH of the plating bath is adjusted with a carbonate, the pH can be adjusted in the range of weak acidity to weak alkalinity, and it is possible to reduce the concern that the object to be plated is deteriorated. In addition, the concentration of the plating bath, especially the concentration of the complexing agent can be reduced, the temperature of the plating bath can be lowered, and a plating bath having excellent stability can be provided as compared with the ammonia alkaline plating bath. became. Furthermore, since ammonia is not used, work safety can be improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】三価のビスマス塩と還元剤としてスズの二
価の水溶性化合物と錯化剤とを含むことを特徴とする無
電解ビスマスめっき浴。
1. An electroless bismuth plating bath comprising a trivalent bismuth salt, a divalent water-soluble compound of tin as a reducing agent, and a complexing agent.
【請求項2】三価のビスマス塩と還元剤としてスズの二
価の水溶性化合物と錯化剤とpH調整剤として炭酸塩を
含む無電解ビスマスめっき浴。
2. An electroless bismuth plating bath containing a trivalent bismuth salt, a divalent water-soluble tin compound as a reducing agent, a complexing agent, and a carbonate as a pH adjusting agent.
JP6050610A 1994-03-22 1994-03-22 Electroless bismuth plating bath Pending JPH07258861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6050610A JPH07258861A (en) 1994-03-22 1994-03-22 Electroless bismuth plating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6050610A JPH07258861A (en) 1994-03-22 1994-03-22 Electroless bismuth plating bath

Publications (1)

Publication Number Publication Date
JPH07258861A true JPH07258861A (en) 1995-10-09

Family

ID=12863748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6050610A Pending JPH07258861A (en) 1994-03-22 1994-03-22 Electroless bismuth plating bath

Country Status (1)

Country Link
JP (1) JPH07258861A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146589A (en) * 2000-07-20 2002-05-22 Shipley Co Llc Method of manufacturing conductive layer on dielectric surface
JP2015004104A (en) * 2013-06-21 2015-01-08 石原ケミカル株式会社 Acidic reduction type electroless bismuth plating bath and method for electroless plating bismuth

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565661A (en) * 1991-09-06 1993-03-19 Kawasaki Kasei Chem Ltd Production of electroless nickel plating film
JPH05214549A (en) * 1992-02-05 1993-08-24 Murata Mfg Co Ltd Formation of bismuth electroless-plating film and bismuth electroless plating bath
JPH05263260A (en) * 1992-03-19 1993-10-12 C Uyemura & Co Ltd Continuous ni-p-mo electroless plating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565661A (en) * 1991-09-06 1993-03-19 Kawasaki Kasei Chem Ltd Production of electroless nickel plating film
JPH05214549A (en) * 1992-02-05 1993-08-24 Murata Mfg Co Ltd Formation of bismuth electroless-plating film and bismuth electroless plating bath
JPH05263260A (en) * 1992-03-19 1993-10-12 C Uyemura & Co Ltd Continuous ni-p-mo electroless plating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146589A (en) * 2000-07-20 2002-05-22 Shipley Co Llc Method of manufacturing conductive layer on dielectric surface
JP2015004104A (en) * 2013-06-21 2015-01-08 石原ケミカル株式会社 Acidic reduction type electroless bismuth plating bath and method for electroless plating bismuth

Similar Documents

Publication Publication Date Title
JP2673108B2 (en) Electroless plating bath composition and metal deposition method
TWI260351B (en) Electroless gold plating solution
US5364459A (en) Electroless plating solution
US8801844B2 (en) Autocatalytic plating bath composition for deposition of tin and tin alloys
JP2004190075A (en) Electroless gold plating solution
TW201120254A (en) Process for applying a metal coating to a non-conductive substrate
JPH03134178A (en) Hydrazine bath for chemical deposition of platinum and/or palladium and method of manufacturing said bath
JP5780920B2 (en) Electroless copper plating bath
US4554184A (en) Method for plating from an electroless plating bath
JPS6283646A (en) Method of determining activity of chemical metal plating bath
US3841881A (en) Method for electroless deposition of metal using improved colloidal catalyzing solution
KR101314035B1 (en) Stabilization and performance of autocatalytic electroless processes
JPS591668A (en) Improved non-electrolytic gold plating bath and plating process
TWI522491B (en) Electroless gold plating bath
JPH05214549A (en) Formation of bismuth electroless-plating film and bismuth electroless plating bath
JPH07258861A (en) Electroless bismuth plating bath
JPH08176837A (en) Electroless nickel-phosphorus plating solution
US5360471A (en) Electroless solder plating bath
JPH0860377A (en) Electroless gold plating solution
JPH0361380A (en) Electroless tin plating bath
JPS6141774A (en) Modified aqueous bath for nickel plating and method
JPH06101056A (en) Electroless solder plating bath
KR870000344B1 (en) Making process of activation liquid for non-electroytic nickel plating
JPH0414189B2 (en)
JP2635026B2 (en) Electroless plating solution