JPH07256332A - Hard coating tool for plastic work - Google Patents

Hard coating tool for plastic work

Info

Publication number
JPH07256332A
JPH07256332A JP6053818A JP5381894A JPH07256332A JP H07256332 A JPH07256332 A JP H07256332A JP 6053818 A JP6053818 A JP 6053818A JP 5381894 A JP5381894 A JP 5381894A JP H07256332 A JPH07256332 A JP H07256332A
Authority
JP
Japan
Prior art keywords
carbide
tool
layer
cemented carbide
plastic working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6053818A
Other languages
Japanese (ja)
Other versions
JP3604717B2 (en
Inventor
Hiromasa Takeda
裕正 武田
Hiroyuki Endo
広行 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Tokushuko KK
Tohoku Steel Co Ltd
Original Assignee
Tohoku Tokushuko KK
Tohoku Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Tokushuko KK, Tohoku Steel Co Ltd filed Critical Tohoku Tokushuko KK
Priority to JP05381894A priority Critical patent/JP3604717B2/en
Publication of JPH07256332A publication Critical patent/JPH07256332A/en
Application granted granted Critical
Publication of JP3604717B2 publication Critical patent/JP3604717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Metal Extraction Processes (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

PURPOSE:To suppress as much as possible phase eta which comes into question when a carbonized product forming method is applied to a sintered hard alloy base material so as to sufficiently display a performance, by limiting the composition amount of the Co of the sintered hard alloy, the kind and the layer thickness of the carbonized product, the surface roughness of a tool, etc. CONSTITUTION:A hard coating tool for plastic work is manufactured by forming one kind or two kinds or more of a carbonized product layer selected from vanadium, niobium and chrome on the surface of a tool made of sintered hard alloy containing 0.1 to 10wt.% Co. This carbonized product layer is made by a treatment dipping boric acid or borate obtained by melting the forming component of the carbonized product into a melting salt bath.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、引き抜き、絞りプレ
ス、鍛造などのような塑性加工の際の型に用いて好適な
塑性加工用工具、なかでも超硬合金を母材とし、この母
材に炭化物をコーティングさせた工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic working tool suitable for use in a mold for plastic working such as drawing, drawing press, forging, etc. It relates to a tool coated with carbide.

【0002】[0002]

【従来の技術】引き抜き、絞り、さらにはプレス、鍛造
などに用いられる金型には、耐摩耗性、耐焼付き性、耐
密着性、耐食性等が要求される。そのため、これらの諸
特性を向上させて金型寿命を延ばす努力が払われてお
り、その一端として金型材料をダイス鋼、高速度鋼から
より硬度の高い超硬合金へと転換することが行われてい
る。この超硬合金は、鋼よりも弾性係数及び圧縮強度が
高い点でも有利である。
2. Description of the Related Art A die used for drawing, drawing, pressing and forging is required to have abrasion resistance, seizure resistance, adhesion resistance, corrosion resistance and the like. Therefore, efforts are being made to improve these various properties and extend the life of the die, and as one end of this, the die material is changed from die steel and high speed steel to cemented carbide with higher hardness. It is being appreciated. This cemented carbide is also advantageous in that it has higher elastic modulus and compressive strength than steel.

【0003】また、金型寿命を延ばす他の方法として、
金型表面に硬質層を形成させることも行われている。耐
摩耗、耐焼付き等を主目的とした表面硬化法には、炭化
物形成成分(V、Nb、Cr等)を溶解させたほう酸又はほ
う酸塩の溶融塩浴中へ被処理材を浸漬することにより、
該炭化物形成成分と母材中の炭素とを結合させて表面に
炭化物層を形成させる方法がある。この方法の他にもP
VD、CVDによってTiC やTiN 層を形成させる方法が
あるが、上記した炭化物形成成分を溶解させたほう酸又
はほう酸塩の溶融塩浴中へ被処理材を浸漬して表面に炭
化物層を形成させる方法は、これらPVD法やCVD法
に比べて、設備が安価であり、前処理、後処理が簡便
で、複雑形状の被加工材でも均一な層を容易に形成させ
ることができ、制御パラメータが少ないというメリット
がある。
As another method of extending the life of the mold,
It is also practiced to form a hard layer on the mold surface. A surface hardening method mainly intended for wear resistance and seizure resistance is achieved by immersing the material to be treated in a molten salt bath of boric acid or borate in which a carbide-forming component (V, Nb, Cr, etc.) is dissolved. ,
There is a method of forming a carbide layer on the surface by combining the carbide forming component and carbon in the base material. In addition to this method, P
There is a method of forming a TiC or TiN layer by VD or CVD, but a method of forming a carbide layer on the surface by immersing the material to be treated in a molten salt bath of boric acid or borate in which the above-mentioned carbide forming components are dissolved. Is less expensive than the PVD method and the CVD method, the pre-treatment and post-treatment are simple, a uniform layer can be easily formed even on a workpiece having a complicated shape, and there are few control parameters. There is an advantage.

【0004】[0004]

【発明が解決しようとする課題】前述したV、Nb、Cr等
を溶解させたほう酸又はほう酸塩の溶融塩浴中へ被処理
材を浸漬して表面に形成させた炭化物層は、超硬合金よ
りも常温硬度、高温硬度ともに高く、耐摩耗性、耐焼付
き性、耐酸化性、耐食性も同等以上であるため、炭化物
層を形成させる母材は工具鋼で足り、必ずしも母材を超
硬合金にすることはないとされてきた。
The carbide layer formed on the surface by immersing the material to be treated in the molten salt bath of boric acid or borate in which V, Nb, Cr and the like are dissolved is a cemented carbide. Both room temperature hardness and high temperature hardness are higher, and wear resistance, seizure resistance, oxidation resistance, and corrosion resistance are equal or higher, so the base material for forming the carbide layer is only tool steel, and the base material is not necessarily cemented carbide. It has been said that there is nothing to do.

【0005】ただし、かかる炭化物層を超硬合金に形成
させれば、さらなる特性の向上が期待できるし、苛酷な
塑性加工を行うために母材に高い弾性係数や圧縮強度が
要求される場合や、厳しい寸法精度が要求される場合に
は、超硬合金を母材に使えばその効果は大きいといえ
る。
However, if such a carbide layer is formed in a cemented carbide, further improvement in properties can be expected, and in the case where a base material is required to have a high elastic modulus and compressive strength for severe plastic working, If strict dimensional accuracy is required, the effect can be said to be great if cemented carbide is used as the base material.

【0006】しかしながら、現実には、塑性加工用工具
として母材に超硬合金を用い、この母材に上記方法によ
る炭化物を形成された工具は、実用に供されているとは
いい難かった。というのは、上記方法により炭化物形成
法やCVD法は、1000℃前後の高温で処理され、また、
炭化物層形成のために母材の炭素の一部が消費されるた
めに、炭化物層と母材の超硬合金との境界にη相(Co3W
3C)と呼ばれる脆化相が現れ、じん性を低下させる結
果、金型寿命が予期されるほど延びない場合が見られた
からである。
However, in reality, a tool in which a cemented carbide is used as a base material and a carbide is formed by the above method in the base material as a tool for plastic working is hardly said to be in practical use. This is because the carbide forming method and the CVD method by the above method are processed at a high temperature of around 1000 ° C.
Since part of the carbon of the base metal is consumed for forming the carbide layer, the η phase (Co 3 W
This is because the embrittlement phase called 3 C) appeared and the toughness was lowered, so that the mold life was not extended as expected.

【0007】そこでこの発明は、超硬合金にV、Nb、Cr
等を溶解させたほう酸又はほう酸塩の溶融塩浴中へ被処
理材を浸漬して表面に炭化物層を形成させた塑性加工用
工具に生ずる上記問題を有利に解決することにより、実
用に供して十分な性能を発揮させることができるように
した塑性加工用硬質コーティング工具を提案することを
目的とする。
Therefore, the present invention is applied to cemented carbide containing V, Nb, and Cr.
It is practically used by advantageously solving the above problem that occurs in a plastic working tool in which a material to be treated is immersed in a molten salt bath of boric acid or a borate in which a carbide layer is formed on the surface of the tool. It is an object of the present invention to propose a hard-coated tool for plastic working capable of exhibiting sufficient performance.

【0008】[0008]

【課題を解決するための手段】さて、上記問題を解決す
るための発明者らの研究の過程で、超硬合金に上記方法
により炭化物層を形成させる場合には、超硬合金中のCo
に固溶された炭素が炭化物層の形成に関与し、炭化物層
の厚さが増加すると、η相の厚さも増加することが判っ
た。塑性加工用工具として超硬合金を使用する際には、
このη相ができるだけ薄く、又は全くないようにしなけ
ればならない。そこでさらに種々検討の結果、η相の発
生や厚みは、上記炭化物の厚さの他に、母材超硬合金の
Co量と密接な関係があることを見出した。また、塑性加
工用工具の場合には、加工面の面粗さが加工用工具の寿
命を左右し、加工面の面粗さが大きい場合には、被加工
材が焼付く頻度が大きくなることから、加工面の面粗さ
を、塑性加工用工具に最適な範囲に限定する必要がある
ことも見出した。この発明は、上記の知見に立脚するも
のである。
By the way, in the process of the inventors' research for solving the above problems, when the carbide layer is formed on the cemented carbide by the above method, Co in the cemented carbide is
It was found that the carbon solid-dissolved in was involved in the formation of the carbide layer, and when the thickness of the carbide layer increased, the thickness of the η phase also increased. When using cemented carbide as a tool for plastic working,
This η phase should be as thin as possible or absent. Therefore, as a result of further various studies, the occurrence and thickness of the η phase were found to be
It was found that there is a close relationship with the amount of Co. Also, in the case of a plastic working tool, the surface roughness of the machined surface affects the life of the machining tool, and when the surface roughness of the machined surface is large, the frequency of seizure of the workpiece increases. From this, it was also found that it is necessary to limit the surface roughness of the machined surface to the optimum range for the plastic working tool. The present invention is based on the above findings.

【0009】すなわち、この発明は、Coを0.1 〜10wt%
含有させた超硬合金製工具の表面に、バナジウム、ニオ
ブ及びクロムから選ばれる1種又は2種以上の炭化物層
を形成させてなり、この炭化物層は、該炭化物の形成成
分を溶解させたほう酸又はほう酸塩の溶融塩浴中への浸
漬処理によるものである塑性加工用硬質コーティング工
具である。
That is, according to the present invention, Co is contained in an amount of 0.1 to 10 wt%.
A carbide layer of one or more selected from vanadium, niobium, and chromium is formed on the surface of the cemented carbide tool that has been contained, and the carbide layer is boric acid in which the carbide forming component is dissolved. Alternatively, it is a hard coating tool for plastic working which is obtained by dipping a borate salt in a molten salt bath.

【0010】ここに、炭化物層の厚みが1〜10μm であ
ること、また、塑性加工を担う部分の面粗さがRmax
0.01〜2μm であることが、より好ましい。
Here, the thickness of the carbide layer is 1 to 10 μm, and the surface roughness of the portion responsible for plastic working is R max .
It is more preferably 0.01 to 2 μm.

【0011】さらに、この発明の塑性加工用硬質コーテ
ィング工具は、種々の塑性加工用工具に適しているが、
特に引抜き加工に用いる工具に使用するのが好適であ
る。
Further, the hard coating tool for plastic working of the present invention is suitable for various plastic working tools,
It is particularly suitable for use in a tool used for drawing.

【0012】[0012]

【作用】この発明の塑性加工用硬質コーティング工具
は、種々の塑性加工用工具に適しているが、特に、超硬
合金のCoの組成量、炭化物の種類及び層厚さ、工具の面
粗さ等を限定し、塑性加工用工具として実用に供し満足
できる特性をそなえる工具である。この炭化物は、バナ
ジウム、ニオブ及びクロムから選ばれる1種又は2種以
上である。これらの炭化物は、いずれも耐摩耗性や、耐
焼付き性等に優れている。そのため、Cuを含有している
被加工材を塑性加工する際に、炭化物を形成させていな
い超硬合金の場合には、超硬合金中のCoとCuとが親和性
が強いため、加工面に焼付きが発生するおそれが大であ
るが、超硬合金表面に炭化物を形成させることにより、
焼付きの防止も可能になるという新たな効果も得られ
た。バナジウム、ニオブ及びクロムの炭化物のうち、最
も硬いのはバナジウムの炭化物であり、最も耐酸化性に
優れるのは、クロムの炭化物である。また、バナジウム
とニオブとの複合炭化物(V,Nb)Cを形成させれば、
硬度はより向上する。上記の炭化物を形成させる超硬合
金は、WC−Co系のみならず、WC−TiC −TaC(NbC)−
Co系などであってもよい。
The hard-coated tool for plastic working of the present invention is suitable for various plastic working tools, but especially, the Co content of cemented carbide, the type and layer thickness of carbide, and the surface roughness of the tool. It is a tool that has practical properties as a plastic working tool and has satisfactory characteristics. This carbide is one or more selected from vanadium, niobium and chromium. All of these carbides have excellent wear resistance and seizure resistance. Therefore, when plastically working a work material containing Cu, in the case of a cemented carbide that does not form carbides, Co and Cu in the cemented carbide have a strong affinity, There is a high possibility that seizure will occur on the, but by forming carbides on the cemented carbide surface,
A new effect was also obtained in that it was possible to prevent seizure. Among the vanadium, niobium, and chromium carbides, the hardest one is vanadium carbide, and the one having the best oxidation resistance is chromium carbide. Further, if a complex carbide (V, Nb) C of vanadium and niobium is formed,
The hardness is improved. The cemented carbide that forms the above-mentioned carbide is not only WC-Co type but also WC-TiC-TaC (NbC)-
It may be a Co type or the like.

【0013】次に、この発明において、超硬合金中のCo
組成量を0.1 〜10wt%の範囲に限定したのは、超硬合金
中のCo組成量と硬質層被覆処理で発生するη層との状態
を検討した結果によるものである。その実験の一例を述
べると、粒径約1〜3μm のWC粉末に粒径約1μm の
Co粉末を0.1 〜20wt%の範囲の種々の量で添加し、混
練、真空中1350℃で焼結した。その後、長さ24mm、幅8
mm、厚み4mmの試料にした。各試料をバナジウムを含有
させ硼砂塩浴中に浸漬して1000℃で10時間のバナジウム
炭化物層形成処理を行った。処理後の試料を圧縮試験及
び断面組織観察により、超硬合金中のCo組成量と圧縮
力、η相厚さとの関係を調査した。その結果を図1に示
す。
Next, in the present invention, Co in the cemented carbide is
The reason why the composition amount is limited to the range of 0.1 to 10 wt% is the result of examining the state of the Co composition amount in the cemented carbide and the η layer generated in the hard layer coating treatment. An example of the experiment is as follows. WC powder with a particle size of about 1-3 μm has a particle size of about 1 μm.
Co powder was added in various amounts in the range of 0.1 to 20 wt%, kneaded and sintered at 1350 ° C in vacuum. After that, length 24mm, width 8
mm and thickness 4 mm. Each sample was immersed in a borax salt bath containing vanadium and subjected to a vanadium carbide layer forming treatment at 1000 ° C. for 10 hours. The relationship between the amount of Co composition in the cemented carbide, the compressive force, and the η phase thickness was investigated by the compression test and the observation of the cross-sectional structure of the treated sample. The result is shown in FIG.

【0014】図1から明らかなように、Co量が10wt%を
超えると、η相厚さが著しく増加する一方で、圧縮強さ
が低下する。また、Co量が0.1 wt%に満たないと、充分
な焼結強度が得られないといった問題がある。したがっ
て、この発明では、かようなη相厚や圧縮強さとのバラ
ンスを考慮した適正範囲としてCo量を0.1 〜10wt%に限
定した。より好適な範囲は、3〜6wt%である。さら
に、η相及び焼結強度の観点からは、5wt%程度のCo量
がより望ましい。
As is clear from FIG. 1, when the amount of Co exceeds 10 wt%, the η phase thickness remarkably increases, while the compressive strength decreases. Further, if the Co content is less than 0.1 wt%, there is a problem that sufficient sintering strength cannot be obtained. Therefore, in the present invention, the Co amount is limited to 0.1 to 10 wt% as an appropriate range in consideration of such a balance with the η phase thickness and the compressive strength. A more preferable range is 3 to 6 wt%. Further, from the viewpoint of the η phase and the sintering strength, a Co amount of about 5 wt% is more desirable.

【0015】次に、浸漬処理条件(温度,時間)を変え
て、VC層の厚さを種々に変化させたコーティング工具
を作製し、鉄系耐熱鋼 SUH 35 の冷間引き抜き加工を行
って、コーティング未処理の超硬合金に対する性能向上
比を調べた。その結果を図2に示す。
Next, the dipping treatment conditions (temperature, time) were changed to prepare coating tools in which the thickness of the VC layer was variously changed, and cold drawing of the iron-based heat resistant steel SUH 35 was carried out. The performance improvement ratio to the uncoated cemented carbide was investigated. The result is shown in FIG.

【0016】図2から、炭化物層の厚みが1μm 以上で
性能向上が見られることがわかる。一方炭化物層の厚み
が10μm を超えると加工中に炭化物層の欠け(チッピン
グ)や剥離という弊害を生ずる。したがって、炭化物層
の厚みが1〜10μm の範囲が好適である。前述のとお
り、脆化層であるη相は、炭化物層の厚みが大きいほど
厚くなるため、炭化物層は、その性能が発揮できる範囲
でなるべく薄い方が好ましい。かかる観点から、より好
適な炭化物層厚は7μm 以下、最も好適には5μm 未満
である。
It can be seen from FIG. 2 that the performance is improved when the thickness of the carbide layer is 1 μm or more. On the other hand, if the thickness of the carbide layer exceeds 10 μm, there is a problem such as chipping or peeling of the carbide layer during processing. Therefore, the thickness of the carbide layer is preferably in the range of 1 to 10 μm. As described above, the η phase, which is the embrittlement layer, becomes thicker as the thickness of the carbide layer is larger. Therefore, it is preferable that the carbide layer be as thin as possible in the range where the performance can be exhibited. From this viewpoint, a more preferable carbide layer thickness is 7 μm or less, and most preferably less than 5 μm.

【0017】さらに、炭化物層を形成させた超硬合金製
工具の面粗さと工具寿命との関係について引き抜き加工
を行って調べた。その結果を表1に示す。
Further, the relationship between the surface roughness and the tool life of the cemented carbide tool on which the carbide layer was formed was examined by drawing. The results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】表1より、表面粗さがRmax で2μm を超
えると、焼付きが生じやすくなる。一方0.01μm に満た
ないことに表面粗さを得るには研摩に長時間を要し、高
価となる。そのため0.01〜2μm の範囲に限定した。よ
り好適には0.3 μm 以下、最も好適には0.2 μm 未満で
ある。かような表面粗さにするには、母材の表面粗さを
管理するのみならず、炭化物層を形成後にダイヤモンド
ペーストにより精密研磨すればよい。
From Table 1, when the surface roughness R max exceeds 2 μm, seizure is likely to occur. On the other hand, if it is less than 0.01 μm, it takes a long time for polishing to obtain the surface roughness, which is expensive. Therefore, the range is limited to 0.01 to 2 μm. It is more preferably 0.3 μm or less, and most preferably less than 0.2 μm. In order to obtain such a surface roughness, not only the surface roughness of the base material is controlled, but also precise polishing with a diamond paste may be performed after forming the carbide layer.

【0020】この発明の塑性加工用工具は、線引きダイ
スのチップ部といった引抜き加工用に用いれば、優れた
性能が発揮できる。なお、この発明のコーティング工具
の作製法の例を示すと、ほう酸又はほう酸塩としてほう
砂を用い、これの溶融塩浴中に、形成させようとする炭
化物形成成分(Co、Nb及びCrの一種又は二種以上)の金
属、鉄合金、酸化物、あるいはハロゲン化物粉末を添加
(酸化物粉末の場合は還元剤も添加)して溶融させたも
のを用いて、この浴中に超硬合金を浸漬させる。浸漬し
た際の超硬合金の温度は、900 ℃以上、溶融温度以下で
ある。形成しようとする炭化物の層厚は、浸漬温度及び
時間によって調整することができる。
The plastic working tool of the present invention can exhibit excellent performance when used for drawing work such as the tip portion of a wire drawing die. An example of the method for producing the coating tool of the present invention will be described. Borax is used as boric acid or borate, and in the molten salt bath thereof, a carbide-forming component (a kind of Co, Nb and Cr) to be formed. Or two or more kinds of metals, iron alloys, oxides, or halide powders are added (in the case of oxide powders, a reducing agent is also added) and melted, and the cemented carbide is added to this bath. Let it soak. The temperature of the cemented carbide when immersed is 900 ° C. or higher and the melting temperature or lower. The layer thickness of the carbide to be formed can be adjusted by the immersion temperature and the time.

【0021】[0021]

【実施例】【Example】

実施例1 Co量が2%のWC−Co系超硬合金を使用した冷間引き抜
きダイスの加工面にバナジウム炭化物を4μm 被覆した
のち、ダイヤモンドペーストを使用して加工面を最大0.
2 μm の面粗さに仕上げた。この引き抜きダイスを、SU
S 304 ワイヤーのφ4mmからφ2.5 mmの引き抜き加工に
使用した。その結果、従来の未被覆超硬合金を使用した
場合には1800kgまでの線引きによりSUS 304 が焼付いた
が、この発明のバナジウム炭化物を被覆した超硬合金製
ダイスは、13500 kgまで引き抜き加工を実施することが
でき、7倍以上の工具寿命となった。
Example 1 After the vanadium carbide was coated to 4 μm on the machined surface of a cold drawing die using a WC-Co type cemented carbide with a Co content of 2%, the machined surface was maximally reduced to 0 using diamond paste.
Finished to a surface roughness of 2 μm. This drawing die is SU
Used for drawing S 304 wire from φ4 mm to φ2.5 mm. As a result, when conventional uncoated cemented carbide was used, SUS 304 was seized by drawing up to 1800 kg, but the vanadium carbide coated cemented carbide die of this invention was drawn up to 13500 kg. It was possible to achieve this, and the tool life was more than 7 times.

【0022】実施例2 Co量が6wt%のWC−Co系超硬合金製引抜きダイスの加
工面に、この発明のバナジウム炭化物を5μm 被覆した
ものを用意した。また、比較のために、同一の引き抜き
ダイスの加工面にCVD法によりチタン炭化物を被覆し
たもの及びPVD法によりチタン窒化物を5μm 被覆し
たものを準備した。これらのダイスの加工面をいずれも
ダイヤモンドペーストにより0.1 μm の最大粗さに表面
を仕上げた。その後、これらのダイスを使用して、耐熱
鋼のSUH 35を減面率16%、水溶性潤滑剤を使用しつつ50
m/min で引抜き加工をした。この素材SUH 35の硬さはH
RC37、ダイス径はφ6.42mmとし、仕上がり径変化が0.0
3mmを超えた時点でダイスを交換した。
Example 2 A WC--Co cemented carbide drawing die having a Co content of 6 wt% was coated with the vanadium carbide of the present invention in an amount of 5 μm. Further, for comparison, the same working surface of the drawing die was coated with titanium carbide by the CVD method and was coated with 5 μm of titanium nitride by the PVD method. The processed surface of each of these dies was finished with diamond paste to a maximum roughness of 0.1 μm. After that, using these dies, heat-resistant steel SUH 35 was reduced to a surface area of 16% while using a water-soluble lubricant.
It was drawn at m / min. The hardness of this material SUH 35 is H
R C37, the die diameter is φ6.42mm, the change in finished diameter is 0.0
The die was changed when the size exceeded 3 mm.

【0023】その結果、ダイスを交換するまでの引抜き
量は、無被覆超硬合金製ダイスが17500 kg、CVD法チ
タン炭化物被覆超硬合金製ダイスが24500 kg、PVD法
チタン窒化物被覆超硬合金製ダイスが21000 kgであった
のに対し、この発明のバナジウム炭化物被覆超硬合金製
ダイスは87500 kgであった。
As a result, the amount of drawing until replacement of the die was 17500 kg for the uncoated cemented carbide die, 24500 kg for the CVD titanium carbide coated cemented carbide die, and the PVD titanium nitride coated cemented carbide. The die for manufacturing was 21,000 kg, whereas the die for vanadium carbide coated cemented carbide of the present invention was 87500 kg.

【0024】実施例3 Co量が5%の超硬合金製引抜きダイスの加工面に、この
発明のバナジウムとニオブとの複合炭化物を4μm 被覆
した後、ダイヤモンドペーストを使用して最大面粗さを
0.05μm に仕上げた。このダイスを用いて、硬さHR
36のSUH 35を水溶性潤滑剤を使用しつつ減面率20%の引
抜き加工を行った。ダイス径はφ8.0 mmとし、仕上がり
径変化が0.04mmを超えた時点でダイスを交換した。
EXAMPLE 3 The surface of a cemented carbide drawing die having a Co content of 5% was coated with the composite carbide of vanadium and niobium of the present invention to a thickness of 4 μm, and a diamond paste was used to obtain the maximum surface roughness.
Finished to 0.05 μm. With this die, the hardness H R C
36 SUH 35 was drawn using a water-soluble lubricant with a surface reduction rate of 20%. The die diameter was φ8.0 mm, and the die was replaced when the change in finished diameter exceeded 0.04 mm.

【0025】その結果、ダイスを交換するまでの引抜き
量は、無被覆超硬合金製ダイスが10000 kgであったのに
対し、この発明のバナジウム−ニオブ複合炭化物被覆超
硬合金製ダイスは105000kgであった。
As a result, the withdrawal amount until the die was replaced was 10,000 kg for the uncoated cemented carbide die and 105,000 kg for the vanadium-niobium composite carbide coated cemented die of the present invention. there were.

【0026】実施例4 Co量が5%の超硬合金製引抜きダイスの加工面に、この
発明のバナジウムとクロムとの複合炭化物を5μm 被覆
し、ダイヤモンドペーストを使用して最大表面粗さを0.
05μm にした。この引抜きダイスでSUH 35を温間で引き
抜き加工した。その結果、無被覆超硬合金製は12000 kg
でダイス加工面に焼付きが発生したが、この発明のバナ
ジウム−クロム複合炭化物を被覆した超硬合金製ダイス
は、70000 kgまで焼付きが発生しなかった。
Example 4 The processed surface of a cemented carbide drawing die having a Co content of 5% was coated with the composite carbide of vanadium and chromium of the present invention to a thickness of 5 μm, and a diamond paste was used to obtain a maximum surface roughness of 0. .
It was set to 05 μm. SUH 35 was hot drawn with this drawing die. As a result, 12000 kg for uncoated cemented carbide
However, seizure occurred on the die processed surface, but the cemented carbide die of the present invention coated with vanadium-chromium composite carbide did not seize up to 70,000 kg.

【0027】[0027]

【発明の効果】この発明の硬質コーティング工具は、炭
化物形成成分を溶解させたほう酸又はほう酸塩の溶融塩
浴中へ被処理材を浸漬して表面に炭化物層を形成させた
塑性加工用工具であって、超硬合金のCoの組成量、炭化
物の種類及び層厚さ、工具の面粗さ等を限定することに
より、かかる炭化物形成法を超硬合金母材に適用した場
合に問題となっていたη相が極力抑制され、十分な性能
を発揮することが可能になり、実用化への道を開いたも
のであり、その工業的効果は大である。
The hard coating tool of the present invention is a tool for plastic working in which a material to be treated is immersed in a molten salt bath of boric acid or borate in which a carbide forming component is dissolved to form a carbide layer on the surface. Therefore, by limiting the Co composition of the cemented carbide, the type and layer thickness of the carbide, the surface roughness of the tool, etc., it becomes a problem when such a carbide forming method is applied to the cemented carbide base material. The η phase was suppressed as much as possible and it was possible to exhibit sufficient performance, paving the way for practical use, and its industrial effect was great.

【図面の簡単な説明】[Brief description of drawings]

【図1】超硬合金中のCo組成量と圧縮力、η相厚さとの
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of Co composition in a cemented carbide, compressive force, and η phase thickness.

【図2】炭化物層の厚みと性能向上比との関係を示すグ
ラフである。
FIG. 2 is a graph showing a relationship between a thickness of a carbide layer and a performance improvement ratio.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Coを0.1 〜10wt%含有させた超硬合金製
工具の表面に、バナジウム、ニオブ及びクロムから選ば
れる1種又は2種以上の炭化物層を形成させてなり、こ
の炭化物層は、該炭化物の形成成分を溶解させたほう酸
又はほう酸塩の溶融塩浴中への浸漬処理によるものであ
る塑性加工用硬質コーティング工具。
1. A carbide layer containing vanadium, niobium, and chromium on the surface of a cemented carbide tool containing Co in an amount of 0.1 to 10 wt%, and the carbide layer is formed. A hard coating tool for plastic working, which is obtained by dipping boric acid or borate in which the carbide forming component is dissolved in a molten salt bath.
【請求項2】 炭化物層の厚みが1〜10μm である請求
項1記載の塑性加工用硬質コーティング工具。
2. The hard coating tool for plastic working according to claim 1, wherein the thickness of the carbide layer is 1 to 10 μm.
【請求項3】 塑性加工を担う部分の面粗さがRmax
0.01〜2μm である請求項1又は2記載の塑性加工用硬
質コーティング工具。
3. The surface roughness of the portion responsible for plastic working is R max .
The hard coated tool for plastic working according to claim 1 or 2, which has a diameter of 0.01 to 2 µm.
JP05381894A 1994-03-24 1994-03-24 Hard coating tool for plastic working Expired - Lifetime JP3604717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05381894A JP3604717B2 (en) 1994-03-24 1994-03-24 Hard coating tool for plastic working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05381894A JP3604717B2 (en) 1994-03-24 1994-03-24 Hard coating tool for plastic working

Publications (2)

Publication Number Publication Date
JPH07256332A true JPH07256332A (en) 1995-10-09
JP3604717B2 JP3604717B2 (en) 2004-12-22

Family

ID=12953377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05381894A Expired - Lifetime JP3604717B2 (en) 1994-03-24 1994-03-24 Hard coating tool for plastic working

Country Status (1)

Country Link
JP (1) JP3604717B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966544A (en) * 1972-11-02 1974-06-27
JPS49127833A (en) * 1973-04-12 1974-12-06
JPS5018328A (en) * 1973-06-22 1975-02-26
JPH05146820A (en) * 1991-11-29 1993-06-15 Kyocera Corp Wire drawing die and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966544A (en) * 1972-11-02 1974-06-27
JPS49127833A (en) * 1973-04-12 1974-12-06
JPS5018328A (en) * 1973-06-22 1975-02-26
JPH05146820A (en) * 1991-11-29 1993-06-15 Kyocera Corp Wire drawing die and manufacture thereof

Also Published As

Publication number Publication date
JP3604717B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
JP4656473B2 (en) Coated tool for hot working with excellent lubricant adhesion and wear resistance
JP4357160B2 (en) Sputtering target, hard coating using the same, and hard film coating member
JPWO2014192730A1 (en) Manufacturing method of cold working mold
JP4731645B2 (en) Cemented carbide and coated cemented carbide and method for producing the same
EP1327007B1 (en) Tool for coldforming operations
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
JP2002307128A (en) Coating tool for warm and hot working having excellent seizure resistance and wear resistance
JP4093978B2 (en) Tool steel with self-lubricating properties
JP5004145B2 (en) Cermet and coated cermet and methods for producing them
JP4515692B2 (en) Sputtering target
JP3604717B2 (en) Hard coating tool for plastic working
JP2893886B2 (en) Composite hard alloy material
Birol et al. AlTiN and AlTiON-coated hot work tool steels for tooling in steel thixoforming
JP2016211052A (en) Hard film and hard film coated member
WO2013179773A1 (en) Molybdenum heat-resistant alloy, friction stir welding tool, and manufacturing method
JP5268771B2 (en) Method for producing sputtering target, method for forming hard film using the same, and hard film coated member
JP6178689B2 (en) Tungsten heat resistant alloy, friction stir welding tool, and manufacturing method
JP7031532B2 (en) TiN-based sintered body and cutting tool made of TiN-based sintered body
JP4547656B2 (en) Coated tool for hot working with excellent lubricant adhesion and wear resistance
JP2001049378A (en) Wear resistant cemented carbide sintered compact and its manufacture
JPH10219384A (en) Hard cermet material, and tool for metal working and machine parts for metal working using same
EP0510977A1 (en) High Young's modulus materials and surface-coated tool members using the same
JPH10306354A (en) Cutting tool for free cutting steel product
JP2808714B2 (en) Coated cemented carbide for wear-resistant tools
JP2893887B2 (en) Composite hard alloy material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term