JPH07254593A - Semiconductor device and integrated circuit device - Google Patents

Semiconductor device and integrated circuit device

Info

Publication number
JPH07254593A
JPH07254593A JP4410194A JP4410194A JPH07254593A JP H07254593 A JPH07254593 A JP H07254593A JP 4410194 A JP4410194 A JP 4410194A JP 4410194 A JP4410194 A JP 4410194A JP H07254593 A JPH07254593 A JP H07254593A
Authority
JP
Japan
Prior art keywords
film
fluorine
fluororesin
semiconductor
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4410194A
Other languages
Japanese (ja)
Inventor
Toshisuke Yokozuka
俊亮 横塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4410194A priority Critical patent/JPH07254593A/en
Publication of JPH07254593A publication Critical patent/JPH07254593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain a good surface flatness of a base by burying a minute unevenness of the base and increase a reliability, by forming a fluorine resin film and then an inorganic film as surface protecting films on a semiconductor element. CONSTITUTION:A fluorine-containing polymer is dissolved in perfluorotributyl amine to make a 9wt.% solution. Then, 0.3wt.% of 3-aminopropyl methyl diethoxysilane is added to the solution. Then, this solution is applied by a spin coater onto a 6-inch silicon wafer on which semiconductor devices are fabricated. The wafer is dried for one hour at 50 deg.C and for another one hour at 200 deg.C to form the coating of 3mum in thickness. After that, using a mixed gas of monosilane and ammonia, a silicon nitrode film is formed in the thickness of 1mum by a plasma chemical vapor-phase growth method at the substrate temperature 300 deg.C. Nextly, a photolithography process and a plasma etching process with CF, CHF and Ar are conducted to punch the silicon nitride film and the fluorine resin film for wire bonding and after these processes, a semiconductor device is completed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子・集積回路
装置に関し、特に、回路を保護する目的でチップ表面に
設けられる表面保護膜(パッシベーション膜)に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor element / integrated circuit device, and more particularly to a surface protective film (passivation film) provided on a chip surface for the purpose of protecting a circuit.

【0002】[0002]

【従来の技術】一般に、フッ素樹脂は溶媒に不溶である
ためにコーティングによる均一な薄膜形成は困難であっ
たが、特開昭63−238111号公報、特開昭63−
260932号公報、米国特許4754009号明細書
に見られるように、特殊な溶媒に溶解するフッ素樹脂が
開発され、誘電率が小さい、あるいは吸水性がないとい
った特徴を活かして半導体素子・集積回路装置の表面保
護膜の用途への応用が欧州特許0393682号明細書
に記載されている。
2. Description of the Related Art Generally, it is difficult to form a uniform thin film by coating a fluororesin because it is insoluble in a solvent. However, JP-A-63-238111 and JP-A-63-
As can be seen from Japanese Patent No. 260932 and US Pat. No. 4,754,009, a fluororesin which is soluble in a special solvent has been developed, and the characteristics such as a small dielectric constant or no water absorption are utilized to realize a semiconductor element / integrated circuit device. Application of the surface protective film to the use is described in European Patent No. 0393682.

【0003】該フッ素樹脂は吸水性がなく膜中に水分を
含むことはないが、水蒸気透過性を有するために苛酷な
耐湿試験を行うと、透過した水蒸気により素子の不良が
発生することがあり、信頼性が十分でないという問題が
あった。
The fluororesin does not absorb water and does not contain water in the film, but since it has water vapor permeability, a rigorous moisture resistance test may cause defective elements due to the water vapor that has permeated. There was a problem that the reliability was not enough.

【0004】また、無機膜系の表面保護膜としてはシリ
コン酸化膜、シリコン窒化膜あるいはこれらの複合膜が
一般に用いられている。特にシリコン窒化膜は緻密で機
械的損傷を受けにくく、イオン透過性、水蒸気透過性が
低いことから、信頼性が要求される半導体素子・集積回
路装置において多用されている。しかし、半導体装置の
微細化が進むにつれて以下の点が問題となってきてい
る。
As the inorganic surface protective film, a silicon oxide film, a silicon nitride film or a composite film of these is generally used. In particular, the silicon nitride film is dense and is not easily damaged by mechanical damage, and has low ion permeability and water vapor permeability, so that it is widely used in semiconductor elements and integrated circuit devices that require reliability. However, the following points have become problems as the miniaturization of semiconductor devices progresses.

【0005】第一に、シリコン窒化膜の誘電率は6〜8
と高く、信号の伝搬遅延時間の増大の原因となり、特に
高速動作が要求される半導体装置においては、この効果
が無視できなくなってきている点である。第二に、シリ
コン窒化膜をプラズマ化学気相成長法により形成する
と、下地の配線金属の凹凸を充分に埋めきれずに、配線
金属とシリコン窒化膜の間にボイドが生成し、信頼性低
下の原因となる点である。第三に、シリコン窒化膜に内
在する大きな圧縮応力により、下地の配線金属の変形、
ストレスマイグレーションが起こることがあり、信頼性
低下の原因となる点である。
First, the dielectric constant of the silicon nitride film is 6-8.
This is a cause of an increase in signal propagation delay time, and this effect cannot be ignored in a semiconductor device that requires particularly high-speed operation. Secondly, when the silicon nitride film is formed by the plasma chemical vapor deposition method, the unevenness of the underlying wiring metal cannot be sufficiently filled, and voids are generated between the wiring metal and the silicon nitride film, which reduces reliability. This is the cause. Third, the large compressive stress inherent in the silicon nitride film causes deformation of the underlying wiring metal,
This is a point that stress migration may occur, which causes a decrease in reliability.

【0006】これらの問題を解決するために、これまで
は、素子上に、まずシリコン酸化膜、あるいはポリイミ
ド膜を形成し、続いてシリコン窒化膜を形成するという
方法が採用されている。シリコン酸化膜は通常プラズマ
化学気相成長法により形成され、また、ポリイミド膜は
ポリイミド前駆体溶液をスピンコートにより塗布し、そ
の後加熱処理により溶媒を揮発させるとともにイミド閉
環させて形成する。これらの膜は誘電率が比較的小さく
(シリコン酸化膜4.0〜4.3、ポリイミド膜3.
5)、下地の凹凸を埋める能力が比較的優れ、シリコン
窒化膜とは逆方向の引っ張りの応力を有するために上記
のシリコン窒化膜単層の表面保護膜の有する問題を解決
できる。
In order to solve these problems, a method of forming a silicon oxide film or a polyimide film on the device and then forming a silicon nitride film on the device has been adopted so far. The silicon oxide film is usually formed by the plasma chemical vapor deposition method, and the polyimide film is formed by applying a polyimide precursor solution by spin coating, and then heating the solvent to volatilize the solvent and ring-close the imide. These films have a relatively low dielectric constant (silicon oxide films 4.0 to 4.3, polyimide film 3.
5) Since it has a relatively excellent ability to fill the irregularities of the base and has a tensile stress in the direction opposite to that of the silicon nitride film, it is possible to solve the problem of the above-mentioned surface protection film of the silicon nitride film single layer.

【0007】しかしシリコン酸化膜、ポリイミド膜は以
下のような欠点を有し、その解決が強く望まれていた。
すなわち、シリコン酸化膜は通常プラズマ化学気相成長
法により形成されるため、下地の凹凸が微細になってい
くと埋め込み平坦性が十分でなく、信頼性の観点から問
題がある。また、ポリイミド膜は吸水性が大きいため
に、回路のリーク電流を発生させやすく、同じく信頼性
の観点から問題がある。また、回路の伝搬遅延時間をさ
らに小さくするために、シリコン酸化膜あるいはポリイ
ミド膜より誘電率の低い材料が望まれていた。
However, the silicon oxide film and the polyimide film have the following drawbacks, and their solution has been strongly desired.
That is, since the silicon oxide film is usually formed by the plasma chemical vapor deposition method, when the unevenness of the base becomes finer, the filling flatness is insufficient and there is a problem from the viewpoint of reliability. Further, since the polyimide film has a high water absorption property, a leak current of the circuit is likely to occur, and similarly there is a problem from the viewpoint of reliability. Further, in order to further reduce the propagation delay time of the circuit, a material having a lower dielectric constant than that of the silicon oxide film or the polyimide film has been desired.

【0008】[0008]

【発明が解決しようとする課題】本発明は、前述のよう
な従来の表面保護膜に認められる欠点を解消し、電気特
性、信頼性に優れた表面保護膜を有する半導体素子・集
積回路装置を新規に提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks found in conventional surface protective films and provides a semiconductor element / integrated circuit device having a surface protective film excellent in electrical characteristics and reliability. It is intended to be newly provided.

【0009】[0009]

【課題を解決するための手段】本発明者は、鋭意検討を
重ねた結果、表面保護膜として、半導体素子上にまずフ
ッ素樹脂膜を形成し、続いて無機膜を形成する半導体素
子・集積回路装置が電気特性、信頼性に優れていること
を新規に見いだした。
Means for Solving the Problems As a result of intensive studies, the present inventor has formed a semiconductor element / integrated circuit in which a fluorine resin film is first formed on a semiconductor element as a surface protective film, and then an inorganic film is formed. We have newly found that the device has excellent electrical characteristics and reliability.

【0010】かくして本発明は、半導体素子上に表面保
護膜として、フッ素樹脂の薄膜を介して無機膜が形成さ
れてなる半導体素子・集積回路装置である。まず、フッ
素樹脂層を形成し、続いて無機膜を形成することによ
り、フッ素樹脂単層膜の欠点、および無機膜単層、無機
膜/無機膜構造あるいはポリイミド膜/無機膜構造の欠
点を同時に改善することができる。すなわち、水蒸気透
過性がなく、誘電率が小さく、下地の凹凸に対する埋め
込み平坦性に優れ、吸水性のない理想の表面保護膜を持
った半導体素子・集積回路装置を新規に提供する。
Thus, the present invention is a semiconductor element / integrated circuit device in which an inorganic film is formed on a semiconductor element as a surface protective film via a thin film of fluororesin. First, by forming the fluororesin layer and then forming the inorganic film, the defects of the fluororesin single layer film and the defects of the inorganic film single layer, the inorganic film / inorganic film structure or the polyimide film / inorganic film structure are simultaneously formed. Can be improved. That is, there is newly provided a semiconductor element / integrated circuit device having an ideal surface protective film having no water vapor permeability, a small dielectric constant, excellent embedding flatness with respect to unevenness of a base, and no water absorption.

【0011】本発明において、フッ素樹脂としては、テ
トラフルオロエチレン、クロロトリフルオロエチレン、
ヘキサフルオロプロピレン、パーフルオロアルキルビニ
ルエーテル、等の含フッ素モノマーを単独あるいは共重
合させてさせて得られるフッ素樹脂、含フッ素ポリイミ
ド、含フッ素アクリル系重合体、含フッ素脂肪族環構造
を有する重合体、等が例示できる。コーティングにより
薄膜の形成が可能であるという点、誘電率が低く半導体
素子の応答速度向上が期待できる点、吸水率が低く素子
の耐湿安定性向上が期待できるという点から、含フッ素
脂肪族環構造を有するポリマーが特に好ましい。
In the present invention, the fluororesin includes tetrafluoroethylene, chlorotrifluoroethylene,
Hexafluoropropylene, perfluoroalkyl vinyl ether, fluororesin obtained by homopolymerizing or copolymerizing fluorine-containing monomers, fluorine-containing polyimide, fluorine-containing acrylic polymer, a polymer having a fluorine-containing alicyclic structure, Etc. can be illustrated. Fluorine-containing alicyclic structure has the advantage that a thin film can be formed by coating, that the dielectric constant is low and that the response speed of semiconductor devices can be expected to be improved, and that the moisture absorption is low and that the moisture stability of the device can be expected to be improved. Polymers having are particularly preferred.

【0012】含フッ素脂肪族環構造を有するポリマーと
しては、含フッ素環構造を有するモノマーを重合して得
られるものや、少なくとも2つの重合性二重結合を有す
る含フッ素モノマーを環化重合して得られる主鎖に環構
造を有するポリマーが公知あるい周知のものを含めて広
範囲にわたって例示される。
The polymer having a fluorinated alicyclic structure is obtained by polymerizing a monomer having a fluorinated cyclic structure, or a fluorinated monomer having at least two polymerizable double bonds is cyclopolymerized. The resulting polymer having a ring structure in its main chain is exemplified in a wide range including known and well-known polymers.

【0013】少なくとも2つの重合性二重結合を有する
含フッ素モノマーを環化重合して得られる主鎖に環構造
を有するポリマーは、特開昭63−238111号公報
や特開昭63−238115号公報等により知られてい
る。すなわち、パーフルオロ(アリルビニルエーテル)
やパーフルオロ(ブテニルビニルエーテル)等のモノマ
ーの単独重合、またはテトラフルオロエチレンなどのラ
ジカル重合性モノマーと共重合することにより得られ
る。
Polymers having a ring structure in the main chain obtained by cyclopolymerization of a fluorine-containing monomer having at least two polymerizable double bonds are disclosed in JP-A-63-238111 and 63-238115. It is known from publications and the like. That is, perfluoro (allyl vinyl ether)
It is obtained by homopolymerization of a monomer such as or perfluoro (butenyl vinyl ether), or by copolymerization with a radical polymerizable monomer such as tetrafluoroethylene.

【0014】含フッ素環構造を有するモノマーを重合し
て得られる主鎖に環構造を有するポリマーは、特公昭6
3−18964号公報等により知られている。すなわ
ち、パーフルオロ(2,2−ジメチル−1,3−ジオキ
ソール)等の含フッ素環構造を有するモノマーを単独重
合ないし、テトラフルオロエチレンなどのラジカル重合
性モノマーと共重合することにより得られる。
A polymer having a ring structure in its main chain obtained by polymerizing a monomer having a fluorine-containing ring structure is disclosed in Japanese Examined Patent Publication No.
It is known from Japanese Patent Laid-Open No. 3-18964. That is, it can be obtained by homopolymerizing a monomer having a fluorine-containing ring structure such as perfluoro (2,2-dimethyl-1,3-dioxole) or by copolymerizing with a radical polymerizable monomer such as tetrafluoroethylene.

【0015】また、パーフルオロ(2,2−ジメチル−
1,3−ジオキソール)等の含フッ素環構造を有するモ
ノマーとパーフルオロ(アリルビニルエーテル)やパー
フルオロ(ブテニルビニルエーテル)等の少なくとも2
つの重合性二重結合を有する含フッ素モノマーを共重合
して得られるポリマーでもよい。
Further, perfluoro (2,2-dimethyl-
A monomer having a fluorine-containing ring structure such as 1,3-dioxole) and at least 2 such as perfluoro (allyl vinyl ether) or perfluoro (butenyl vinyl ether)
It may be a polymer obtained by copolymerizing a fluorine-containing monomer having one polymerizable double bond.

【0016】含フッ素脂肪族環構造を有するポリマー
は、ポリマーの繰り返し単位中に含フッ素脂肪族環構造
を20モル%以上含有するものが透明性、機械的特性等
の面から好ましい。
The polymer having a fluorinated alicyclic structure is preferably one containing 20 mol% or more of the fluorinated alicyclic structure in the repeating unit of the polymer from the viewpoints of transparency and mechanical properties.

【0017】半導体素子・集積回路装置上にフッ素樹脂
の被膜を形成する方法としては、フッ素樹脂の溶液を素
子上に塗布した後に、加熱乾燥することにより溶媒を揮
発させる方法が好ましい。この際、塗布方法としては、
スピンコート法、ディッピング法、ポッティング法等が
例示されるが、膜厚の面内分布の均一性からスピンコー
トが好ましい。
As a method for forming a fluororesin film on a semiconductor element / integrated circuit device, a method of applying a solution of a fluororesin on the element and then heating and drying to volatilize the solvent is preferable. At this time, as a coating method,
The spin coating method, the dipping method, the potting method, etc. are exemplified, but the spin coating method is preferable because of the uniform in-plane distribution of the film thickness.

【0018】この際には、アルミニウム、アルミニウム
合金、チタン、金、白金等の配線金属表面、あるいはシ
リコン、ガリウムヒ素等の半導体表面、あるいはシリコ
ン酸化膜、シリコン窒化膜、アルミナ等の絶縁膜表面か
らなる下地との充分な密着性が、素子の信頼性の観点か
ら必要であるために、下地をカップリング剤で処理する
か、フッ素樹脂溶液にカップリング剤を混合したものを
用いることが望ましい。カップリング剤としては下地表
面との密着性を付与し得るものであれば特に制限はな
く、シランカップリング剤、チタネート系カップリング
剤、アルミニウムキレート系カップリング剤が好まし
い。
At this time, from the surface of a wiring metal such as aluminum, aluminum alloy, titanium, gold, or platinum, the surface of a semiconductor such as silicon or gallium arsenide, or the surface of an insulating film such as a silicon oxide film, a silicon nitride film, or alumina. It is desirable to treat the underlayer with a coupling agent or to use a fluororesin solution mixed with a coupling agent, since sufficient adhesion to the underlayer is required from the viewpoint of the reliability of the device. The coupling agent is not particularly limited as long as it can provide the adhesion to the surface of the underlayer, and a silane coupling agent, a titanate coupling agent, and an aluminum chelate coupling agent are preferable.

【0019】本発明において、フッ素樹脂膜の上に形成
される無機膜とは、緻密であり、残留水酸基のないある
いは少ない膜で、その結果として水蒸気透過が小さい膜
であれば特に制限はないが、450℃以上の熱が加わる
と金属配線層が変質するために、それ以下の温度で形成
可能であることが必要である。
In the present invention, the inorganic film formed on the fluororesin film is not particularly limited as long as it is a film that is dense and has little or no residual hydroxyl groups and, as a result, has a low water vapor permeability. Since the metal wiring layer deteriorates when heat of 450 ° C. or higher is applied, it is necessary to be able to form at a temperature lower than that.

【0020】具体的には、スパッタリングにより形成さ
れるシリコン酸化膜、プラズマ化学気相成長法により形
成されるシリコン酸化膜、シリコン窒化膜などが例示さ
れる。特にシリコン窒化膜は、膜が非常に緻密であり、
機械的強度が高く、不純物イオンの拡散も少なく、水蒸
気透過性が小さいことから好ましい。シリコン窒化膜は
一般にモノシランとアンモニアまたは窒素の混合ガスを
用いたプラズマ化学気相成長法により、公知の方法にて
形成することができる。
Specific examples include a silicon oxide film formed by sputtering, a silicon oxide film formed by plasma chemical vapor deposition, a silicon nitride film, and the like. In particular, the silicon nitride film has a very dense film,
It is preferable because it has high mechanical strength, little diffusion of impurity ions, and low water vapor permeability. The silicon nitride film can be generally formed by a known method by plasma chemical vapor deposition using a mixed gas of monosilane and ammonia or nitrogen.

【0021】また、フッ素樹脂膜上に無機膜を形成する
際に、その界面での密着性を向上させる目的で、あらか
じめフッ素樹脂膜表面をエネルギー線で処理することに
より表面を活性化させた後に、無機膜を形成してもよ
い。エネルギー線処理としては光を含む広義の意味での
電磁波の利用による処理、すなわちレーザー光照射、マ
イクロ波照射、あるいは電子線を利用する処理、すなわ
ち電子線照射、グロー放電処理、コロナ放電処理、プラ
ズマ処理などの処理が例示される。
Further, when the inorganic film is formed on the fluororesin film, the surface of the fluororesin film is previously activated by treatment with an energy ray for the purpose of improving the adhesiveness at the interface, and then the surface is activated. Alternatively, an inorganic film may be formed. As the energy ray treatment, treatment using electromagnetic waves in a broad sense including light, that is, laser light irradiation, microwave irradiation, or treatment using electron beams, that is, electron beam irradiation, glow discharge treatment, corona discharge treatment, plasma Processing such as processing is exemplified.

【0022】これらのうち半導体素子・集積回路装置の
量産工程に対応し得る好適な処理方法としては、レーザ
ー光照射、コロナ放電処理、プラズマ処理が例示され
る。さらには、プラズマ処理が半導体素子・集積回路装
置に与えるダメージが小さく、望ましい。プラズマ処理
を行う装置としては装置内に所望のガスを導入でき、電
場を印加できるものであれば特に制限はなく、市販のバ
レル型、平行平板型のプラズマ発生装置を適宜使用でき
る。
Among these, laser beam irradiation, corona discharge treatment, and plasma treatment are examples of suitable treatment methods that can be applied to the mass production process of semiconductor elements and integrated circuit devices. Furthermore, the plasma treatment is desirable because it causes less damage to the semiconductor element / integrated circuit device. The plasma processing apparatus is not particularly limited as long as a desired gas can be introduced into the apparatus and an electric field can be applied, and a commercially available barrel type or parallel plate type plasma generator can be appropriately used.

【0023】プラズマ装置へ導入するガスとしては、含
フッ素脂肪族環構造を有するフッ素樹脂表面を有効に活
性化するものであれば特に制限はなく、アルゴン、ヘリ
ウム、窒素、酸素、あるいはこれらのガスの混合物など
が例示される。さらには、有効に含フッ素脂肪族環構造
を有する含フッ素樹脂の表面を活性化させ、この際に膜
減りもほとんどないガスとして、窒素、および窒素−酸
素の混合ガスが好ましく例示される。
The gas introduced into the plasma apparatus is not particularly limited as long as it effectively activates the surface of the fluororesin having a fluorinated alicyclic structure, and argon, helium, nitrogen, oxygen, or these gases are used. And the like. Furthermore, as a gas that effectively activates the surface of the fluorine-containing resin having a fluorine-containing alicyclic structure and hardly causes film loss at this time, nitrogen and a mixed gas of nitrogen-oxygen are preferably exemplified.

【0024】また、表面保護膜を形成した後に、ボンデ
ィングパッド上部に穴開け(エッチング)を行う必要が
あるが、本発明の表面保護膜であるフッ素樹脂膜および
無機膜はCF4 ガスを主成分としたガス系を用いたプラ
ズマエッチングあるいは反応性イオンエッチングにより
エッチングできる。したがって、それぞれの膜を別々に
エッチングする必要はなく、一つのエッチング装置内で
同時にエッチングできる。
Further, after forming the surface protective film, it is necessary to make holes (etching) in the upper part of the bonding pad. The fluorine resin film and the inorganic film, which are the surface protective film of the present invention, contain CF 4 gas as a main component. It can be etched by plasma etching or reactive ion etching using the above gas system. Therefore, it is not necessary to separately etch each film, and the films can be simultaneously etched in one etching apparatus.

【0025】本発明は、表面保護膜がフッ素樹脂膜と無
機膜からなり、ダイオード、トランジスタ、化合物半導
体、サーミスタ、バリスタ、サイリスタ等の個別半導
体、DRAM(ダイナミック・ランダム・アクセス・メ
モリー)、SRAM(スタティック・ランダム・アクセ
ス・メモリー)、EPROM(イレイザブル・プログラ
マブル・リード・オンリー・メモリー)、マスクROM
(マスク・リード・オンリー・メモリー)、EEPRO
M(エレクトリカル・イレイザブル・プログラマブル・
リード・オンリー・メモリー)、フラッシュメモリー等
の記憶素子、マイクロプロセッサー、ASIC等の理論
回路素子、MMIC(モノリシック・マイクロウェーブ
集積回路)に代表される化合物半導体などの集積回路素
子、混成集積回路(ハイブリッドIC)、発光ダイオー
ド、電価結合素子等の光電変換素子といった半導体素子
・集積回路装置に適用できる。
According to the present invention, the surface protective film is made of a fluororesin film and an inorganic film, and includes individual semiconductors such as diodes, transistors, compound semiconductors, thermistors, varistors and thyristors, DRAM (dynamic random access memory), SRAM ( Static random access memory), EPROM (erasable programmable read only memory), mask ROM
(Mask Read Only Memory), EEPRO
M (Electrical, Erasable, Programmable,
Read-only memory), flash memory and other storage devices, microprocessors, ASIC and other theoretical circuit devices, MMIC (monolithic microwave integrated circuits) represented by compound semiconductor integrated circuit devices, hybrid integrated circuits (hybrid) The present invention can be applied to semiconductor elements and integrated circuit devices such as ICs), light emitting diodes, photoelectric conversion elements such as electric charge coupling elements, and the like.

【0026】表面保護膜をフッ素樹脂膜と無機膜の二層
構造とすることにより、フッ素樹脂の持つ低誘電率、低
吸水率、および下地の凹凸に対する優れた埋め込み平坦
性、無機膜の持つ低水蒸気透過性を併せ持った理想的な
膜とすることができ、優れた電気的特性、信頼性を達成
できる。
By forming the surface protective film into a two-layer structure of a fluororesin film and an inorganic film, the fluorocarbon resin has a low dielectric constant, a low water absorption coefficient, and excellent flatness of embedding against irregularities of the base, and a low inorganic film. It is possible to form an ideal membrane that also has water vapor permeability, and it is possible to achieve excellent electrical characteristics and reliability.

【0027】[0027]

【実施例】次に、本発明を実施例によって具体的に説明
するが、この説明が本発明を限定するものではない。
EXAMPLES Next, the present invention will be specifically described by way of examples, but this description does not limit the present invention.

【0028】「合成例1」パーフルオロ(ブテニルビニ
ルエーテル)の35g、イオン交換水の150g、およ
び重合開始剤として((CH32 CHOCOO)2
90mgを、内容積200ccの耐圧ガラス製オートク
レーブに入れた。系内を3回窒素で置換した後、40℃
で22時間懸濁重合を行った。その結果、含フッ素重合
体Aを28g得た。この重合体の固有粘度[η]は、パ
ーフルオロ(2−ブチルテトラヒドロフラン)中30℃
で0.34であった。重合体のガラス転移点は108℃
であり、室温ではタフで透明なガラス状の重合体であ
る。また10%熱分解温度は465℃、誘電率は2.
1、煮沸吸水率は0.01%以下であった。
[Synthesis Example 1] 35 g of perfluoro (butenyl vinyl ether), 150 g of ion-exchanged water, and 90 mg of ((CH 3 ) 2 CHOCOO) 2 as a polymerization initiator were put into a pressure-resistant glass autoclave having an internal volume of 200 cc. I put it in. After replacing the system with nitrogen three times, 40 ° C
Suspension polymerization was carried out for 22 hours. As a result, 28 g of fluoropolymer A was obtained. The intrinsic viscosity [η] of this polymer is 30 ° C in perfluoro (2-butyltetrahydrofuran).
Was 0.34. Glass transition point of polymer is 108 ℃
It is a tough and transparent glassy polymer at room temperature. The 10% thermal decomposition temperature is 465 ° C, and the dielectric constant is 2.
1. The boiling water absorption was 0.01% or less.

【0029】「合成例2」パーフルオロ(2,2−ジメ
チル−1,3−ジオキソール)とパーフルオロ(ブテニ
ルビニルエーテル)とをラジカル共重合し、ガラス転移
点160℃の含フッ素共重合体Bを得た。この重合体は
無色透明であり、誘電率は2.0、煮沸吸水率は0.0
1%以下であった。
"Synthesis Example 2" Perfluoro (2,2-dimethyl-1,3-dioxole) and perfluoro (butenyl vinyl ether) were radically copolymerized to give a fluorine-containing copolymer B having a glass transition point of 160 ° C. Got This polymer is colorless and transparent, has a dielectric constant of 2.0 and a boiling water absorption of 0.0.
It was 1% or less.

【0030】「合成例3」パーフルオロ(2,2−ジメ
チル−1,3−ジオキソール)とパーフルオロ(アリル
ビニルエーテル)とをラジカル共重合し、ガラス転移点
160℃の含フッ素共重合体Cを得た。この重合体は無
色透明であり、誘電率は2.0、煮沸吸水率は0.01
%以下であった。
"Synthesis Example 3" Radical copolymerization of perfluoro (2,2-dimethyl-1,3-dioxole) and perfluoro (allyl vinyl ether) was carried out to obtain a fluorine-containing copolymer C having a glass transition point of 160 ° C. Obtained. This polymer is colorless and transparent, has a dielectric constant of 2.0 and a boiling water absorption of 0.01.
% Or less.

【0031】「実施例1」合成例1で得られた含フッ素
重合体Aをパーフルオロトリブチルアミン中に溶解し、
9重量%の溶液を調製した。さらにこの溶液に3−アミ
ノプロピルメチルジエトキシシランを0.3重量%添加
し、半導体素子(CMOS−DRAM)の形成された6
インチシリコンウェハ上にスピンコーターで塗布し、5
0℃で1時間、さらに200℃で1時間の乾燥を行っ
て、厚さ3μmの塗膜を形成した。次いでモノシランと
アンモニアの混合ガスを用い、プラズマ化学気相成長法
によりシリコン窒化膜を1μmの厚さで形成した。この
ときの基板温度は300℃とした。
"Example 1" The fluoropolymer A obtained in Synthesis Example 1 was dissolved in perfluorotributylamine,
A 9% by weight solution was prepared. Further, 0.3% by weight of 3-aminopropylmethyldiethoxysilane was added to this solution to form a semiconductor device (CMOS-DRAM).
5 inch coated on a silicon wafer with a spin coater
Drying was performed at 0 ° C. for 1 hour and then at 200 ° C. for 1 hour to form a coating film having a thickness of 3 μm. Then, using a mixed gas of monosilane and ammonia, a silicon nitride film was formed to a thickness of 1 μm by the plasma chemical vapor deposition method. The substrate temperature at this time was 300 ° C.

【0032】次いで、フォトリソグラフィー工程、CF
4 、CHF3 、Arによるプラズマエッチング工程によ
りシリコン窒化膜とフッ素樹脂膜にワイヤーボンディン
グ用の100μm角大の穴あけ加工を行って半導体装置
を得た。このようにして製造された半導体装置の初期特
性を測定したところ、特に応答速度が優れていた。ま
た、高温加湿試験、高温高湿加圧試験、および高温動作
試験後もアルミニウム配線の腐食や断線はなく、電気的
な劣化も見られなかった。
Next, a photolithography process and CF
4 , a 100 μm square hole for wire bonding was drilled in the silicon nitride film and the fluororesin film by a plasma etching process using CHF 3 and Ar to obtain a semiconductor device. When the initial characteristics of the semiconductor device manufactured as described above were measured, the response speed was particularly excellent. Further, after the high temperature humidification test, the high temperature high humidity pressure test, and the high temperature operation test, there was no corrosion or disconnection of the aluminum wiring, and no electrical deterioration was observed.

【0033】「実施例2」合成例2で得られた含フッ素
共重合体Bを用いた他は、実施例1と同様にして保護膜
を有する半導体を製造した。得られた半導体装置は、初
期および耐湿性試験後において、優れた性能を示してい
た。
Example 2 A semiconductor having a protective film was produced in the same manner as in Example 1 except that the fluorinated copolymer B obtained in Synthesis Example 2 was used. The obtained semiconductor device showed excellent performance at the initial stage and after the moisture resistance test.

【0034】「実施例3」合成例3で得られた含フッ素
共重合体Cを用いた他は、実施例1と同様にして保護膜
を有する半導体を製造した。得られた半導体装置は、初
期および耐湿性試験後において、優れた性能を示してい
た。
[Example 3] A semiconductor having a protective film was produced in the same manner as in Example 1 except that the fluorine-containing copolymer C obtained in Synthesis Example 3 was used. The obtained semiconductor device showed excellent performance at the initial stage and after the moisture resistance test.

【0035】「実施例4」フッ素樹脂上の無機膜をプラ
ズマ化学気相成長法により形成したシリコン酸化膜(ガ
ス;モノシランと二窒化酸素の混合ガス、基板温度;3
80℃)とした他は実施例1と同様にして保護膜を有す
る半導体装置を製造した。得られた半導体装置は、初期
および耐湿性試験後において、優れた性能を示してい
た。
Example 4 A silicon oxide film (gas; mixed gas of monosilane and oxygen dinitride, substrate temperature; 3) formed by plasma chemical vapor deposition of an inorganic film on a fluororesin.
A semiconductor device having a protective film was manufactured in the same manner as in Example 1 except that the temperature was set to 80 ° C.). The obtained semiconductor device showed excellent performance at the initial stage and after the moisture resistance test.

【0036】「実施例5」プラズマ化学気相成長法によ
りシリコン窒化膜を形成する前に、フッ素樹脂表面をN
2 プラズマによって表面処理した以外は実施例1と同様
にして保護膜を有する半導体装置を製造した。得られた
半導体装置は、初期および耐湿性試験後において、優れ
た性能を示していた。
[Embodiment 5] Before forming a silicon nitride film by the plasma chemical vapor deposition method, the surface of the fluororesin is changed to N.
2 A semiconductor device having a protective film was manufactured in the same manner as in Example 1 except that the surface treatment was performed with plasma. The obtained semiconductor device showed excellent performance at the initial stage and after the moisture resistance test.

【0037】「比較例1」表面保護膜をシリコン酸化膜
とシリコン窒化膜の二層構造として、実施例1と同様に
して半導体装置を製造した。得られた半導体装置は、応
答速度が実施例1で得られた半導体装置に比較して劣っ
ていた。また耐湿性試験において不良の発生率が高かっ
た。
Comparative Example 1 A semiconductor device was manufactured in the same manner as in Example 1, except that the surface protective film had a two-layer structure of a silicon oxide film and a silicon nitride film. The obtained semiconductor device was inferior in response speed to the semiconductor device obtained in Example 1. Further, the rate of occurrence of defects was high in the humidity resistance test.

【0038】「比較例2」表面保護膜をシリコン窒化膜
一層として、実施例1と同様にして半導体装置を製造し
た。得られた半導体装置は、応答速度が実施例1で得ら
れた半導体装置に比較して劣っていた。また耐湿性試験
において不良の発生率が高かった。
[Comparative Example 2] A semiconductor device was manufactured in the same manner as in Example 1 except that the surface protective film was a single layer of silicon nitride film. The obtained semiconductor device was inferior in response speed to the semiconductor device obtained in Example 1. Further, the rate of occurrence of defects was high in the humidity resistance test.

【0039】[0039]

【発明の効果】本発明は、フッ素樹脂の塗膜を形成し、
続いて無機膜を形成して、表面保護膜をフッ素樹脂膜と
無機膜の二層構造とすることにより、フッ素樹脂の持つ
低誘電率、低吸水率、および下地に凹凸に対する優れた
埋め込み平坦性、無機膜の持つ低水蒸気透過性を併せ持
った理想的な膜とすることができ、優れた電気的特性、
信頼性を持つ半導体素子・集積回路装置を得るという優
れた効果を有する。
The present invention forms a coating film of fluororesin,
Subsequently, an inorganic film is formed, and the surface protection film has a two-layer structure of a fluororesin film and an inorganic film, so that the fluororesin has a low dielectric constant, a low water absorption rate, and excellent embedding flatness against unevenness in the base. , Which can be an ideal film that also has the low water vapor permeability of an inorganic film, and has excellent electrical characteristics,
It has an excellent effect of obtaining a reliable semiconductor element / integrated circuit device.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体素子上に表面保護膜として、フッ素
樹脂の薄膜を介して無機膜が形成されてなる半導体素子
・集積回路装置。
1. A semiconductor element / integrated circuit device in which an inorganic film is formed as a surface protective film on a semiconductor element via a thin film of fluororesin.
【請求項2】フッ素樹脂の薄膜が、含フッ素脂肪族環構
造を有するフッ素樹脂の薄膜である請求項1の半導体素
子・集積回路装置。
2. The semiconductor element / integrated circuit device according to claim 1, wherein the fluororesin thin film is a fluororesin thin film having a fluorine-containing alicyclic structure.
【請求項3】無機膜がシリコン窒化膜である請求項1ま
たは2の半導体素子・集積回路装置。
3. The semiconductor element / integrated circuit device according to claim 1, wherein the inorganic film is a silicon nitride film.
JP4410194A 1994-03-15 1994-03-15 Semiconductor device and integrated circuit device Pending JPH07254593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4410194A JPH07254593A (en) 1994-03-15 1994-03-15 Semiconductor device and integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4410194A JPH07254593A (en) 1994-03-15 1994-03-15 Semiconductor device and integrated circuit device

Publications (1)

Publication Number Publication Date
JPH07254593A true JPH07254593A (en) 1995-10-03

Family

ID=12682234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4410194A Pending JPH07254593A (en) 1994-03-15 1994-03-15 Semiconductor device and integrated circuit device

Country Status (1)

Country Link
JP (1) JPH07254593A (en)

Similar Documents

Publication Publication Date Title
EP0393682B1 (en) Semiconductor integrated circuit device
US6479374B1 (en) Method of manufacturing interconnection structural body
US5905117A (en) Low dielectric resin composition
US20050087517A1 (en) Adhesion between carbon doped oxide and etch stop layers
JPS6340345A (en) Method of providing dielectric layer between layers which has essentially planar surface
JPH08501904A (en) Chip interconnect with breathable etch stop layer
US4656050A (en) Method of producing electronic components utilizing cured vinyl and/or acetylene terminated copolymers
JP2003100757A (en) Semiconductor device and method for manufacturing the same
JPH08124919A (en) Semiconductor protective film material and semiconductor device employing the same
JPH01225326A (en) Method of passivation of integrated circuit
EP0114106B1 (en) Method for manufacturing a semiconductor memory device having a high radiation resistance
JPH07254593A (en) Semiconductor device and integrated circuit device
JP3340242B2 (en) Semiconductor devices and integrated circuit devices
US5733606A (en) Inter-level dielectrics with low dielectric constants
JPH0574960A (en) Manufacture of semiconductor device
JPH07254665A (en) Semiconductor element/integrated circuit device
Satou et al. Polyimides for semiconductor applications
JPS6051262B2 (en) semiconductor equipment
JP2723051B2 (en) Semiconductor device
US20050260415A1 (en) Adhesion promoting technique
JPS58135645A (en) Manufacture of semiconductor device
Kataoka et al. Processing of Polyimides and Related Topics
JPH01304735A (en) Method of forming protective film of semiconductor device
JPH11168141A (en) Semiconductor device and its manufacture
JPS60249333A (en) Semiconductor device and manufacture thereof