JPH07252571A - Automobile aluminum alloy sheet and its production - Google Patents

Automobile aluminum alloy sheet and its production

Info

Publication number
JPH07252571A
JPH07252571A JP4687994A JP4687994A JPH07252571A JP H07252571 A JPH07252571 A JP H07252571A JP 4687994 A JP4687994 A JP 4687994A JP 4687994 A JP4687994 A JP 4687994A JP H07252571 A JPH07252571 A JP H07252571A
Authority
JP
Japan
Prior art keywords
less
aluminum alloy
mechanical properties
intermetallic compound
alloy sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4687994A
Other languages
Japanese (ja)
Inventor
Yukio Sasaki
行雄 佐々木
Masao Kikuchi
正夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4687994A priority Critical patent/JPH07252571A/en
Publication of JPH07252571A publication Critical patent/JPH07252571A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high Mg-contg. aluminum alloy sheet which has been difficult heretofore due to hot cracks and to produce an automobile aluminum alloy sheet having excellent mechanical properties and formability. CONSTITUTION:The molten metal of an aluminum alloy having a compsn. contg., by weight, 6 to 10% Mg as essential components, in which the tolerances of Fe and Si as impurities are regulated to Fe <=0.5% and Si <=0.5%, and the balance Al is cast to regulate its sheet thickness to 1 to 10mm, which is cooled at >=5 deg.C/sec average cooling rate in the section of the slab. By the same producing method, the conventional hot rolling is eliminated, by which the automobile aluminum alloy sheet excellent in mechanical properties can be obtd. at a low cost without giving anxiety about cracks.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は強度とともに優れた成形
加工性が要求される分野、特に自動車用に用いられる機
械的性質に優れたアルミニウム合金板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field in which strength and excellent molding processability are required, and more particularly to an aluminum alloy sheet having excellent mechanical properties used for automobiles.

【0002】[0002]

【従来の技術】近年の自動車車体の軽量化の要求に対し
て、従来の冷延鋼板の代わりにアルミニウム合金板の適
用は有効な手段としてこれまでに種々検討がなされてい
る。特に自動車ボディパネル用には高成形性が要求され
るため、アルミニウム合金のなかでも強度・延性バラン
スに優れたAl−Mg合金に関して、成分系の検討や製
造条件の最適化検討が行われている。例えばJIS A
5052,JIS A5182等はその代表的な合金成
分系である。しかし、この合金系でも冷延鋼板と比較す
ると延性に劣り、成形性に劣っている。
2. Description of the Related Art In response to the recent demand for weight reduction of automobile bodies, application of aluminum alloy sheets instead of conventional cold-rolled steel sheets has been variously studied as an effective means. In particular, since high formability is required for automobile body panels, among Al alloys, Al-Mg alloys excellent in strength and ductility balance are being studied for component systems and optimization of manufacturing conditions. . For example, JIS A
5052, JIS A5182, etc. are typical alloy component systems. However, even this alloy system is inferior in ductility and formability as compared with the cold-rolled steel sheet.

【0003】一方、Al−Mg系合金ではMgの含有量
の増加と共に、強度・延性が向上することは知られてい
る(社団法人軽金属学会編:アルミニウム材料の基礎と
工業技術P315等)。しかし高Mg合金は、例えば日
本金属学会誌(vol.48,(1984),P68
8)に記載されている様に、同合金系に熱間圧延を施す
温度域で延性が低下し、割れが発生し易くなり工業的に
製造することは困難である。
On the other hand, it is known that the strength and ductility of an Al-Mg-based alloy increase as the content of Mg increases (edited by Japan Institute of Light Metals: Fundamentals of Aluminum Materials and Industrial Technology P315, etc.). However, high-Mg alloys are disclosed in, for example, the Japan Institute of Metals (vol.
As described in 8), the ductility decreases in the temperature range where hot rolling is performed on the alloy system, cracking easily occurs, and it is difficult to manufacture industrially.

【0004】そこで、高Mg合金を工業的規模で生産す
る方法として、割れの発生する温度域を避けて低温圧延
を行うことが提案されている(例えば特開平5−156
401号公報等)。しかし低温圧延では材料の変形抵抗
が高くなり、現状の圧延機の能力では製造できる製品サ
イズが限定される。そこでMg含有許容量を増加させる
ために第三元素を添加する方法等も提案されている(例
えば特開平5−132732号公報等)。しかし第三元
素の含有量が増えると、粗大な金属間化合物を形成しや
すく、アルミニウム合金板の延性を低下させるため、そ
の含有量には限界がある。また、FeやSi等の不純物
元素も凝固時に金属間化合物を形成しやすく、その許容
量は極力低く抑えられてきた。
Therefore, as a method of producing a high-Mg alloy on an industrial scale, it has been proposed to carry out low-temperature rolling while avoiding the temperature range where cracks occur (for example, Japanese Patent Laid-Open No. 5-156).
No. 401, etc.). However, low-temperature rolling increases the deformation resistance of the material, and the capacity of current rolling mills limits the product size that can be manufactured. Therefore, a method of adding a third element in order to increase the allowable content of Mg has been proposed (for example, Japanese Patent Laid-Open No. 5-132732). However, when the content of the third element increases, a coarse intermetallic compound is easily formed, and the ductility of the aluminum alloy plate is reduced, so the content is limited. Further, impurity elements such as Fe and Si easily form intermetallic compounds during solidification, and the allowable amount thereof has been suppressed as low as possible.

【0005】[0005]

【発明が解決しようとする課題】ところで、自動車の車
体軽量化のために適用・検討が進められているボディパ
ネル用としてのアルミニウム合金板には、従来から用い
られている冷延鋼板並みの高品質が要求されるばかりで
なく、製造コストの低減に対する要求もますます高ま
り、さらには地球環境保護の観点からリサイクル性の拡
大要求も高まってきている。これらの要求は工業的に相
反する要求ではあるが、これらの要求への対応は避けが
たい状況である。
By the way, aluminum alloy sheets for body panels, which are being applied and studied to reduce the vehicle body weight of automobiles, have the same high performance as cold-rolled steel sheets used conventionally. Not only quality is required, but also demand for reduction of manufacturing cost is increasing, and further demand for expanding recyclability is also increasing from the viewpoint of global environment protection. These requirements are industrially contradictory requirements, but it is inevitable to meet these requirements.

【0006】このような状況において、機械的性質特に
強度・延性の優れたアルミニウム合金板としては前述し
たAl−Mg系合金を挙げることができる。しかしなが
ら特性改善のために、さらに高Mg化をはかることは、
前記熱間加工性の問題から実用化が困難である。一方、
特性向上のために添加される第三元素の含有許容範囲が
限定され、また不純物の許容範囲も制限される。従っ
て、前述したような要求を満たすアルミニウム合金板
は、これまでに提案されていない。
In such a situation, as the aluminum alloy plate having excellent mechanical properties, particularly strength and ductility, the above-mentioned Al-Mg alloy can be mentioned. However, in order to improve the characteristics, it is necessary to further increase the Mg content.
Practical application is difficult due to the problem of hot workability. on the other hand,
The allowable range of the content of the third element added for improving the characteristics is limited, and the allowable range of the impurities is also limited. Therefore, no aluminum alloy plate satisfying the above-mentioned requirements has been proposed so far.

【0007】そこで本発明は、上記課題を解決し、従来
よりも高いMg量を含有していても優れた機械的性質や
成形性を兼ね備え、不純物の許容範囲が広く原料コスト
を低く抑えることを可能としたアルミニウム合金板およ
びその製造方法を提供することを目的とするものであ
る。
Therefore, the present invention solves the above-mentioned problems and has excellent mechanical properties and moldability even if it contains a higher amount of Mg than before, and has a wide allowable range of impurities and a low raw material cost. It is an object of the present invention to provide an aluminum alloy plate that can be manufactured and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために鋭意検討を重ねた結果、鋳造時鋳片の
厚みを薄くし、鋳片の冷却速度を速くすることによっ
て、従来のような熱間圧延を行うことなく、機械的性質
が優れたアルミニウム合金板を得ることができることを
見出し、本発明に至った。すなわち、本発明の構成は、
重量%で、Mg:6.0%〜10.0%、Fe:≦0.
5%、Si:≦0.5%を含有し、必要に応じて、さら
に、 Cu:0.03%以上、1.5%以下 Mn:0.03%以上、0.8%以下 Cr:0.03%以上、0.5%以下 V :0.03%以上、0.3%以下 Zr:0.03%以上、0.3%以下 Ti:0.005%以上、0.3%以下 B :0.0010%以上、0.05%以下 のうちの1種以上を含有し、残部はAl及びSi,Fe
以外の不可避的不純物からなり、残部はAlからなるこ
とを特徴とする機械的性質に優れた自動車用アルミニウ
ム合金板である。
Means for Solving the Problems The inventors of the present invention have made extensive studies to solve the above problems, and as a result, reduce the thickness of the slab during casting and increase the cooling rate of the slab, The present inventors have found that an aluminum alloy sheet having excellent mechanical properties can be obtained without performing hot rolling as in the conventional case, and have reached the present invention. That is, the configuration of the present invention is
% By weight, Mg: 6.0% to 10.0%, Fe: ≤0.
5%, Si: ≤ 0.5%, and if necessary, Cu: 0.03% or more, 1.5% or less Mn: 0.03% or more, 0.8% or less Cr: 0 0.03% or more and 0.5% or less V: 0.03% or more, 0.3% or less Zr: 0.03% or more, 0.3% or less Ti: 0.005% or more, 0.3% or less B : 0.0010% or more and 0.05% or less, and at least one of Al and Si, Fe
It is an aluminum alloy plate for automobiles having excellent mechanical properties, which is composed of unavoidable impurities other than the above and the balance is composed of Al.

【0009】また、本発明は、上記のアルミニウム合金
板を製造する方法として上記の成分からなるアルミニウ
ム合金を、鋳片厚み1〜10mmに連続鋳造した後、5
℃/sec以上の冷却速度で冷却することを特徴とする
機械的性質に優れた自動車用アルミニウム合金板の製造
方法である。
Further, according to the present invention, as a method for producing the above-mentioned aluminum alloy sheet, the aluminum alloy comprising the above-mentioned components is continuously cast into a cast piece having a thickness of 1 to 10 mm, and then 5
A method for producing an aluminum alloy plate for automobiles having excellent mechanical properties, characterized by cooling at a cooling rate of not less than ° C / sec.

【0010】[0010]

【作用】以下に本発明の合金組成、製造条件等の限定理
由を具体的に説明する。Mgは、本発明で強度の向上お
よび延性向上に寄与する必須の基本合金成分であり、
6.0〜10.0%含有させる。本発明においては、鋳
造時の冷却速度を速くし、最終製品の時点で残存する金
属間化合物のサイズを微細化することによって添加可能
範囲は10.0%まで許容される。しかし、Mg量が1
0.0%を越えると、鋳造を含み以降の冷延板製造工程
での標準的な熱処理条件ではAl−Mg−Si系、Al
−Mg系の金属間化合物の晶析出が多くなり、冷延板の
機械的性質を低下させる。Mgの下限は、優れた強度と
延性の確保のために6.0%とする。Mgの好ましい範
囲は7.0〜9.0%である。
FUNCTION The reasons for limiting the alloy composition, manufacturing conditions and the like of the present invention will be specifically described below. Mg is an essential basic alloy component that contributes to the improvement of strength and ductility in the present invention,
The content is 6.0 to 10.0%. In the present invention, the addable range is allowed up to 10.0% by increasing the cooling rate during casting and refining the size of the intermetallic compound remaining at the time of the final product. However, the amount of Mg is 1
If it exceeds 0.0%, under standard heat treatment conditions in the subsequent cold rolled sheet manufacturing process including casting, Al-Mg-Si system, Al
-The precipitation of Mg-based intermetallic compounds increases, and the mechanical properties of the cold rolled sheet deteriorate. The lower limit of Mg is 6.0% in order to secure excellent strength and ductility. The preferable range of Mg is 7.0 to 9.0%.

【0011】FeやSiは、Al−Fe(−Si)系、
Al−Mg−Si系の金属間化合物を生成し、機械的性
質を低下させるので、従来ではできるだけ少なくするこ
とが必須であった。しかし本発明ではFeやSiの添加
可能範囲は0.5%まで許容される。Feは0.5%を
越えて含有すると、鋳造時の冷却速度を上げてもAl−
Fe系の金属間化合物が粗大化して晶出し、鋳造以降の
標準的な熱処理では再固溶せずに最終冷延板まで残り、
冷延板の機械的性質を低下させる。またSiも0.5%
を越えて含有すると、鋳造時の冷却速度を上げてもAl
−Mg−Si系の金属間化合物が粗大化して晶出し、鋳
造以降の標準的な熱処理では完全に再固溶させることが
出来ない。
Fe and Si are Al--Fe (-Si) type,
Since Al-Mg-Si-based intermetallic compounds are generated and mechanical properties are deteriorated, it has been essential to reduce the amount as much as possible in the past. However, in the present invention, the range of addition of Fe and Si is allowed up to 0.5%. When Fe exceeds 0.5%, even if the cooling rate during casting is increased, Al-
The Fe-based intermetallic compound coarsens and crystallizes, and remains in the final cold-rolled sheet without re-solid solution in standard heat treatment after casting.
Reduces the mechanical properties of cold-rolled sheet. Also, Si is 0.5%
If it is contained in excess of Al, even if the cooling rate during casting is increased, Al
The —Mg—Si-based intermetallic compound becomes coarse and crystallizes, and cannot be completely re-dissolved by standard heat treatment after casting.

【0012】そこで、本発明のアルミニウム合金板では
上記の成分組成を限定するとともに、残有する金属間化
合物の平均サイズを10μm以下に限定する。金属間化
合物が10μmを越えると、冷延板の機械的性質を低下
させるので10μm以下とする。好ましくは5μm以下
が良い。なお、本発明においては必要に応じてCu,M
n,Cr,V,Zr,Ti,Bのうち1種以上を含有さ
せる。Cuは強度の向上に有効な元素であるが、含有量
が0.03%以下ではその効果は得られず、一方1.5
%を越えると成形性の低下や耐SCC性が低下する。従
って、その含有量を0.03〜1.5%とする。
Therefore, in the aluminum alloy plate of the present invention, the above-mentioned component composition is limited, and the average size of the remaining intermetallic compound is limited to 10 μm or less. If the intermetallic compound exceeds 10 μm, the mechanical properties of the cold-rolled sheet are deteriorated, so the content is made 10 μm or less. It is preferably 5 μm or less. In the present invention, if necessary, Cu, M
One or more of n, Cr, V, Zr, Ti and B are contained. Cu is an element effective for improving the strength, but if the content is 0.03% or less, the effect cannot be obtained, while 1.5
%, The moldability and SCC resistance deteriorate. Therefore, the content is set to 0.03 to 1.5%.

【0013】またMnやCr,Zr,VおよびTi,B
は結晶粒径を微細化する目的で含有させる。この場合、
Mn,Cr,V,Zrはいずれも添加量が0.03%未
満では微細化効果が得られず、一方Mnは0.8%,C
rは0.5%,VとZrは0.3%を越えると微細化の
効果が飽和するばかりでなく、成形性を低下させる。従
ってMnの含有量は0.03〜1.5%、Crの含有量
は0.03〜0.5%、VとZrの含有量はそれぞれ
0.03〜0.3%とする。Tiを含有させる場合、そ
の含有量は0.005%未満では鋳塊の結晶粒を微細化
する効果が得られず、一方0.3%を越えれば成形性を
阻害するから、Tiは0.0050〜0.3%の範囲内
とすることが望ましい。またTiと共にBを添加する場
合、Bが0.0010%未満ではその効果はなく、一方
0.05%を越えれば成形性を阻害することからBは
0.0010〜0.05%とすることが望ましい。なお
上記以外の不可避的な不純物は、Al地金の純度が98
%以上であれば問題ない。
Further, Mn, Cr, Zr, V and Ti, B
Is contained for the purpose of refining the crystal grain size. in this case,
If Mn, Cr, V, and Zr are all added in an amount less than 0.03%, no refining effect can be obtained. On the other hand, Mn is 0.8%, C
If r exceeds 0.5% and V and Zr exceed 0.3%, not only the effect of miniaturization is saturated, but also formability is deteriorated. Therefore, the Mn content is 0.03 to 1.5%, the Cr content is 0.03 to 0.5%, and the V and Zr contents are 0.03 to 0.3%, respectively. When Ti is contained, if the content is less than 0.005%, the effect of refining the crystal grains of the ingot cannot be obtained, while if it exceeds 0.3%, the formability is impaired. It is desirable to set it within the range of 0050 to 0.3%. Further, when B is added together with Ti, if B is less than 0.0010%, its effect is not obtained, while if it exceeds 0.05%, formability is impaired, so B is made 0.0010 to 0.05%. Is desirable. Inevitable impurities other than those mentioned above have an Al ingot purity of 98.
There is no problem if it is at least%.

【0014】次に、鋳造時の冷却速度、鋳片厚みを限定
する理由を説明する。一般にアルミニウム合金展伸材
は、鋳造後において強度レベルを制御するため、あるい
は軟化性、再結晶粒度調整や集合組織の観点から種々の
焼鈍処理が実施される。ところが鋳片が凝固する際に晶
出する金属間化合物は、一旦晶出すると、それ以降の製
造工程で実施される標準的な工業レベルでの熱処理では
完全には再固溶することはなく、一部は最終的に冷延板
中に残る。冷延板の機械的性質は、この金属間化合物の
サイズ・分布状態の影響を受ける。
Next, the reasons for limiting the cooling rate during casting and the thickness of the slab will be described. Generally, an aluminum alloy wrought material is subjected to various annealing treatments after casting in order to control the strength level, or from the viewpoint of softening property, recrystallization grain size adjustment and texture. However, the intermetallic compound crystallized when the slab is solidified, once crystallized, does not completely re-dissolve in the heat treatment at the standard industrial level performed in the subsequent manufacturing steps. Part of the material eventually remains in the cold-rolled sheet. The mechanical properties of the cold-rolled sheet are affected by the size and distribution of this intermetallic compound.

【0015】従って、冷延板の機械的性質を低下させな
いためには、機械的性質に及ぼす金属間化合物のサイズ
・分布状態を把握し、その冷延板段階における金属間化
合物の適切なサイズ分布状態を得るためには鋳造時に晶
出する金属間化合物のサイズ・分布状態を制御する必要
がある。本発明者らは、本合金系では鋳造時に晶出した
前述の金属間化合物の平均サイズが20μm以上になる
と、鋳造以降の工程で種々の標準的な熱処理を行っても
再固溶することはなく、冷延板段階では10μm以上の
金属間化合物として残り、機械的性質特に延性を低下さ
せることを見出した。
Therefore, in order to prevent deterioration of the mechanical properties of the cold-rolled sheet, the size and distribution state of the intermetallic compound affecting the mechanical properties should be understood, and the appropriate size distribution of the intermetallic compound in the cold-rolled sheet stage should be understood. In order to obtain the state, it is necessary to control the size and distribution state of the intermetallic compound crystallized during casting. In the present alloy system, when the average size of the above-mentioned intermetallic compound crystallized during casting is 20 μm or more, the inventors of the present invention cannot re-dissolve even if various standard heat treatments are performed in the steps after casting. However, it was found that in the cold-rolled sheet stage, it remained as an intermetallic compound having a size of 10 μm or more, which deteriorates mechanical properties, particularly ductility.

【0016】そこで本発明者らは、金属間化合物のサイ
ズを微細分散化するために鋳造時の冷却速度の影響に着
目して検討した結果、金属間化合物が機械的性質を低下
させないレベルのサイズを得るためには、5℃/sec
以上の冷却速度が必要であることを見出した。冷却速度
は、できれば10℃/sec以上、さらに好ましくは2
5℃/secがよい。冷却速度の上限は、特に定めるも
のではないが冷却に要する費用等を考慮すると100℃
/sec以下が好ましい。また、この冷却速度を制御す
る温度範囲は、720〜500℃の間が好ましい。なぜ
なら500℃未満まで冷却速度を制御しても、その冷却
による金属間化合物の微細化の効果は飽和するからであ
る。
Therefore, the inventors of the present invention conducted a study by paying attention to the influence of the cooling rate at the time of casting in order to finely disperse the size of the intermetallic compound. As a result, the intermetallic compound has a size that does not deteriorate the mechanical properties. 5 ℃ / sec to obtain
It was found that the above cooling rate is necessary. The cooling rate is preferably 10 ° C./sec or more, more preferably 2
5 ° C / sec is preferable. The upper limit of the cooling rate is not specified in particular, but it is 100 ° C considering the cost required for cooling.
/ Sec or less is preferable. The temperature range for controlling the cooling rate is preferably between 720 and 500 ° C. This is because even if the cooling rate is controlled to less than 500 ° C., the effect of refining the intermetallic compound due to the cooling is saturated.

【0017】さらに従来の鋳造法では鋳片の厚みは30
0〜500mm程度であるが、厚みが厚いと、鋳造後に
熱間圧延を実施する必要がある。ところで本成分系の合
金は熱間圧延時の特定の温度で延性が低下し、割れが発
生し易い。従って熱間圧延の温度及び製造可能な製品サ
イズが制約される。また、鋳片の厚みが厚いと鋳片中心
までの所要の冷却速度を得ることができず、中心付近に
粗大な金属間化合物が晶出する。
Further, in the conventional casting method, the thickness of the slab is 30.
Although it is about 0 to 500 mm, if the thickness is thick, it is necessary to carry out hot rolling after casting. By the way, the alloy of this component system has a low ductility at a specific temperature during hot rolling, and cracks easily occur. Therefore, the temperature of hot rolling and the product size that can be manufactured are limited. Further, if the thickness of the cast slab is large, the required cooling rate up to the center of the cast slab cannot be obtained, and a coarse intermetallic compound crystallizes near the center.

【0018】従って、鋳片の中心まで5℃/sec以上
の冷却速度を得るためには1〜10mm程度の板厚で鋳
造する必要がある。鋳片の厚みが1mm未満では表層が
極端に急冷されるため表面に割れを生じ、好ましくな
い。10mmを越えると鋳片の中心まで所要の冷却速度
が得られなくなる。冷却後の鋳片は通常コイル状に巻き
取られるが、そのときの巻取り温度は特に限定する必要
はない。その後の冷間圧延の条件については特に限定し
ないが、トータル圧下率は、金属間化合物を微細分散化
するために、50%以上とすることが好ましい。冷延工
程における中間焼鈍あるいは最終焼鈍についても、焼鈍
形式は箱型焼鈍でも連続焼鈍でもかまわない。
Therefore, in order to obtain a cooling rate of 5 ° C./sec or more up to the center of the slab, it is necessary to cast with a plate thickness of about 1 to 10 mm. If the thickness of the cast slab is less than 1 mm, the surface layer is extremely rapidly cooled and cracks occur on the surface, which is not preferable. If it exceeds 10 mm, the required cooling rate cannot be obtained up to the center of the slab. The slab after cooling is usually wound into a coil, but the winding temperature at that time is not particularly limited. The conditions of the subsequent cold rolling are not particularly limited, but the total rolling reduction is preferably 50% or more in order to finely disperse the intermetallic compound. Regarding the intermediate annealing or the final annealing in the cold rolling step, the annealing type may be box annealing or continuous annealing.

【0019】[0019]

【実施例】次に実施例によって本発明を具体的に説明す
る。 実施例1 表1に示すアルミニウム合金のうち、No.4〜23の
溶湯を、双ロール鋳造法により表2に示す条件で鋳造し
た。その後一旦2mmまで冷間圧延を行い、箱型焼鈍炉
で中間焼鈍を施した。引き続き1mmまで冷間圧延を行
った後、連続焼鈍炉で最終焼鈍を行った。これらの冷延
板に対して、まず金属間化合物のサイズを測定した。金
属間化合物のサイズ測定は、光学顕微鏡で任意の五視野
を500倍で写真撮影して、その中で観察できた個々の
金属間化合物の最長径と最短径を平均し、その値を平均
して金属間化合物の平均サイズとした。
EXAMPLES The present invention will be described in detail with reference to examples. Example 1 Among the aluminum alloys shown in Table 1, No. The molten metal Nos. 4 to 23 were cast by the twin roll casting method under the conditions shown in Table 2. After that, cold rolling was once performed to 2 mm, and intermediate annealing was performed in a box-type annealing furnace. Subsequently, after cold rolling to 1 mm, final annealing was performed in a continuous annealing furnace. First, the size of the intermetallic compound was measured for these cold-rolled sheets. To measure the size of an intermetallic compound, an arbitrary five fields of view are photographed with an optical microscope at a magnification of 500, and the longest diameter and the shortest diameter of each intermetallic compound observed in the photograph are averaged, and the values are averaged. The average size of the intermetallic compounds was used.

【0020】さらに機械的性質を評価するためにJIS
Z 2201,JIS Z 241に準拠して引張試
験を行い、成形性の評価としてJIS Z 2204,
JIS Z 2248に準拠して曲げ試験およびJIS
Z 2247に準拠してエリクセン試験を行った。得
られた結果を表2に示す。本発明によるアルミニウム合
金板(No.4〜15)実施例は、FeやSiが多いに
もかかわらず金属間化合物の平均サイズが10μm以下
と微細に制御されており優れた機械的性質と成形加工性
を示している。一方FeやSiが0.5%を越えたもの
は、鋳造時の冷却速度が速くとも金属間化合物の平均サ
イズが10μmを越え、機械的性質や成形加工性が低下
した。さらにCu,Mn,Cr,Zr,V,Ti,Bの
含有量がそれぞれ本発明の許容範囲を越えたもの(N
o.18〜23)も機械的性質や成形加工性が劣る。
In order to further evaluate the mechanical properties, JIS
Z 2201, JIS Z 241, a tensile test is performed, and JIS Z 2204,
Bending test and JIS according to JIS Z 2248
An Erichsen test was conducted according to Z 2247. The obtained results are shown in Table 2. In the examples of the aluminum alloy plates (No. 4 to 15) according to the present invention, the average size of the intermetallic compound was finely controlled to 10 μm or less, despite having a large amount of Fe and Si, and excellent mechanical properties and molding processing were performed. Showing sex. On the other hand, when the content of Fe or Si exceeds 0.5%, the average size of the intermetallic compound exceeds 10 μm even if the cooling rate during casting is high, and the mechanical properties and moldability are deteriorated. Further, the content of Cu, Mn, Cr, Zr, V, Ti, B exceeds the permissible range of the present invention (N
o. 18-23) also has poor mechanical properties and moldability.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】実施例2 表1に示すアルミニウム合金のうち、No.1〜3の溶
湯を、双ロール鋳造法により表2に示す条件で鋳造し
た。その後一旦2mmまで冷間圧延を行い、箱型焼鈍炉
中で中間焼鈍を施した。引き続き1mmまで冷間圧延を
行った後、連続焼鈍炉で最終焼鈍を行った。これらの冷
延板に対して、まず金属間化合物のサイズを測定した。
金属間化合物のサイズ測定は、光学顕微鏡で任意の五視
野を500倍で写真撮影して、その中で観察できた個々
の金属間化合物の最長径と最短径を平均し、その値を平
均して金属間化合物の平均サイズとした。さらに機械的
性質を評価するためにJIS Z 2201,JIS
Z 241に準拠して引張試験を行い、成形性の評価と
してJIS Z 2204,JISZ 2248に準拠
して曲げ試験およびJIS Z 2247に準拠してエ
リクセン試験を行った。得られた結果を表2に示す。
Example 2 Of the aluminum alloys shown in Table 1, No. The molten metals 1 to 3 were cast by the twin roll casting method under the conditions shown in Table 2. After that, cold rolling was once performed to 2 mm, and intermediate annealing was performed in a box-type annealing furnace. Subsequently, after cold rolling to 1 mm, final annealing was performed in a continuous annealing furnace. First, the size of the intermetallic compound was measured for these cold-rolled sheets.
To measure the size of an intermetallic compound, an arbitrary five fields of view are photographed with an optical microscope at a magnification of 500, and the longest diameter and the shortest diameter of each intermetallic compound observed in the photograph are averaged, and the values are averaged. The average size of the intermetallic compounds was used. In order to further evaluate mechanical properties, JIS Z 2201, JIS
A tensile test was performed according to Z 241 and a bending test according to JIS Z 2204 and JIS Z 2248 and an Erichsen test according to JIS Z 2247 were performed as evaluations of formability. The obtained results are shown in Table 2.

【0024】一方同じく表1に示すアルミニウム合金の
うち、No.24の合金を双ロール鋳造法により表2に
示す条件で鋳造した。その後、480℃で10hrの均
熱処理を施し熱間圧延を施した。またNo.25は従来
の半連続鋳造法で表2に示す条件で鋳造した。その後、
表面を面削し、530℃で10hr均熱処理を施して熱
間圧延を行った。しかしNo.24,No.25とも標
準的な熱間圧延条件で圧延を行ったところ、いずれも圧
延中に割れが発生したため、以降の評価を中止した。本
発明によるアルミニウム合金板(No.1〜3)は、従
来の製造条件では製造が困難であった高Mg合金板を製
造できたばかりでなく、FeやSiなどの不純物の含有
量が多くとも優れた機械的性質と成形加工性を示してい
る。
On the other hand, among the aluminum alloys shown in Table 1, No. Alloy No. 24 was cast by the twin roll casting method under the conditions shown in Table 2. Then, soaking was performed at 480 ° C. for 10 hours and hot rolling was performed. In addition, No. No. 25 was a conventional semi-continuous casting method and was cast under the conditions shown in Table 2. afterwards,
The surface was chamfered, soaking was performed at 530 ° C. for 10 hours, and hot rolling was performed. However, No. 24, No. When No. 25 was rolled under standard hot rolling conditions, cracks occurred during rolling, and therefore the subsequent evaluations were stopped. The aluminum alloy plates (Nos. 1 to 3) according to the present invention were not only able to produce high-Mg alloy plates that were difficult to produce under conventional production conditions, but were excellent even if the contents of impurities such as Fe and Si were large. It exhibits excellent mechanical properties and moldability.

【0025】[0025]

【発明の効果】以上の説明で明らかなように、本発明に
よれば従来製造が困難であったMgの含有量の多いアル
ミニウム合金板を得ることができ、優れた機械的性質、
成形加工性を備えたまま、FeやSiなどの不純物の含
有許容範囲が広く、かつ従来のような熱間加工を必要と
せずに得られるため、製造コストを低減することができ
る。
As is clear from the above description, according to the present invention, it is possible to obtain an aluminum alloy plate having a high Mg content, which has been difficult to manufacture in the past, and has excellent mechanical properties.
The molding cost can be reduced because it has a wide allowable range of inclusion of impurities such as Fe and Si and does not require the conventional hot working while maintaining the molding workability.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Mg:6.0%〜10.0
%、Fe:≦0.5%、Si:≦0.5%を含有し、残
部はAl及び不可避的不純物からなり、残存する金属間
化合物の平均サイズが10μm以下であることを特徴と
する機械的性質に優れた自動車用アルミニウム合金板。
1. Mg: 6.0% to 10.0 by weight.
%, Fe: ≦ 0.5%, Si: ≦ 0.5%, the balance consisting of Al and inevitable impurities, and the average size of the remaining intermetallic compounds is 10 μm or less. Alloy plate for automobiles with excellent physical properties.
【請求項2】 請求項1記載のアルミニウム合金板にお
いて、さらに Cu:0.03%以上、1.5%以下 Mn:0.03%以上、0.8%以下 Cr:0.03%以上、0.5%以下 V :0.03%以上、0.3%以下 Zr:0.03%以上、0.3%以下 Ti:0.005%以上、0.3%以下 B :0.0010%以上、0.05%以下 のうちの1種以上を含有することを特徴とする機械的性
質に優れた自動車用アルミニウム合金板。
2. The aluminum alloy plate according to claim 1, further comprising: Cu: 0.03% or more and 1.5% or less Mn: 0.03% or more, 0.8% or less Cr: 0.03% or more, 0.5% or less V: 0.03% or more, 0.3% or less Zr: 0.03% or more, 0.3% or less Ti: 0.005% or more, 0.3% or less B: 0.0010% As described above, an aluminum alloy plate for automobiles having excellent mechanical properties, characterized by containing at least one of 0.05% or less.
【請求項3】 重量%で、Mg:6.0%〜10.0
%、Fe:≦0.5%、Si:≦0.5%とし、残部は
Alおよび不可避的不純物からなるアルミニウム合金の
溶湯を、板厚1〜10mmに鋳造した後、鋳片断面での
平均冷却速度を5℃/sec以上で冷却することを特徴
とする機械的性質に優れた自動車用アルミニウム合金板
の製造方法。
3. Mg: 6.0% to 10.0 by weight.
%, Fe: ≤ 0.5%, Si: ≤ 0.5%, and the balance is an average of cross sections of cast slabs after casting a molten aluminum alloy consisting of Al and unavoidable impurities to a plate thickness of 1 to 10 mm. A method for producing an aluminum alloy plate for automobiles having excellent mechanical properties, which comprises cooling at a cooling rate of 5 ° C./sec or more.
【請求項4】 請求項3記載のアルミニウム合金におい
て、さらに、 Cu:0.03%以上、1.5%以下 Mn:0.03%以上、0.8%以下 Cr:0.03%以上、0.5%以下 V :0.03%以上、0.3%以下 Zr:0.03%以上、0.3%以下 Ti:0.005%以上、0.3%以下 B :0.0010%以上、0.05%以下 のうちの1種以上を含有することを特徴とする機械的性
質に優れた自動車用アルミニウム合金板の製造方法。
4. The aluminum alloy according to claim 3, further comprising: Cu: 0.03% or more and 1.5% or less Mn: 0.03% or more, 0.8% or less Cr: 0.03% or more, 0.5% or less V: 0.03% or more, 0.3% or less Zr: 0.03% or more, 0.3% or less Ti: 0.005% or more, 0.3% or less B: 0.0010% As described above, the method for producing an aluminum alloy plate for an automobile having excellent mechanical properties, characterized by containing at least one of 0.05% or less.
JP4687994A 1994-03-17 1994-03-17 Automobile aluminum alloy sheet and its production Withdrawn JPH07252571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4687994A JPH07252571A (en) 1994-03-17 1994-03-17 Automobile aluminum alloy sheet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4687994A JPH07252571A (en) 1994-03-17 1994-03-17 Automobile aluminum alloy sheet and its production

Publications (1)

Publication Number Publication Date
JPH07252571A true JPH07252571A (en) 1995-10-03

Family

ID=12759650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4687994A Withdrawn JPH07252571A (en) 1994-03-17 1994-03-17 Automobile aluminum alloy sheet and its production

Country Status (1)

Country Link
JP (1) JPH07252571A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100559831B1 (en) * 2000-10-23 2006-03-10 현대자동차주식회사 A composition for manufacturing a high strength aluminum sheet
WO2006077779A1 (en) * 2005-01-19 2006-07-27 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy plate and process for producing the same
JP2006200017A (en) * 2005-01-21 2006-08-03 Kobe Steel Ltd Aluminum alloy sheet for forming
JP2006200018A (en) * 2005-01-21 2006-08-03 Kobe Steel Ltd Aluminum alloy sheet for forming
JP2006249480A (en) * 2005-03-09 2006-09-21 Kobe Steel Ltd Aluminum alloy sheet to be formed
JP2007021533A (en) * 2005-07-15 2007-02-01 Kobe Steel Ltd Method for producing aluminum alloy plate for formation, and apparatus for continuously casting aluminum alloy for formation
JP2007077486A (en) * 2005-09-16 2007-03-29 Kobe Steel Ltd Aluminum alloy sheet for forming
JP2007077485A (en) * 2005-09-16 2007-03-29 Kobe Steel Ltd Aluminum alloy sheet for forming
JP2007100205A (en) * 2005-10-07 2007-04-19 Kobe Steel Ltd Aluminum alloy planar ingot for cold rolling and method for producing aluminum alloy plate for molding
JP2007107026A (en) * 2005-10-11 2007-04-26 Kobe Steel Ltd Cast slab of aluminum alloy for cold rolling
JP2007268547A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Method for producing aluminum alloy cast plate
JP2008025006A (en) * 2006-07-24 2008-02-07 Kobe Steel Ltd Aluminum alloy sheet having excellent stress corrosion cracking resistance
US8025093B2 (en) 2006-03-08 2011-09-27 Kobe Steel, Ltd. Process for manufacturing cast aluminum alloy plate
JP2012140709A (en) * 2012-02-15 2012-07-26 Kobe Steel Ltd Aluminum alloy sheet for molding
DE112011102796T5 (en) 2010-08-25 2013-05-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Formable aluminum alloy sheet

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100559831B1 (en) * 2000-10-23 2006-03-10 현대자동차주식회사 A composition for manufacturing a high strength aluminum sheet
EP1842935A1 (en) * 2005-01-19 2007-10-10 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy plate and process for producing the same
WO2006077779A1 (en) * 2005-01-19 2006-07-27 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy plate and process for producing the same
US8420011B2 (en) 2005-01-19 2013-04-16 Kobe Steel, Ltd. Aluminum alloy plate and process for producing the same
EP1842935A4 (en) * 2005-01-19 2011-07-06 Kobe Steel Ltd Aluminum alloy plate and process for producing the same
JP2006200017A (en) * 2005-01-21 2006-08-03 Kobe Steel Ltd Aluminum alloy sheet for forming
JP2006200018A (en) * 2005-01-21 2006-08-03 Kobe Steel Ltd Aluminum alloy sheet for forming
JP4550598B2 (en) * 2005-01-21 2010-09-22 株式会社神戸製鋼所 Aluminum alloy sheet for forming
JP2006249480A (en) * 2005-03-09 2006-09-21 Kobe Steel Ltd Aluminum alloy sheet to be formed
JP4541934B2 (en) * 2005-03-09 2010-09-08 株式会社神戸製鋼所 Manufacturing method of forming aluminum alloy sheet
JP2007021533A (en) * 2005-07-15 2007-02-01 Kobe Steel Ltd Method for producing aluminum alloy plate for formation, and apparatus for continuously casting aluminum alloy for formation
JP4542004B2 (en) * 2005-09-16 2010-09-08 株式会社神戸製鋼所 Aluminum alloy sheet for forming
JP2007077485A (en) * 2005-09-16 2007-03-29 Kobe Steel Ltd Aluminum alloy sheet for forming
JP2007077486A (en) * 2005-09-16 2007-03-29 Kobe Steel Ltd Aluminum alloy sheet for forming
JP4542016B2 (en) * 2005-10-07 2010-09-08 株式会社神戸製鋼所 Manufacturing method of forming aluminum alloy sheet
JP2007100205A (en) * 2005-10-07 2007-04-19 Kobe Steel Ltd Aluminum alloy planar ingot for cold rolling and method for producing aluminum alloy plate for molding
JP2007107026A (en) * 2005-10-11 2007-04-26 Kobe Steel Ltd Cast slab of aluminum alloy for cold rolling
US8025093B2 (en) 2006-03-08 2011-09-27 Kobe Steel, Ltd. Process for manufacturing cast aluminum alloy plate
JP2007268547A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Method for producing aluminum alloy cast plate
JP2008025006A (en) * 2006-07-24 2008-02-07 Kobe Steel Ltd Aluminum alloy sheet having excellent stress corrosion cracking resistance
DE112011102796T5 (en) 2010-08-25 2013-05-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Formable aluminum alloy sheet
JP2012140709A (en) * 2012-02-15 2012-07-26 Kobe Steel Ltd Aluminum alloy sheet for molding

Similar Documents

Publication Publication Date Title
JPH07252571A (en) Automobile aluminum alloy sheet and its production
JP2007031819A (en) Method for producing aluminum alloy sheet
WO2009098732A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
WO2015155911A1 (en) High-strength aluminum alloy plate having exceptional bendability and shape fixability, and method for manufacturing same
CA2551599A1 (en) Manufacturing method for al-mg-si aluminum alloy sheets with excellent bake hardenability
JPS62207851A (en) Rolled aluminum alloy sheet for forming and its production
JP3734317B2 (en) Method for producing Al-Mg-Si alloy plate
JP5220310B2 (en) Aluminum alloy plate for automobile and manufacturing method thereof
JP2001032031A (en) Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JPH07278716A (en) Aluminum alloy sheet for forming excellent in mechanical property and its production
JP3161141B2 (en) Manufacturing method of aluminum alloy sheet
JP2004076155A (en) Aluminum alloy sheet having excellent seizure softening resistance
JP3351087B2 (en) Manufacturing method of Al-Mg-Si alloy plate
JP3703919B2 (en) Method for producing directly cast and rolled sheet of Al-Mg-Si alloy
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP2012107339A (en) Aluminum alloy sheet for automobile and manufacturing method therefor
JP3066091B2 (en) Aluminum alloy rolled plate for hole enlarging and method for producing the same
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
WO2000034544A2 (en) High strength aluminium alloy sheet and process
JPH0547616B2 (en)
JPH05345963A (en) Manufacture of high formability aluminum alloy sheet
KR20210037108A (en) Aluminum alloy and method of manufacturing the same
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JPH0941062A (en) Alum.-magnesium-silicon type alum. alloy sheet material for automotive body sheet small in secular change and excellent in baking hardenability and its production
JP3854401B2 (en) Method for producing aluminum alloy support for lithographic printing plate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605