JPH07249614A - Plasma etching method and its equipment - Google Patents

Plasma etching method and its equipment

Info

Publication number
JPH07249614A
JPH07249614A JP6682194A JP6682194A JPH07249614A JP H07249614 A JPH07249614 A JP H07249614A JP 6682194 A JP6682194 A JP 6682194A JP 6682194 A JP6682194 A JP 6682194A JP H07249614 A JPH07249614 A JP H07249614A
Authority
JP
Japan
Prior art keywords
frequency power
plasma
high frequency
plasma etching
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6682194A
Other languages
Japanese (ja)
Inventor
Kazuyuki Toyoda
一行 豊田
Takeshige Ishida
丈繁 石田
Tsutomu Tanaka
田中  勉
Sadayuki Suzuki
貞之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP6682194A priority Critical patent/JPH07249614A/en
Publication of JPH07249614A publication Critical patent/JPH07249614A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain necessary etching characteristics by a method wherein high frequency power applied to a plasma generating coil is periodically modulated, and the percentage of excited species is controlled by changing electron temperature of plasma. CONSTITUTION:In the plasma etching method wherein plasma is generated by applying high frequency power to a plasma generating coil 11, and etching is performed by using the plasma, the high frequency power to be applied to the plasma generating coil 11 is periodically modulated. For example, a cylinder 2 composed of insulating material is continuously connected with the upper part of a vacuum vessel 1 composed of conducting material, and the upper end of the cylinder 2 is closed with a lid 3. A gas introducing pipe 4 is interconnected with the lid 3, and a vacuum pump 6 is connected with the bottom surface of the vacuum vessel 1 through an exhaust pipe 5. A planar electrode 3 is formed inside the vacuum vessel 1. The plasma generating coil 11 is wound around the cylinder 2. A high frequency power supply 20 for the coil is provided with an oscillation part capable of outputting modulated high frequency power, and connected with the coil 11 through a matching device 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造装置の1つで
あり、プラズマを利用してウェーハ、ガラス基板等被処
理物のエッチングを行うプラズマ処理装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing apparatus, and more particularly to a plasma processing apparatus which uses plasma to etch an object to be processed such as a wafer or a glass substrate.

【0002】[0002]

【従来の技術】従来のプラズマ処理装置を図6、図7に
より説明する。
2. Description of the Related Art A conventional plasma processing apparatus will be described with reference to FIGS.

【0003】導電材料で且気密構造の真空容器1の上部
に、該真空容器1と同心に石英、セラミックス等の絶縁
材料から成る円筒2が気密に連設され、該円筒2の上端
は導電材料の蓋3で気密に閉塞され、前記真空容器1、
円筒2、蓋3で囲繞される空間は気密な真空室14を形
成している。
A cylinder 2 made of an insulating material such as quartz or ceramics is airtightly connected to the upper part of a vacuum container 1 made of a conductive material and having an airtight structure, concentrically with the vacuum container 1. The vacuum container 1 is airtightly closed by the lid 3 of
The space surrounded by the cylinder 2 and the lid 3 forms an airtight vacuum chamber 14.

【0004】前記蓋3には前記真空室14に反応ガスを
導入するガス導入管4が連通され、前記真空容器1の底
面には排気管5が連通し、該排気管5には真空ポンプ6
が接続され、又、前記真空容器1の内部底部には絶縁材
7を介して平板電極8が設けられている。該平板電極8
はウェーハ、ガラス基板等の被処理基板16の載置台を
兼ねており、前記平板電極8には整合器9を介して電極
用高周波電源10が接続されている。
A gas introducing pipe 4 for introducing a reaction gas into the vacuum chamber 14 is connected to the lid 3, an exhaust pipe 5 is connected to the bottom surface of the vacuum container 1, and a vacuum pump 6 is connected to the exhaust pipe 5.
, And a plate electrode 8 is provided on the inner bottom portion of the vacuum container 1 via an insulating material 7. The plate electrode 8
Also serves as a mounting table for a substrate 16 to be processed such as a wafer or a glass substrate, and a high frequency power source 10 for electrodes is connected to the plate electrode 8 via a matching unit 9.

【0005】前記円筒2の周囲に、プラズマ発生用コイ
ル11が巻設され、該プラズマ発生用コイル11の一端
に整合器12を介してコイル用高周波電源13を接続
し、前記プラズマ発生用コイル11の他端は前記コイル
用高周波電源13のリターン側に接続されている。而し
て、該コイル用高周波電源13により前記プラズマ発生
用コイル11に高周波電力を印加可能となっている。
A plasma generating coil 11 is wound around the cylinder 2, and a high frequency power supply 13 for a coil is connected to one end of the plasma generating coil 11 via a matching unit 12, so that the plasma generating coil 11 is connected. The other end of is connected to the return side of the coil high-frequency power supply 13. Thus, high frequency power can be applied to the plasma generating coil 11 by the coil high frequency power supply 13.

【0006】上記従来のプラズマ処理装置に於いて、前
記被処理基板16を前記平板電極8に載置し、前記真空
室14を前記真空ポンプ6で排気し、図示しない圧力制
御装置で所定の圧力に維持しつつ、前記真空室14に前
記ガス導入管4から反応性ガスを導入する。
In the conventional plasma processing apparatus, the substrate 16 to be processed is placed on the plate electrode 8, the vacuum chamber 14 is evacuated by the vacuum pump 6, and a predetermined pressure is set by a pressure control device (not shown). While maintaining the above, the reactive gas is introduced into the vacuum chamber 14 through the gas introduction pipe 4.

【0007】前記コイル用高周波電源13は図5に示さ
れる様な定常サインカーブ波形を有する高周波電力を出
力する。前記プラズマ発生用コイル11にコイル用高周
波電源13が出力する高周波電力を前記整合器12を介
して印加すると、前記プラズマ発生用コイル11が形成
する高周波交番電界、磁界の作用により前記反応性ガス
が電離して前記真空室14にプラズマ15が生成され
る。
The coil high frequency power source 13 outputs high frequency power having a steady sine curve waveform as shown in FIG. When the high frequency power output from the coil high frequency power source 13 is applied to the plasma generating coil 11 through the matching device 12, the reactive gas is generated by the action of the high frequency alternating electric field and the magnetic field formed by the plasma generating coil 11. Plasma 15 is generated in the vacuum chamber 14 by ionization.

【0008】同時に前記平板電極8に電極用高周波電源
10が出力する高周波電力を前記整合器9を介して供給
し、前記平板電極8とプラズマ15との間に直流バイア
ス電圧を生成したり、或はプラズマ15内のイオンを振
動させたり等して、前記被処理基板16に入射するイオ
ンのエネルギを制御する。
At the same time, high frequency power output from the electrode high frequency power source 10 is supplied to the flat plate electrode 8 through the matching unit 9 to generate a DC bias voltage between the flat plate electrode 8 and the plasma 15, or Controls the energy of the ions incident on the substrate 16 to be processed by vibrating the ions in the plasma 15.

【0009】前記コイル用高周波電源13、電極用高周
波電源10の周波数は処理する被処理基板16のエッチ
ング対象膜の種類、処理の仕様により適宜選択され、通
常コイル用高周波電源13の周波数は1MHz から20
0MHz の範囲に於いて選択され、前記電極用高周波電
源10の周波数は100KHz から40MHz の範囲に
於いて選択される。
The frequencies of the coil high-frequency power source 13 and the electrode high-frequency power source 10 are appropriately selected according to the type of the film to be etched on the substrate 16 to be processed and the specifications of the process. The frequency of the normal coil high-frequency power source 13 is from 1 MHz. 20
It is selected in the range of 0 MHz, and the frequency of the high frequency power source for electrode 10 is selected in the range of 100 kHz to 40 MHz.

【0010】[0010]

【発明が解決しようとする課題】上記した従来のプラズ
マエッチング装置では、図5に示される様に、一定周波
数で且つ一定レベルの高周波電力を連続的にプラズマ発
生用コイル11に印加してプラズマを発生させている。
この為プラズマの電子温度はある範囲に於ける高周波電
力の大小に拘らず略一定となり、プラズマ中の励起種の
割合も殆ど一定となる。プラズマ中の励起種の割合が殆
ど一定となる為、エッチング速度等の性能を落とさずに
プロセスに適した励起種の割合を得るには、処理圧力や
反応室の構造等を変えることが必要となる。処理圧力、
反応室の構造の変更は、大掛かりな変更を伴い、コス
ト、時間を要するという問題があった。
In the conventional plasma etching apparatus described above, as shown in FIG. 5, a high frequency power having a constant frequency and a constant level is continuously applied to the plasma generating coil 11 to generate plasma. Has been generated.
Therefore, the electron temperature of the plasma becomes substantially constant regardless of the magnitude of the high frequency power in a certain range, and the ratio of excited species in the plasma becomes almost constant. Since the ratio of the excited species in the plasma is almost constant, it is necessary to change the processing pressure and the structure of the reaction chamber in order to obtain the ratio of the excited species suitable for the process without deteriorating the performance such as the etching rate. Become. Processing pressure,
The change of the structure of the reaction chamber involves a large-scale change, and there is a problem that cost and time are required.

【0011】本発明は斯かる実情に鑑み、プラズマ発生
用コイルに高周波電力を周期的に変調して印加し、プラ
ズマの電子温度を変えることにより励起種の割合を制御
して、所要のエッチング特性が得られるようにしたもの
である。
In view of such circumstances, the present invention periodically modulates and applies high frequency power to the plasma generating coil and changes the electron temperature of the plasma to control the ratio of excited species to obtain the required etching characteristics. Is obtained.

【0012】[0012]

【課題を解決するための手段】本発明は、プラズマ発生
用コイルに高周波電力を印加してプラズマを発生させ、
プラズマを利用してエッチングを行うプラズマエッチン
グに於いて、前記プラズマ発生用コイルに印加する高周
波電力を周期的に変調することを特徴とするものであ
る。
According to the present invention, high frequency power is applied to a plasma generating coil to generate plasma,
In the plasma etching in which the plasma is used for etching, the high frequency power applied to the plasma generating coil is periodically modulated.

【0013】[0013]

【作用】高周波電力が周期的に変調されていることか
ら、放電電流が時間的に変化し、電子温度が時間的に変
化するので、プラズマの励起種の割合が変化し、エッチ
ング特性が変わる。
Since the high frequency power is periodically modulated, the discharge current changes with time and the electron temperature changes with time, so that the ratio of the excited species of plasma changes and the etching characteristics change.

【0014】[0014]

【実施例】以下、図面を参照しつつ本発明の一実施例を
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0015】図1に於いて図6中で示したものと同一の
ものには同符号を付してある。
In FIG. 1, the same parts as those shown in FIG. 6 are designated by the same reference numerals.

【0016】導電材料で且気密構造の真空容器1の上部
に、該真空容器1と同心に石英、セラミックス等の絶縁
材料から成る円筒2が気密に連設され、該円筒2の上端
は導電材料の蓋3で気密に閉塞され、前記真空容器1、
円筒2、蓋3で囲繞される空間は気密な真空室14を形
成している。
A cylinder 2 made of an insulating material such as quartz or ceramics is airtightly connected to the upper portion of a vacuum container 1 made of a conductive material and having an airtight structure, concentrically with the vacuum container 1. The vacuum container 1 is airtightly closed by the lid 3 of
The space surrounded by the cylinder 2 and the lid 3 forms an airtight vacuum chamber 14.

【0017】前記蓋3には前記真空室14に反応ガスを
導入するガス導入管4が連通され、前記真空容器1の底
面には排気管5が連通し、該排気管5には真空ポンプ6
が接続され、又、前記真空容器1の内部底部には絶縁材
(図示せず)を介して平板電極(図示せず)が設けられ
ている。該平板電極はウェーハ、ガラス基板等の被処理
基板の載置台を兼ねており、前記平板電極には整合器
(図示せず)を介して電極用高周波電源(図示せず)が
接続されている。
A gas introducing pipe 4 for introducing a reaction gas into the vacuum chamber 14 is connected to the lid 3, an exhaust pipe 5 is connected to the bottom surface of the vacuum container 1, and a vacuum pump 6 is connected to the exhaust pipe 5.
, And a plate electrode (not shown) is provided on the inner bottom of the vacuum container 1 via an insulating material (not shown). The flat plate electrode also serves as a mounting table for a substrate to be processed such as a wafer or a glass substrate, and a high frequency power source (not shown) for electrodes is connected to the flat plate electrode through a matching unit (not shown). .

【0018】前記円筒2の周囲に、プラズマ発生用コイ
ル11が巻設され、該プラズマ発生用コイル11の一端
に整合器19を介してコイル用高周波電源20を接続
し、前記プラズマ発生用コイル11の他端は前記コイル
用高周波電源20のリターン側に接続されている。該コ
イル用高周波電源20は後述する様に変調された高周波
電力を出力できる様な発振部を具備している。
A plasma generating coil 11 is wound around the cylinder 2, and a high frequency power source 20 for the coil is connected to one end of the plasma generating coil 11 via a matching device 19, and the plasma generating coil 11 is connected. The other end of is connected to the return side of the coil high-frequency power source 20. The coil high-frequency power source 20 includes an oscillating unit capable of outputting modulated high-frequency power as described later.

【0019】図2はコイル用高周波電源20の発振部の
一例を示しており、該コイル用高周波電源20の発振部
は、主に基本波発生器21、該基本波発生器21に接続
された信号合成器22、該信号合成器22に接続された
増幅器23、前記信号合成器22に接続された変調波発
生器24から構成されている。
FIG. 2 shows an example of the oscillating section of the coil high-frequency power source 20, and the oscillating section of the coil high-frequency power source 20 is mainly connected to the fundamental wave generator 21 and the fundamental wave generator 21. The signal synthesizer 22 includes an amplifier 23 connected to the signal synthesizer 22, and a modulated wave generator 24 connected to the signal synthesizer 22.

【0020】前記基本波発生器21から出力される定常
サインカーブ波形が前記信号合成器22に入力されると
共に前記変調波発生器24から変調信号が入力され、前
記信号合成器22からは基本波が周期Ts 毎に変調され
た形で出力される。更に該信号合成器22からの高周波
出力は前記増幅器23により所定の電力値(波高値)に
増幅されて出力される。
The stationary sine curve waveform output from the fundamental wave generator 21 is input to the signal synthesizer 22 and the modulation signal is input from the modulation wave generator 24, and the fundamental wave is output from the signal synthesizer 22. Are output in the form of being modulated every period Ts. Further, the high frequency output from the signal synthesizer 22 is amplified by the amplifier 23 to a predetermined power value (peak value) and output.

【0021】前記信号合成器22からの変調波形の一例
として、図4(a)(b)(c)を示す。又、前記増幅
器23からの出力波形は図4(a)(b)(c)を増幅
した波形となる。尚、図4は出力波形の包絡線が台形状
(図4(a))、3角波状(図4(b))、矩形波状
(図4(c))を示したが、前記変調波発生器24から
の信号を操作することで、サインカーブ状、階段状の変
化を繰返すもの等、種々変更されることは言う迄もな
い。
As an example of the modulation waveform from the signal synthesizer 22, FIGS. 4A, 4B and 4C are shown. The output waveform from the amplifier 23 is a waveform obtained by amplifying the waveforms shown in FIGS. 4 (a) (b) (c). Although FIG. 4 shows that the envelope of the output waveform is trapezoidal (FIG. 4 (a)), triangular wave (FIG. 4 (b)), and rectangular wave (FIG. 4 (c)), the modulated wave is generated. It is needless to say that by operating the signal from the device 24, various changes such as a sine curve-like or step-like change are repeated.

【0022】以下、作動を説明する。The operation will be described below.

【0023】前記被処理基板16を前記平板電極8に載
置し、前記真空室14を前記真空ポンプ6で排気し、図
示しない圧力制御装置で所定の圧力に維持しつつ、前記
真空室14に前記ガス導入管4から反応性ガスを導入す
る。
The substrate 16 to be processed is placed on the flat plate electrode 8, the vacuum chamber 14 is evacuated by the vacuum pump 6, and a predetermined pressure is maintained by a pressure control device (not shown), while the vacuum chamber 14 is kept in the vacuum chamber 14. A reactive gas is introduced from the gas introduction pipe 4.

【0024】前記プラズマ発生用コイル11にコイル用
高周波電源20が出力する高周波電力を前記整合器19
を介して印加すると、前記プラズマ発生用コイル11が
形成する高周波交番電界、磁界の作用により前記反応性
ガスが電離して前記真空室14にプラズマ15が生成さ
れる。
High frequency power output from the coil high frequency power source 20 is applied to the plasma generating coil 11 by the matching unit 19
When applied through the plasma generating coil 11, the reactive gas is ionized by the action of the high frequency alternating electric field and the magnetic field, and the plasma 15 is generated in the vacuum chamber 14.

【0025】上記した様に、プラズマ生成の為の高周波
電力は周期的に変調されている為、放電電流は時間的に
変化する。放電電流の増加期間では電子温度は上昇し、
放電電流の減少期間では電子温度は低下する。これはプ
ラズマの電子温度の変化の時定数がプラズマ密度の変化
の時定数よりも小さい為である。
As described above, since the high frequency power for plasma generation is periodically modulated, the discharge current changes with time. The electron temperature rises during the period when the discharge current increases,
The electron temperature decreases during the period when the discharge current decreases. This is because the time constant of changes in the electron temperature of plasma is smaller than the time constant of changes in plasma density.

【0026】電子温度の変化期間に電子温度以外のプラ
ズマパラメータが変化するが、この時励起種の割合も変
化する。結果としてウェーハ表面での化学反応も変わる
為、エッチング特性も変わる。
While the plasma parameters other than the electron temperature change during the changing period of the electron temperature, the ratio of excited species also changes at this time. As a result, the chemical reaction on the wafer surface also changes, and the etching characteristics also change.

【0027】而して、増幅器23の高周波電力の出力波
形は、変調信号発生器24の出力波形を図4の(a)〜
(c)の例で示す様に変更して自在に変えることがで
き、所要のエッチング特性が得られる様に適宜変えて最
適化する。
The output waveform of the high frequency power of the amplifier 23 corresponds to the output waveform of the modulation signal generator 24 shown in FIGS.
It can be freely changed by changing it as shown in the example of (c), and is appropriately changed and optimized so as to obtain a required etching characteristic.

【0028】同時に前記平板電極8に電極用高周波電源
10が出力する高周波電力を前記整合器9を介して供給
し、前記平板電極8とプラズマ15との間に直流バイア
ス電圧を生成したり、或はプラズマ15内のイオンを振
動させたり等して、前記被処理基板16に入射するイオ
ンのエネルギを制御する。
At the same time, high frequency power output from the electrode high frequency power source 10 is supplied to the flat plate electrode 8 through the matching unit 9 to generate a DC bias voltage between the flat plate electrode 8 and the plasma 15, or Controls the energy of the ions incident on the substrate 16 to be processed by vibrating the ions in the plasma 15.

【0029】前記プラズマ発生用コイル11に印加する
周期的に変調した高周波電力の基本波の周波数は、前記
被処理物16の種類、処理の仕様により適宜選択され、
通常は1MHz 〜200MHz の範囲に於いて適切な値
が選択される。又、変調方法は対象とする被処理物、要
求されるプロセスの処理仕様に応じて、プラズマの電子
温度を制御して活性種の割合を適正にする為、適宜変更
して最適化する。
The frequency of the fundamental wave of the periodically modulated high frequency power applied to the plasma generating coil 11 is appropriately selected according to the type of the object to be processed 16 and the processing specifications.
Usually, an appropriate value is selected in the range of 1 MHz to 200 MHz. In addition, the modulation method is appropriately changed and optimized in order to control the electron temperature of plasma to make the ratio of active species appropriate in accordance with the object to be processed and the processing specifications of the required process.

【0030】而して、変調の仕方を、圧力や反応性ガス
の流量と同様にプラズマエッチングに於ける処理条件の
1つとして設定する。変調信号の周期は10μs以上に
おいて任意に設定するが、通常は100μs程度であ
る。
Thus, the modulation method is set as one of the processing conditions in the plasma etching as well as the pressure and the flow rate of the reactive gas. The period of the modulation signal is arbitrarily set at 10 μs or more, but is usually about 100 μs.

【0031】又、前記平板電極に印加する高周波電力の
周波数も、前記被処理物の処理の仕様に応じて適切な値
が選択設定される。
Further, the frequency of the high frequency power applied to the flat plate electrode is also selected and set to an appropriate value according to the processing specifications of the object to be processed.

【0032】図3は高周波電源の別の例を示したもの
で、任意信号発生器25が出力する周期的に変調された
信号が高周波電力増幅器26に入力される。高周波電力
増幅器26は入力した変調信号を所定の増幅率で増幅し
て出力する。任意信号発生器25は必要な波形を任意に
設定できるので、1周期内に於いて、高周波の波高値の
みならず、周波数や波形も任意に変更できるので、変調
方法の範囲が広がる。
FIG. 3 shows another example of the high frequency power supply. The periodically modulated signal output from the arbitrary signal generator 25 is input to the high frequency power amplifier 26. The high frequency power amplifier 26 amplifies the input modulation signal with a predetermined amplification factor and outputs it. Since the arbitrary signal generator 25 can arbitrarily set the required waveform, not only the peak value of the high frequency but also the frequency and the waveform can be arbitrarily changed within one cycle, so that the range of the modulation method is expanded.

【0033】而して、該コイル用高周波電源20により
周期的に変調した高周波電力が前記プラズマ発生用コイ
ル11に印加可能となっている。
Thus, the high frequency power periodically modulated by the coil high frequency power source 20 can be applied to the plasma generating coil 11.

【0034】前記任意信号発生器25により直接変調波
を発生させる場合も、要求されるプロセスの処理仕様に
応じて変調波を最適化する。
Even when the modulated wave is directly generated by the arbitrary signal generator 25, the modulated wave is optimized according to the required processing specifications of the process.

【0035】尚、前記プラズマ発生用コイル11の巻数
は1巻以上任意の巻数を選択することが可能である。
又、前記プラズマ発生用コイル11は円筒2に巻付けた
状態で設けた例を示したが、本発明の高周波電力印加方
法は、コイルを前記蓋3に平行に設けた場合、或は反応
室1の側面に設けた場合や反応室1の内部に設けた場合
等、あらゆるコイル及びその設置方法に対して適用可能
である。
It should be noted that the number of turns of the plasma generating coil 11 can be selected from one turn or more.
Further, the example in which the plasma generating coil 11 is provided in a state of being wound around the cylinder 2 is shown. However, the high frequency power applying method of the present invention is applicable to the case where the coil is provided in parallel with the lid 3 or the reaction chamber. It can be applied to any coil and its installation method, such as when it is provided on the side surface of No. 1 or inside the reaction chamber 1.

【0036】[0036]

【発明の効果】以上述べた如く本発明によれば、プラズ
マエッチングのプロセスに於いて、高周波電力の電力波
形に変調を加えることによりプラズマの電子温度を変え
ることで活性種の割合を制御することができ、プラズマ
エッチングプロセスの適用範囲を広げることが可能とな
る等の優れた効果を発揮する。
As described above, according to the present invention, in the process of plasma etching, the ratio of active species is controlled by changing the electron temperature of plasma by applying modulation to the power waveform of high frequency power. And an excellent effect such that the applicable range of the plasma etching process can be widened is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】該実施例に於ける発振部の一例を示すブロック
図である。
FIG. 2 is a block diagram showing an example of an oscillating unit in the embodiment.

【図3】本実施例に於ける高周波電源の例を示す図であ
る。
FIG. 3 is a diagram showing an example of a high frequency power supply in the present embodiment.

【図4】(a)(b)(c)は印加電力波形の例を示す
線図である。
4A, 4B, and 4C are diagrams showing examples of applied power waveforms.

【図5】従来例に於ける印加電力波形を示す線図であ
る。
FIG. 5 is a diagram showing an applied power waveform in a conventional example.

【図6】従来例を示す斜視図である。FIG. 6 is a perspective view showing a conventional example.

【図7】従来例を示す断面図である。FIG. 7 is a cross-sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 真空容器 2 円筒 3 蓋 4 ガス導入管 5 排気管 6 真空ポンプ 11 プラズマ発生用コイル 19 整合器 20 コイル用高周波電源 DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Cylinder 3 Lid 4 Gas introduction pipe 5 Exhaust pipe 6 Vacuum pump 11 Plasma generation coil 19 Matching device 20 High frequency power supply for coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 貞之 東京都中野区東中野三丁目14番20号 国際 電気株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sadayuki Suzuki 3-14-20 Higashi-Nakano, Nakano-ku, Tokyo Kokusai Electric Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 プラズマ発生用コイルに高周波電力を印
加してプラズマを発生させ、プラズマを利用してエッチ
ングを行うプラズマエッチング方法に於いて、前記プラ
ズマ発生用コイルに印加する高周波電力を周期的に変調
することを特徴とするプラズマエッチング方法。
1. A plasma etching method in which high frequency power is applied to a plasma generating coil to generate plasma and etching is performed using the plasma, wherein high frequency power applied to the plasma generating coil is periodically applied. A plasma etching method characterized by modulating.
【請求項2】 1周期内に於ける高周波電力の波高値の
変化の態様を変更して、プラズマの電子温度制御を行う
請求項1のプラズマエッチング方法。
2. The plasma etching method according to claim 1, wherein the electron temperature control of the plasma is performed by changing the manner of changing the peak value of the high frequency power within one cycle.
【請求項3】 1周期内に於ける高周波電力の周波数を
変化させてプラズマの電子温度制御を行う請求項1のプ
ラズマエッチング方法。
3. The plasma etching method according to claim 1, wherein the electron temperature of the plasma is controlled by changing the frequency of the high frequency power within one cycle.
【請求項4】 高周波電力の波形の一方の包絡線が台形
状である請求項2のプラズマエッチング方法。
4. The plasma etching method according to claim 2, wherein one envelope of the waveform of the high frequency power has a trapezoidal shape.
【請求項5】 高周波電力の波形の一方の包絡線が矩形
波状である請求項2のプラズマエッチング方法。
5. The plasma etching method according to claim 2, wherein one of the envelopes of the waveform of the high frequency power has a rectangular wave shape.
【請求項6】 高周波電力の波形の一方の包絡線が3角
波状である請求項2のプラズマエッチング方法。
6. The plasma etching method according to claim 2, wherein one envelope of the waveform of the high frequency power has a triangular wave shape.
【請求項7】 高周波電力の波形の一方の包絡線がサイ
ンカーブ状である請求項2のプラズマエッチング方法。
7. The plasma etching method according to claim 2, wherein one envelope of the waveform of the high frequency power has a sine curve shape.
【請求項8】 真空室と、真空室に設けらた被処理基板
載置台と、プラズマ発生用コイルと、該プラズマ発生用
コイルに接続されたコイル用高周波電源を具備し、前記
真空室に反応性ガスを導入可能とすると共に真空室を排
気可能としたプラズマエッチング装置に於いて、前記コ
イル用高周波電源が高周波電力を周期的に変調する発振
部を具備したことを特徴とするプラズマエッチング装
置。
8. A vacuum chamber, a substrate mounting base provided in the vacuum chamber, a plasma generating coil, and a high frequency power source for the coil connected to the plasma generating coil, the reaction being performed in the vacuum chamber. A plasma etching apparatus capable of introducing a reactive gas and evacuating a vacuum chamber, wherein the coil high-frequency power source includes an oscillating unit that periodically modulates high-frequency power.
【請求項9】 発振部が基本波発生器、信号合成器、増
幅器、変調波発生器を具備した請求項8のプラズマエッ
チング装置。
9. The plasma etching apparatus according to claim 8, wherein the oscillator includes a fundamental wave generator, a signal synthesizer, an amplifier, and a modulated wave generator.
【請求項10】 発振部が任意信号発生器、高周波電力
増幅器を具備した請求項8のプラズマエッチング装置。
10. The plasma etching apparatus according to claim 8, wherein the oscillator includes an arbitrary signal generator and a high frequency power amplifier.
JP6682194A 1994-03-10 1994-03-10 Plasma etching method and its equipment Pending JPH07249614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6682194A JPH07249614A (en) 1994-03-10 1994-03-10 Plasma etching method and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6682194A JPH07249614A (en) 1994-03-10 1994-03-10 Plasma etching method and its equipment

Publications (1)

Publication Number Publication Date
JPH07249614A true JPH07249614A (en) 1995-09-26

Family

ID=13326904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6682194A Pending JPH07249614A (en) 1994-03-10 1994-03-10 Plasma etching method and its equipment

Country Status (1)

Country Link
JP (1) JPH07249614A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054063A (en) * 1997-06-24 2000-04-25 Nec Corporation Method for plasma treatment and apparatus for plasma treatment
JP2002324698A (en) * 2001-04-06 2002-11-08 Eni Technologies Inc Pulsed intelligent rf modulating controller
JP2003502861A (en) * 1999-06-18 2003-01-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus and method for high-speed etching of substrate using plasma etching apparatus, and apparatus and method for plasma ignition and plasma power pull-up control or pulsing
JP2004140391A (en) * 2000-09-29 2004-05-13 Hitachi Ltd Plasma processing apparatus and method
KR100461779B1 (en) * 2001-06-11 2004-12-14 엔이씨 일렉트로닉스 가부시키가이샤 Method of manufacturing semiconductor devices and semiconductor manufacturing apparatus
US7112533B2 (en) 2000-08-31 2006-09-26 Micron Technology, Inc. Plasma etching system and method
US7373899B2 (en) 2000-09-29 2008-05-20 Hitachi High-Technologies Corporation Plasma processing apparatus using active matching
JP2014220059A (en) * 2013-05-07 2014-11-20 株式会社ダイヘン High-frequency power supply

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054063A (en) * 1997-06-24 2000-04-25 Nec Corporation Method for plasma treatment and apparatus for plasma treatment
JP2003502861A (en) * 1999-06-18 2003-01-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus and method for high-speed etching of substrate using plasma etching apparatus, and apparatus and method for plasma ignition and plasma power pull-up control or pulsing
JP4868482B2 (en) * 1999-06-18 2012-02-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for anisotropic etching of substrates using plasma
US7112533B2 (en) 2000-08-31 2006-09-26 Micron Technology, Inc. Plasma etching system and method
US7507672B1 (en) 2000-08-31 2009-03-24 Micron Technology, Inc. Plasma etching system and method
JP2004140391A (en) * 2000-09-29 2004-05-13 Hitachi Ltd Plasma processing apparatus and method
US7373899B2 (en) 2000-09-29 2008-05-20 Hitachi High-Technologies Corporation Plasma processing apparatus using active matching
JP2002324698A (en) * 2001-04-06 2002-11-08 Eni Technologies Inc Pulsed intelligent rf modulating controller
KR100461779B1 (en) * 2001-06-11 2004-12-14 엔이씨 일렉트로닉스 가부시키가이샤 Method of manufacturing semiconductor devices and semiconductor manufacturing apparatus
US8202394B2 (en) 2001-06-11 2012-06-19 Renesas Electronics Corporation Method of manufacturing semiconductor devices and semiconductor manufacturing apparatus
JP2014220059A (en) * 2013-05-07 2014-11-20 株式会社ダイヘン High-frequency power supply

Similar Documents

Publication Publication Date Title
KR100415226B1 (en) Plasma processing apparatus
US7767056B2 (en) High-frequency plasma processing apparatus
US6110287A (en) Plasma processing method and plasma processing apparatus
US6089181A (en) Plasma processing apparatus
KR100302167B1 (en) Plasma Treatment Equipment and Plasma Treatment Methods
US20020038631A1 (en) Plasma processing apparatus and method using active matching
JP3424182B2 (en) Surface treatment equipment
JP2009545890A (en) Method and system for controlling the uniformity of a ballistic electron beam by RF modulation
JPH02166732A (en) Method and apparatus for
US7323081B2 (en) High-frequency plasma processing apparatus
JPH07249614A (en) Plasma etching method and its equipment
JPS627270B2 (en)
US5298466A (en) Method and apparatus for dry anisotropically etching a substrate
JPH0888218A (en) Method and device for plasma etching
JPH07142453A (en) Plasma etching system
JPH0820880A (en) Dry etching method
JP4653395B2 (en) Plasma processing equipment
JPH097960A (en) Method and apparatus for plasma cvd processing
JPH0766918B2 (en) Plasma processing device
JP3685461B2 (en) Plasma processing equipment
JP2002222801A (en) Device and method for plasma processing
JP2000150196A (en) Plasma processing method and its device
JPH10229074A (en) Microwave plasma etching system
JPH051072Y2 (en)
JP2000252099A (en) Matching device, plasma processing method and device