JPH0724761B2 - Plasma processing device - Google Patents

Plasma processing device

Info

Publication number
JPH0724761B2
JPH0724761B2 JP60063774A JP6377485A JPH0724761B2 JP H0724761 B2 JPH0724761 B2 JP H0724761B2 JP 60063774 A JP60063774 A JP 60063774A JP 6377485 A JP6377485 A JP 6377485A JP H0724761 B2 JPH0724761 B2 JP H0724761B2
Authority
JP
Japan
Prior art keywords
magnetic field
vacuum chamber
plasma processing
plasma
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60063774A
Other languages
Japanese (ja)
Other versions
JPS61222533A (en
Inventor
猛志 渡辺
光雄 中谷
進 都竹
正昭 佐藤
正昭 奥中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60063774A priority Critical patent/JPH0724761B2/en
Publication of JPS61222533A publication Critical patent/JPS61222533A/en
Publication of JPH0724761B2 publication Critical patent/JPH0724761B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガス状物質を高周波放電で分解し、この分解さ
れたガスを利用して所定基体の表面を処理するプラズマ
処理装置とくに上記基体上に成膜を行なうプラズマポジ
ションおよび上記基体の表面をプラズマによってエッチ
ングするプラズマ処理装置に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a plasma processing apparatus for decomposing a gaseous substance by high frequency discharge and treating the surface of a predetermined substrate by using the decomposed gas, especially on the substrate. The present invention relates to a plasma position for forming a film and a plasma processing apparatus for etching the surface of the substrate with plasma.

〔発明の背景〕[Background of the Invention]

低温ガスプラズマを利用する薄膜堆積法(プラズマCVD
法)は、(1)処理温度が低い、(2)膜生成速度が大
きいなどの長所を有するために半導体素子の製造プロセ
スやアモルファスSi(a−Si)膜の生成に積極的に用い
られようとしている。また低温ガスプラズマを利用する
エッチング法(プラズマエッチング法)は、(1)エッ
チャントの精製が容易で不純物の汚染を軽減できる。
(2)適当なバイアスを基板に印加することによりパタ
ーン転写精度に優れる異方性エッチングが可能であるな
どの長所を有するために、半導体素子の製造プロセスな
どに積極的に用いられている。
Thin film deposition method using low temperature gas plasma (plasma CVD
Method) has advantages such as (1) low processing temperature and (2) high film formation rate, so that it will be actively used for manufacturing process of semiconductor devices and formation of amorphous Si (a-Si) film. I am trying. In addition, the etching method (plasma etching method) utilizing low temperature gas plasma (1) makes it easy to purify the etchant and reduce contamination of impurities.
(2) Since it has the advantage that anisotropic etching with excellent pattern transfer accuracy is possible by applying an appropriate bias to the substrate, it is actively used in semiconductor device manufacturing processes and the like.

従来の上記プラズマCVD装置においては、互いに対向し
て平行に配置された複数個の平板電極間にラジオ波(R
F)域の高周波電力を投入してプラズマを発生させる平
行平板形RFプラズマポジション装置が主流になってお
り、また従来の上記エッチング装置においては、上記プ
ラズマCVD装置と同様平行平板形のリアクティブイオン
エッチング(RIE)装置が主流になっている。この方式
は試料を電極上に設置することによって大面積を均一な
処理(成膜またはエッチング速度、成膜組成など)が可
能で生産性が高いという特長を有する反面、つぎのよう
な欠点を有している。
In the above-mentioned conventional plasma CVD apparatus, a radio wave (R
The parallel plate type RF plasma position device that generates plasma by inputting high frequency power in the area F) is the mainstream. In the conventional etching device, parallel plate type reactive ions are used as in the plasma CVD device. Etching (RIE) equipment has become the mainstream. This method has the advantage of being able to perform uniform treatment (deposition or etching rate, composition of film formation, etc.) over a large area by placing the sample on the electrode and high productivity, but has the following drawbacks. is doing.

(a) 放電可能なガス圧力が一般に10-1〜10-2Torrで
あり、放電の電子温度が低い(〜4eV)ため、結合エネ
ルギの高い化学構造の物質は十分分解されない。このた
めCVDの場合は形成可能な膜物性に限界があり、またエ
ッチングの場合にも使用可能なエッチングガスに限界が
ある。
(A) The dischargeable gas pressure is generally 10 -1 to 10 -2 Torr, and the electron temperature of discharge is low (up to 4 eV), so a substance having a chemical structure with high binding energy is not sufficiently decomposed. Therefore, in the case of CVD, the physical properties of the film that can be formed are limited, and in the case of etching, the usable etching gas is also limited.

(b) 試料前面にイオンシースが形成されてプラズマ
に対して自動的にセルフバイアスが印加される。この結
果試料に入射してくるイオンはセルフバイアスに相当す
る運動エネルギをもつことになるが、このエネルギは数
百eV以上もあり、またこの値を低減する方向に制御する
ことは困難である。このため、試料は必要以上の入射イ
オン衝撃をうける。(プラズマダメージ) (c) 電極材料(金属)がプラズマに接しており、こ
の電極材料がスパッタされて試料または生成膜の中に不
純物として混入される。
(B) An ion sheath is formed on the front surface of the sample, and a self bias is automatically applied to the plasma. As a result, the ions entering the sample have kinetic energy equivalent to self-bias, but this energy is several hundred eV or more, and it is difficult to control this value in the direction of reduction. Therefore, the sample is subjected to more incident ion bombardment than necessary. (Plasma Damage) (c) The electrode material (metal) is in contact with plasma, and this electrode material is sputtered and mixed as an impurity in the sample or the generated film.

このため、電子温度が高く、かつ入射イオンエネルギが
低く、また入射イオンエネルギの制御可能なプラズマ処
理装置として、従来よりたとえば特開昭59−3018号公報
に記載されているようなマイクロ波放電方式のプラズマ
処理装置が開発されている。このマイクロ波放電方式の
プラズマ処理装置は第3図に示す如き構成をしている。
即ち同図において、1は真空室にして、試料室7と、後
述の放電管3内とで形成されている。2は導波管にし
て、上記試料室7内上端部に接続しマイクロ波発生部6
よりたとえばマグネトロンによって発生した通常0.1〜1
0GHzのマイクロ波を真空室1内に導入する如くしてい
る。3は放電管にして、マイクロ波を導入するためたと
えば石英、アルミナ等によって上記導波管2内試料室7
側端部に試料室7に開口する如く形成されている。4は
磁場形成用磁場発生装置にして、電極石または永久磁石
にて形成され、上記導波管2の試料室7側端部の周囲に
支持されている。5は上記真空室1内に所望の磁場分布
を制御するための磁場制御装置にして、電磁石または永
久磁石からなる磁場形成部材が上記試料室7の底部外方
位置に配置され、上記試料室7内に設置された試料9の
表面位置で磁力線を絞って磁力線にそうて運ばれてきた
プラズマを閉じ込めて試料9の表面位置にプラズマを収
束させる如くしている。8は試料台にして、上記試料室
7内に支持され、試料9を搭載している。10は導入口に
して、上記試料室7内にエッチングガスまたは成膜ガス
を導入する如くしている。11は排気ポートである。また
12は直流電源、13はコンデンサ、14はRF電源である。上
記の構成であるから、真空室1内に所定圧力の放電ガス
を導入すると、マイクロ波電界と、磁場発生装置4によ
る磁場の相乗作用によりマイクロ波放電が発生する。上
記磁場の強度は電子の磁力線のまわりのサイクロトン運
動の周波数がマイクロ波周波数とほぼ一致するように設
定される。ただし、上記両周波数が完全に一致すると、
マイクロ波は完全反射してしまうため、共鳴点を少しず
らすように設定される。発生したプラズマはローレンツ
カによって磁場強度の強い放電管3内より磁場強度の弱
い試料室7内の方向に移送され、これを磁場制御装置5
が試料9の表面位置で磁力線を絞って磁力線にそうて移
送されるプラズマを閉じ込めて試料9の表面位置に収束
させる。上記全体の磁場分布はミラー磁場と呼ばれるも
ので、上記の結果、同図に破線Iで囲まれた領域内にプ
ラズマをとじ込めることが可能になる。
Therefore, as a plasma processing apparatus having a high electron temperature, a low incident ion energy, and a controllable incident ion energy, a microwave discharge method as described in, for example, Japanese Unexamined Patent Publication No. 59-3018 has been conventionally used. Plasma processing equipment has been developed. This microwave discharge type plasma processing apparatus has a structure as shown in FIG.
That is, in the figure, 1 is a vacuum chamber, which is formed by a sample chamber 7 and a discharge tube 3 described later. Reference numeral 2 denotes a waveguide, which is connected to the upper end of the sample chamber 7 and is connected to the microwave generator 6
More typically 0.1-1 generated by a magnetron for example
A microwave of 0 GHz is introduced into the vacuum chamber 1. Reference numeral 3 is a discharge tube, which is made of, for example, quartz, alumina, or the like, for introducing microwaves.
The side end portion is formed so as to open to the sample chamber 7. A magnetic field generator 4 for forming a magnetic field is formed by an electrode stone or a permanent magnet, and is supported around the end portion of the waveguide 2 on the sample chamber 7 side. Reference numeral 5 denotes a magnetic field control device for controlling a desired magnetic field distribution in the vacuum chamber 1, in which a magnetic field forming member composed of an electromagnet or a permanent magnet is arranged at a position outside the bottom of the sample chamber 7, The lines of magnetic force are narrowed at the surface position of the sample 9 installed therein, and the plasma carried along the lines of magnetic force is confined to converge the plasma on the surface position of the sample 9. A sample table 8 is supported in the sample chamber 7 and carries a sample 9. An inlet 10 is used to introduce an etching gas or a film forming gas into the sample chamber 7. 11 is an exhaust port. Also
12 is a DC power supply, 13 is a capacitor, and 14 is an RF power supply. With the above configuration, when the discharge gas having a predetermined pressure is introduced into the vacuum chamber 1, the microwave discharge is generated by the synergistic action of the microwave electric field and the magnetic field generated by the magnetic field generator 4. The strength of the magnetic field is set so that the frequency of the cycloton motion around the lines of magnetic force of the electrons substantially matches the microwave frequency. However, if the above two frequencies are exactly the same,
Since the microwave is completely reflected, the resonance point is set to be slightly shifted. The generated plasma is transferred from the discharge tube 3 having a high magnetic field strength to the direction of the sample chamber 7 having a weak magnetic field strength by the Lorentzka, and this is transferred to the magnetic field control device 5
Narrows down the lines of magnetic force at the surface position of the sample 9 and confines the plasma transferred to the lines of magnetic force to make it converge on the surface position of the sample 9. The entire magnetic field distribution described above is called a mirror magnetic field, and as a result of the above, it becomes possible to confine the plasma in the region surrounded by the broken line I in the figure.

したがって上記に述べたマイクロ波プラズマ処理装置は
つぎのごとき特徴を有する。
Therefore, the microwave plasma processing apparatus described above has the following features.

(1) ガス圧5×10-5〜3×10-2Torrの低ガス圧で放
電が可能で、高い電子温度(〜8eV)が得られ、かつエ
ッチングガスや成膜原料ガス等の分解効率が高い。
(1) Discharge is possible at a low gas pressure of 5 × 10 -5 to 3 × 10 -2 Torr, a high electron temperature (up to 8 eV) is obtained, and the decomposition efficiency of etching gas, film forming material gas, etc. Is high.

(2) イオンの入射エネルギが低く(約20eV)、かつ
必要に応じて直流電源12またはRF電源14により入射イオ
ン運動エネルギを広範囲(20eV以上)に変化させること
が可能である。
(2) The incident energy of ions is low (about 20 eV), and it is possible to change the incident ion kinetic energy to a wide range (20 eV or more) by the DC power supply 12 or the RF power supply 14 as needed.

(3) 無電極放電であるので、スパッタされた不純物
による試料や生成膜の汚染が少ない。
(3) Since the electrodeless discharge is performed, the contamination of the sample and the generated film by the sputtered impurities is small.

然るにその反面均一な処理可能な領域がせまく、均一な
処理速度が得られるのは、エッチングの場合、直径15cm
の放電管3を用いても直径20cm程度の領域である。また
成膜の場合、中心部の成膜速度が大きくなる傾向にある
ことは明らかである。これは半導体ウエハの処理方法と
しても量産上大きな欠点である。均一処理領域を拡げる
には、放電管3の直径を大きくすることが考えられる
が、電子サイクロトロン共鳴条件を満足するためには、
たとえば、2.45GHzのマイクロ波を用いた場合、磁場発
生装置4による磁束密度として0.2T程度必要であるか
ら、大幅に放電管3の直径を拡大するためには、大形の
電磁石が必要になって現実的ではない。単にプラズマ領
域を拡大するのみであるならば、磁場発生装置4による
磁界方向と、磁場制御装置5による磁界方向を対向させ
るいわゆるカプス磁場と呼ばれる磁場分布にすることに
よって同図に破線IIで示す領域にプラズマを形成するこ
とが可能である。しかるにこの場合には、大面積のプラ
ズマ領域にわたって均一な処理速度を得ることが困難で
ある。またエッチングの場合には、異方性エッチングが
困難となってパターン転写精度が悪いという欠点があ
る。さらに処理ガスの利用効率が悪く、高速処理を達成
することが困難である。これに加えてプラズマが試料室
7内に接触するため、試料室7の内壁をスパッタして不
純物汚染の原因になる。成膜の場合は内壁面でのデポジ
ションが発生して発塵の原因になるなどの問題があって
実用的ではない。
However, on the other hand, the uniform processable area is narrow, and the uniform processing speed can be obtained by etching with a diameter of 15 cm.
Even if the discharge tube 3 is used, the diameter is about 20 cm. Further, in the case of film formation, it is clear that the film formation rate in the central portion tends to increase. This is a major drawback in mass production as a semiconductor wafer processing method. The diameter of the discharge tube 3 may be increased in order to expand the uniform treatment region, but in order to satisfy the electron cyclotron resonance condition,
For example, when a microwave of 2.45 GHz is used, the magnetic flux density of the magnetic field generator 4 needs to be about 0.2 T, so a large electromagnet is required to significantly increase the diameter of the discharge tube 3. Is not realistic. If the plasma region is simply expanded, the region shown by the broken line II in the figure is created by making the magnetic field distribution by the magnetic field generation device 4 and the magnetic field direction by the magnetic field control device 5 so as to oppose each other. It is possible to form a plasma in the. However, in this case, it is difficult to obtain a uniform processing rate over a large area plasma region. Further, in the case of etching, there is a drawback that anisotropic etching is difficult and the pattern transfer accuracy is poor. Furthermore, the utilization efficiency of the processing gas is poor, and it is difficult to achieve high-speed processing. In addition to this, the plasma comes into contact with the inside of the sample chamber 7, so that the inner wall of the sample chamber 7 is sputtered and causes contamination of impurities. In the case of film formation, there is a problem that deposition occurs on the inner wall surface and causes dust generation, which is not practical.

そのため、従来のマイクロ波プラズマ処理装置において
は、大面積を均一に処理するという量産性の面で大きな
問題を含んでいるものである。(たとえば特開昭59−30
18号公報参照) 〔発明の目的〕 本発明は上記に述べた従来のマイクロ波プラズマ処理装
置における問題点を解決し、大面積のプラズマ領域にお
いて均一な処理速度を可能にし、量産性に優れたプラズ
マ処理装置を提供することにある。
Therefore, the conventional microwave plasma processing apparatus has a serious problem in terms of mass productivity that a large area is uniformly processed. (For example, JP-A-59-30
(Publication No. 18) [Object of the Invention] The present invention solves the problems in the conventional microwave plasma processing apparatus described above, enables a uniform processing speed in a large-sized plasma region, and is excellent in mass productivity. It is to provide a plasma processing apparatus.

〔発明の概要〕[Outline of Invention]

本発明は上記に述べた目的を達成するため、従来の真空
室内の所望の磁場分布を形成するための磁場制御手段
が、真空室の外側下部における同一平面上に同心状に間
隔をおいて配置された第1,第2の磁場形成部材と、これ
ら各磁場形成部材を選択的に駆動すると共に、各磁場形
成部材による磁場方向および磁場強度を前記磁場発生手
段の磁場方向および磁場強度に対して制御し、プラズマ
分布処理領域を広範囲にわたり均一にさせる磁場制御部
材とを有し、これにより、均一な成膜領域の拡大を可能
にし、かつ処理領域の拡大を可能とすることを特徴とす
るものである。
According to the present invention, in order to achieve the above-mentioned object, a conventional magnetic field control means for forming a desired magnetic field distribution in a vacuum chamber is arranged concentrically and concentrically on the same plane in the outer lower part of the vacuum chamber. The first and second magnetic field forming members and the respective magnetic field forming members are selectively driven, and the magnetic field direction and the magnetic field strength of each magnetic field forming member are compared with the magnetic field direction and the magnetic field strength of the magnetic field generating means. A magnetic field control member for controlling and uniformizing a plasma distribution processing region over a wide range, thereby enabling a uniform film formation region to be expanded and a processing region to be expanded. Is.

〔発明の実施例〕Example of Invention

以下本発明の実施例について説明する。第1図は本発明
をマイクロ波放電方式のプラズマ処理装置に実施した場
合を示す構成説明図である。同図において、15は真空室
1内の磁場分布を制御する磁場制御装置にして、大小径
を異にし、夫々リング状で互いに同一平面上に同心状に
配置された内側磁場形成部材15aおよび外側磁場形成部
材15bと、これら内側磁場形成部材15aおよび外側磁場形
成部材15bを夫々スイッチ(図示せず)を介して電源
(図示せず)に接続し、上記スイッチを周期的あるいは
経時的に開閉切換える磁場制御部材(図示せず)とを有
して形成されている。上記以外は従来と同一であるか
ら、第3図と同一符号をもって示す。上記の構成である
から、今外側磁場形成部材15bと電源とを電気的に遮断
して内側磁場形成部材15aのみを磁場発生装置4の磁場
方向と一致させると、磁場発生装置4により真空室1内
に発生した磁力線は内側磁場形成部材15aによってその
内部に集中されるので、磁力線にそうて運ばれてきたプ
ラズマを閉じめて試料9の表面位置に収束させる。つぎ
に内側磁場部材15aの磁場方向を磁場発生装置4の磁場
方向に対して対向させ、同時に外側磁場形成部材15bの
磁場方向を磁場発生装置4の磁場方向と一致させると、
内側磁場形成部材15aによって真空室1内に破線IIIにて
示す磁力線が発生し、同時に外側磁場形成部材15aにて
磁力線を内側磁場形成部材15aの外周との間隙に集中さ
せるので、その結果として真空室1内に破線IIに示す如
くプラズマの分布処理領域を拡大することができる。本
願発明者の実験結果によれば、SiF4と、N2とを混合した
放電ガスによるSiF4の成膜については、内側磁場形成部
材15aおよび外側磁場形成部材15bの磁場強度を調節する
ことにより、均一な成膜領域の拡大が可能になることを
確認にしている。またCF4の放電ガスを用いたSiO2膜の
エッチングにおいては、内側磁場形成部材15aおよび外
側磁場形成部材15bの磁場強度を周期的に変化させる
と、同図に破線Iにて示すプラズマ分布と、破線IIにて
示すプラズマ分布とが交互に形成され、かつ各分布時間
を調整することによって異方性エッチングの処理領域が
拡大されることを確認にしている。この手法はSiF4と、
N2との混合による放電ガスによってSiN成膜を形成する
場合も良好であることを確認している。さらに上記破線
Iで示すプラズマ分布および破線IIで示すプラズマ分布
のさいの試料9への各バイアス条件を独立に設定するこ
とにより、処理速度の均一性が向上できることを確認し
ている。即ち、エッチング時、試料9への各バイアス条
件をそのバイアス強度が経時的に変化しうるように構成
すれば、試料9に入射してくるイオンエネルギを広範囲
に制御することができ、破線Iおよび破線IIで示すよう
にプラズマ分布を変化させる際に生じるエッチング速度
の差を減少させ、エッチング速度を均一化できる。その
ため、エッチング速度を広範囲にわたり均一にさせるこ
とができる。従って、バイアス強度が経時的に変化しう
るバイアス電圧印加手段(図示せず)を有すると、極め
て良好なエッチング処理を行うことが可能となる。
Examples of the present invention will be described below. FIG. 1 is a structural explanatory view showing a case where the present invention is applied to a microwave discharge type plasma processing apparatus. In the figure, reference numeral 15 is a magnetic field control device for controlling the magnetic field distribution in the vacuum chamber 1. The inner magnetic field forming member 15a and the outer side, which are concentrically arranged on the same plane as each other in a ring shape, have different sizes. The magnetic field forming member 15b and the inner magnetic field forming member 15a and the outer magnetic field forming member 15b are respectively connected to a power source (not shown) via a switch (not shown), and the switch is opened / closed periodically or with time. And a magnetic field control member (not shown). Other than the above, it is the same as the conventional one, and therefore is shown with the same reference numerals as in FIG. With the above configuration, when the outer magnetic field forming member 15b and the power source are electrically cut off so that only the inner magnetic field forming member 15a coincides with the magnetic field direction of the magnetic field generating device 4, the vacuum chamber 1 is generated by the magnetic field generating device 4. Since the magnetic field lines generated therein are concentrated inside by the inner magnetic field forming member 15a, the plasma carried along the magnetic field lines is closed and converged on the surface position of the sample 9. Next, when the magnetic field direction of the inner magnetic field member 15a is opposed to the magnetic field direction of the magnetic field generator 4 and at the same time the magnetic field direction of the outer magnetic field forming member 15b is made to coincide with the magnetic field direction of the magnetic field generator 4,
The inner magnetic field forming member 15a generates a magnetic force line indicated by a broken line III in the vacuum chamber 1 and, at the same time, the outer magnetic field forming member 15a concentrates the magnetic force line in a gap between the inner magnetic field forming member 15a and the outer circumference thereof. The plasma distribution processing area can be expanded in the chamber 1 as shown by a broken line II. According to the present inventor's experiments, and SiF 4, for the formation of SiF 4 by discharge gas that is a mixture of N 2, by adjusting the field strength of the inner magnetic field forming member 15a and the outer magnetic field forming member 15b It has been confirmed that a uniform film formation area can be expanded. Further, in the etching of the SiO 2 film using the discharge gas of CF 4 , when the magnetic field strengths of the inner magnetic field forming member 15a and the outer magnetic field forming member 15b are periodically changed, the plasma distribution shown by the broken line I in FIG. It is confirmed that the plasma distribution indicated by the broken line II is formed alternately and that the anisotropic etching processing region is expanded by adjusting the distribution time. This method uses SiF 4 ,
It has been confirmed that it is also good when the SiN film is formed by the discharge gas by mixing with N 2 . Further, it has been confirmed that the uniformity of the processing speed can be improved by independently setting the bias conditions for the sample 9 in the plasma distribution indicated by the broken line I and the plasma distribution indicated by the broken line II. That is, if each bias condition for the sample 9 is configured such that the bias intensity can change with time during etching, the ion energy incident on the sample 9 can be controlled over a wide range, and the broken line I and As shown by the broken line II, it is possible to reduce the difference in etching rate that occurs when the plasma distribution is changed and make the etching rate uniform. Therefore, the etching rate can be made uniform over a wide range. Therefore, if a bias voltage applying unit (not shown) whose bias intensity can change with time is provided, it becomes possible to perform a very good etching process.

なお、第2図はガス導入口10から真空室1内に導入され
る反応ガスをソレノイドコイル16によってプラズマ分解
させる誘導形RF方式のプラズマ処理装置に本発明を適用
した実施例を示し、この場合においても第1図と同様の
作用効果を得ることができるので、ここではその説明を
省略する。
Note that FIG. 2 shows an embodiment in which the present invention is applied to an induction type RF plasma processing apparatus in which a reaction gas introduced into the vacuum chamber 1 from the gas inlet 10 is decomposed by a solenoid coil 16 into a plasma. Since the same effect as in FIG. 1 can be obtained in the above, the description thereof will be omitted here.

〔発明の効果〕〔The invention's effect〕

本発明は以上述べたる如く、第1,第2の磁場形成部材と
これを選択的に制御し、プラズマ分布を均一にかつ広範
囲に制御する磁場制御部材とを有して磁場制御手段を形
成したので、簡単な構成にて容易に均一なプラズマ処理
領域の拡大をはかることができ、とくにマイクロ波プラ
ズマを用いるエッチング装置およびテポジション装置に
おける量産性を高めることができる効果を有する。ま
た、本発明は、バイアス電圧印加手段を有するので、上
記効果の他、プラズマ分布を変化させる際に生じるエッ
チング速度の差を減少させ、エッチング速度を均一化で
きることにより、特にエッチング時は所望の範囲にわた
り良好なエッチングを行うことができる効果を有する。
As described above, the present invention forms the magnetic field control means by including the first and second magnetic field forming members and the magnetic field controlling member that selectively controls the magnetic field forming members to uniformly and widely control the plasma distribution. Therefore, it is possible to easily expand a uniform plasma processing region with a simple configuration, and it is possible to enhance the mass productivity particularly in an etching apparatus and a deposition apparatus using microwave plasma. Further, since the present invention has the bias voltage applying means, in addition to the above effects, it is possible to reduce the difference in etching rate caused when the plasma distribution is changed and make the etching rate uniform. It has an effect that good etching can be performed over the entire range.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明をマイクロ波放電方式のプラズマ処理装
置に実施した場合を示す構成説明図、第2図は本発明を
誘導形RF方式のプラズマ処理装置に実施した場合を示す
構成説明図、第3図は従来のマイクロ波放電方式のプラ
ズマ処理装置を示す構成説明図である。 1…真空室、2…導波管、3…放電管、4…磁場発生装
置、6…マイクロ波発生部、7…試料室、8…試料台、
9…試料、10…ガス導入口、11…排気ポート、12…直流
電源、13…コンデンサ、14…RF電源、5,15…磁場制御装
置、16…ソレノイドコイル、17…RF電源。
FIG. 1 is a structural explanatory view showing a case where the present invention is applied to a microwave discharge type plasma processing apparatus, and FIG. 2 is a structural explanatory view showing a case where the present invention is applied to an induction type RF type plasma processing apparatus, FIG. 3 is a structural explanatory view showing a conventional microwave discharge type plasma processing apparatus. DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber, 2 ... Waveguide, 3 ... Discharge tube, 4 ... Magnetic field generator, 6 ... Microwave generator, 7 ... Sample chamber, 8 ... Sample stand,
9 ... Sample, 10 ... Gas inlet, 11 ... Exhaust port, 12 ... DC power supply, 13 ... Capacitor, 14 ... RF power supply, 5, 15 ... Magnetic field control device, 16 ... Solenoid coil, 17 ... RF power supply.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 正昭 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 奥中 正昭 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (56)参考文献 特開 昭58−51933(JP,A) 特開 昭59−3018(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masaaki Sato Inventor Masaaki Sato, 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Inside the Hitachi, Ltd. Institute of Industrial Science (72) Masaaki Okunaka 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Address Company, Hitachi, Ltd., Production Technology Laboratory (56) References JP-A-58-51933 (JP, A) JP-A-59-3018 (JP, A)

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】真空室と、この真空室内を真空に保持させ
る真空手段と、前記真空室の上端部に接続され、かつ前
記真空室内に高周波電力を供給する高周波供給手段と、
前記真空室内に放電ガスを導入する放電ガス導入手段
と、前記真空室内に試料を保持する試料保持手段と、前
記真空室と高周波供給手段との接続部側の外周位置に配
置され、かつ真空室内に磁場を形成する磁場発生手段
と、前記真空室の外側下部に設置され、かつ前記真空室
内の磁場の分布を制御する磁場制御手段とを設け、前記
真空室内の試料にプラズマ処理するように構成されたプ
ラズマ処理装置において、前記磁場制御手段が、真空室
の外側下部における同一平面上に同心状に間隔をおいて
配置された第1,第2の磁場形成部材と、これら各磁場形
成部材を選択的に駆動すると共に、各磁場形成部材によ
る磁場方向および磁場強度を前記磁場発生手段の磁場方
向および磁場強度に対して制御し、プラズマ分布処理領
域を広範囲にわたり均一にさせる磁場制御部材とを有す
ることを特徴とするプラズマ処理装置。
1. A vacuum chamber, vacuum means for holding the vacuum chamber in a vacuum, and high-frequency supply means connected to the upper end of the vacuum chamber and supplying high-frequency power to the vacuum chamber.
Discharge gas introducing means for introducing a discharge gas into the vacuum chamber, sample holding means for holding a sample in the vacuum chamber, and an outer peripheral position on the side of the connection between the vacuum chamber and the high frequency supplying means, and the vacuum chamber A magnetic field generating means for forming a magnetic field and a magnetic field control means for controlling the distribution of the magnetic field in the vacuum chamber, the magnetic field generating means being provided outside the vacuum chamber, and configured to perform plasma processing on the sample in the vacuum chamber. In the plasma processing apparatus described above, the magnetic field control means includes a first magnetic field forming member and a second magnetic field forming member that are concentrically arranged on the same plane in the outer lower part of the vacuum chamber. In addition to being selectively driven, the magnetic field direction and the magnetic field strength by each magnetic field forming member are controlled with respect to the magnetic field direction and the magnetic field strength of the magnetic field generating means, and the plasma distribution processing region is evenly spread over a wide range. The plasma processing apparatus characterized by having a magnetic field control member for the.
【請求項2】前記第1,第2の磁場制御部材の少なくとも
何れか一方は該磁場形成部材の磁場方向を前記磁場発性
手段の磁場方向に対して逆方向に制御しうるように構成
したことを特徴とする特許請求の範囲第1項記載のプラ
ズマ処理装置。
2. At least one of the first and second magnetic field control members is configured to control the magnetic field direction of the magnetic field forming member in a direction opposite to the magnetic field direction of the magnetic field generating means. The plasma processing apparatus according to claim 1, wherein:
【請求項3】前記第1,第2の磁場形成部材は大小径を異
にするリング状にて構成したことを特徴とする特許請求
の範囲第1項または第2項記載のプラズマ処理装置。
3. The plasma processing apparatus according to claim 1 or 2, wherein the first and second magnetic field forming members are formed in a ring shape having different diameters.
【請求項4】前記第1,第2の磁場制御部材は少なくとも
何れか一方の磁場形成部材の磁場強度および磁場方向を
経時的に変化しうるように構成したことを特徴とする特
許請求の範囲第1項または第3項記載のプラズマ処理装
置。
4. The first and second magnetic field control members are configured such that the magnetic field strength and the magnetic field direction of at least one of the magnetic field forming members can be changed with time. The plasma processing apparatus of claim 1 or 3.
【請求項5】前記高周波供給手段より真空室内に供給さ
れる高周波電力をマイクロ波にし、かつ前記磁場発生手
段を上記マイクロ波の伝播経路にそうて磁場を形成する
ようにし、この磁場の強度が上記マイクロ波の伝播経路
にそうて徐々に減少し、途中で部分的に電子サイクロト
ン共鳴条件を満足するように構成したことを特徴とする
特許請求の範囲第1項〜第4項の何れか一項記載のプラ
ズマ処理装置。
5. The high-frequency power supplied from the high-frequency supply means into the vacuum chamber is converted into microwaves, and the magnetic field generation means is formed along the propagation path of the microwaves to form a magnetic field. The microwave propagation path is gradually reduced so that the electron cycloton resonance condition is partially satisfied on the way, and the microwave propagation path is partially satisfied. The plasma processing apparatus of claim 1.
【請求項6】前記プラズマ処理はプラズマにより試料上
に成膜するものであることを特徴とする特許請求の範囲
第1項〜第5項の何れか一項記載のプラズマ処理装置。
6. The plasma processing apparatus according to claim 1, wherein the plasma processing is a film formation on a sample by plasma.
【請求項7】前記プラズマ処理はプラズマにより試料の
エッチングをするものであることを特徴とする特許請求
の範囲第1項〜第5項の何れか一項記載のプラズマ処理
装置。
7. The plasma processing apparatus according to claim 1, wherein the plasma processing is to etch a sample with plasma.
【請求項8】真空室と、この真空室内を真空に保持させ
る真空手段と、前記真空室の上端部に接続され、かつ前
記真空室内に高周波電力を供給する高周波供給手段と、
前記真空室内に放電ガスを導入する放電ガス導入手段
と、前記真空室内に試料を保持する試料保持手段と、前
記真空室と高周波供給手段との接続部側の外周位置に配
置され、かつ真空室内に磁場を形成する磁場発生手段
と、前記真空室の外側下部に設置され、かつ前記真空室
内の磁場の分布を制御する磁場制御手段とを設け、前記
真空室内の試料にプラズマ処理するように構成されたプ
ラズマ処理装置において、前記磁場制御手段が、真空室
の外側下部における同一平面上に同心状に間隔をおいて
配置された第1,第2の磁場形成部材と、これら各磁場形
成部材を選択的に駆動すると共に、各磁場形成部材によ
る磁場方向および磁場強度を前記磁場発生手段の磁場方
向および磁場強度に対して制御し、プラズマ分布処理領
域を広範囲にわたり均一にさせる磁場制御部材とを有
し、かつ前記試料保持手段にバイアス電圧を印加するバ
イアス電圧印加手段を設け、このバイアス電圧印加手段
をそのバイアス強度が経時的に変化しうるように構成し
たことを特徴とするプラズマ処理装置。
8. A vacuum chamber, vacuum means for holding the vacuum chamber in a vacuum, and high-frequency supply means connected to the upper end of the vacuum chamber and supplying high-frequency power to the vacuum chamber.
Discharge gas introducing means for introducing a discharge gas into the vacuum chamber, sample holding means for holding a sample in the vacuum chamber, and an outer peripheral position on the side of the connection between the vacuum chamber and the high frequency supplying means, and the vacuum chamber A magnetic field generating means for forming a magnetic field and a magnetic field control means for controlling the distribution of the magnetic field in the vacuum chamber, the magnetic field generating means being provided outside the vacuum chamber, and configured to perform plasma processing on the sample in the vacuum chamber. In the plasma processing apparatus described above, the magnetic field control means includes a first magnetic field forming member and a second magnetic field forming member that are concentrically arranged on the same plane in the outer lower part of the vacuum chamber. In addition to being selectively driven, the magnetic field direction and the magnetic field strength by each magnetic field forming member are controlled with respect to the magnetic field direction and the magnetic field strength of the magnetic field generating means, and the plasma distribution processing region is evenly spread over a wide range. And a bias voltage applying means for applying a bias voltage to the sample holding means, and the bias voltage applying means is configured so that its bias intensity can change with time. Characteristic plasma processing device.
【請求項9】前記バイアス電圧印加手段をそのバイアス
強度の経時的な変化が周期的になるようにし、この周期
が前記磁場制御手段の少なくとも第1,第2の磁場形成部
材の何れか一方の磁場強度および方向の経時的変化と同
一周期になるように構成したことを特徴とする特許請求
の範囲第8項記載のプラズマ処理装置。
9. The bias voltage applying means is arranged such that its bias intensity changes periodically with time, and this cycle is at least one of the first and second magnetic field forming members of the magnetic field control means. 9. The plasma processing apparatus according to claim 8, wherein the plasma processing apparatus is configured so as to have the same period as a change in magnetic field strength and direction with time.
【請求項10】前記高周波供給手段より真空室内に供給
される高周波電力をマイクロ波にし、かつ前記磁場発生
手段を上記マイクロ波の伝播経路にそうて磁場を形成す
るようにし、この磁場の強度が上記マイクロ波の伝播経
路にそうて徐々に減少し、途中で部分的に電子サイクロ
トン共鳴条件を満足するように構成したことを特徴とす
る特許請求の範囲第8項または第9項記載のプラズマ処
理装置。
10. A high-frequency power supplied from the high-frequency supply means into the vacuum chamber is converted into microwaves, and the magnetic field generation means is formed along the propagation path of the microwaves to form a magnetic field. 10. The plasma according to claim 8 or 9, characterized in that the plasma is gradually reduced along the propagation path of the microwave and partially satisfies the electron cycloton resonance condition on the way. Processing equipment.
【請求項11】前記プラズマ処理はプラズマにより試料
上に成膜するものであることを特徴とする特許請求の範
囲第8項〜第10項の何れか一項記載のプラズマ処理装
置。
11. The plasma processing apparatus according to claim 8, wherein the plasma processing is a film formation on a sample by plasma.
【請求項12】前記プラズマ処理はプラズマにより試料
のエッチングをするものであることを特徴とする特許請
求の範囲第8項〜第10項の何れか一項記載のプラズマ処
理装置。
12. The plasma processing apparatus according to claim 8, wherein the plasma processing is to etch a sample with plasma.
JP60063774A 1985-03-29 1985-03-29 Plasma processing device Expired - Lifetime JPH0724761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60063774A JPH0724761B2 (en) 1985-03-29 1985-03-29 Plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60063774A JPH0724761B2 (en) 1985-03-29 1985-03-29 Plasma processing device

Publications (2)

Publication Number Publication Date
JPS61222533A JPS61222533A (en) 1986-10-03
JPH0724761B2 true JPH0724761B2 (en) 1995-03-22

Family

ID=13239051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60063774A Expired - Lifetime JPH0724761B2 (en) 1985-03-29 1985-03-29 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH0724761B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546596B2 (en) * 1993-02-19 1996-10-23 株式会社日立製作所 Plasma processing device
JP3508110B1 (en) 2003-04-25 2004-03-22 卓三 岩田 Device for activating ionizable substances
CN105185680B (en) * 2015-09-22 2017-10-03 上海华力微电子有限公司 A kind of current sensing means and deielectric-coating Etaching device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851933A (en) * 1981-09-24 1983-03-26 Hitachi Ltd Dry etching apparatus
JPH0635323B2 (en) * 1982-06-25 1994-05-11 株式会社日立製作所 Surface treatment method

Also Published As

Publication number Publication date
JPS61222533A (en) 1986-10-03

Similar Documents

Publication Publication Date Title
EP0300447B1 (en) Method and apparatus for treating material by using plasma
TW312815B (en)
KR100374993B1 (en) Ecr plasma generator and an ecr system using the generator
JPH03287774A (en) Plasma treating device
JPS61213377A (en) Method and apparatus for plasma deposition
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
JPS63155728A (en) Plasma processor
JPH0724761B2 (en) Plasma processing device
JPH11204297A (en) Plasma treating device and plasma treating method
JP2003077904A (en) Apparatus and method for plasma processing
JP2001160553A (en) Plasma apparatus
JPH0530500B2 (en)
JP3445657B2 (en) ECR plasma etching method for diamond thin film
JPS6267822A (en) Plasma processor
JPH10106796A (en) Plasma treatment device
JP3205542B2 (en) Plasma equipment
JP2001077085A (en) Surface treatment method of specimen
JP2001332541A (en) Plasma processing device
JPH025413A (en) Plasma processor
JPH1070108A (en) Plasma exciting antenna and plasma processor
JPH0521391A (en) Microwave plasma device
JPS6379986A (en) Plasma controller
JPH0436484A (en) Plasma etching device
JPH0414822A (en) Microwave plasma etching method
JPH07130714A (en) Plasma processing method for microwave