JPH07245211A - Superconducting magnet and its manufacture - Google Patents

Superconducting magnet and its manufacture

Info

Publication number
JPH07245211A
JPH07245211A JP5828394A JP5828394A JPH07245211A JP H07245211 A JPH07245211 A JP H07245211A JP 5828394 A JP5828394 A JP 5828394A JP 5828394 A JP5828394 A JP 5828394A JP H07245211 A JPH07245211 A JP H07245211A
Authority
JP
Japan
Prior art keywords
coil
phase
spiral
superconducting magnet
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5828394A
Other languages
Japanese (ja)
Other versions
JP3794591B2 (en
Inventor
Mitsuru Morita
充 森田
Mitsuru Sawamura
充 澤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5828394A priority Critical patent/JP3794591B2/en
Priority to CNB951903039A priority patent/CN1152396C/en
Priority to PCT/JP1995/000351 priority patent/WO1995024047A1/en
Publication of JPH07245211A publication Critical patent/JPH07245211A/en
Application granted granted Critical
Publication of JP3794591B2 publication Critical patent/JP3794591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/048Superconductive coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Abstract

PURPOSE:To produce a new type of magnets whose coil constant is large by forming a specific oxide superconducting material into a spiral coil form. CONSTITUTION:This superconducting magnet has the system wherein, in single crystal REBa2CU3O7-x phase (RE is rare earth elements containing Y and combination of them), RE2BaCuO5 is finely dispersed and a spiral coil 1 form. And the direction of c axis crystal orientation of REBa2Cu3O7-x phase is within 40 deg., and at least a trace of either Pt or Ph is included. Further, the C axis is within 20 deg. against the normal of plane configuring spiral. There are two general methods for obtaining the coil 1 form of this superconducting magnet. One is forming it into a coil after crystallization (a method of GF), and the other is, crystallizing a front-drive body after it is worked into coil form (method of FG).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は実質的にREBa2 Cu
37-X (0≦x≦0.3)(REはY,La,Nd,
Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,L
uのいずれかの元素またはこれらの組み合わせ)とRE
2 BaCuO5 とからなる酸化物超伝導材料を用いた超
伝導マグネットおよびその製造方法に関するものであ
る。
FIELD OF THE INVENTION The present invention is essentially of REBa 2 Cu.
3 O 7-X (0 ≦ x ≦ 0.3) (RE is Y, La, Nd,
Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, L
u any element or combination thereof) and RE
The present invention relates to a superconducting magnet using an oxide superconducting material composed of 2 BaCuO 5 and a method for manufacturing the same.

【0002】[0002]

【従来の技術】現在超伝導マグネットとして実用化にな
っているのは、Nb−Ti系の超伝導線材をコイルに巻
いたものが中心である。他にはNb3 SnやV3 Ga系
の超伝導材料が線材化され、コイル化することによって
高磁界用超伝導マグネットとして用いられている。これ
らの金属系超伝導マグネットは臨界温度が低いため液体
ヘリウム等により極低温に冷却する必要がある。超伝導
マグネットは磁場発生装置として優れた特性を持ちなが
ら、この極低温での冷却の必要性から幅広く普及される
に到っていない。
2. Description of the Related Art At present, what has been put into practical use as a superconducting magnet is mainly one in which a Nb-Ti based superconducting wire is wound around a coil. In addition, Nb 3 Sn or V 3 Ga-based superconducting material is formed into a wire and used as a coil for forming a high magnetic field superconducting magnet. Since these metallic superconducting magnets have a low critical temperature, it is necessary to cool them to an extremely low temperature with liquid helium or the like. Superconducting magnets have excellent characteristics as a magnetic field generator, but have not been widely used because of the need for cooling at this extremely low temperature.

【0003】一方、酸化物高温超伝導体の発見以後、安
価で取扱いが容易な液体窒素により冷却し使用できる7
7K以上の臨界温度を有する酸化物超伝導物質を用いた
マグネットの研究開発が盛んに行われている。現在主流
となっているのは、Bi系材料をAgのシース中に詰
め、これをテープ状に加工することによって、配向した
超伝導材料を含む銀シーステープ材を作製し、コイルに
巻く方法である。しかしながら、このようなテープ材は
77Kにおいて十分な臨界電流密度(Jc)が得られて
おらず、実用には至っていない。
On the other hand, after the discovery of the oxide high temperature superconductor, it can be cooled and used by liquid nitrogen which is inexpensive and easy to handle.
Research and development of a magnet using an oxide superconducting material having a critical temperature of 7 K or higher has been actively conducted. The current mainstream method is to pack a Bi-based material in an Ag sheath and process it into a tape to prepare a silver sheath tape material containing an oriented superconducting material, and wind it into a coil. is there. However, such a tape material has not obtained a critical current density (Jc) at 77K and has not been put to practical use.

【0004】このような、酸化物超伝導体を線材化した
後、コイル化する一般的なマグネット作製方法に対し、
酸化物超伝導体の短所である脆さにともなう難加工性を
考慮して、塑性変形加工せずに、熱処理によってコイル
形状の焼結体を作製しマグネットとして用いることも検
討されている(特開昭63−261808号公報)。し
かしながら、焼結体(特にY系)は基本的に多くの粒界
を含み、これが超伝導の弱結合となり高い臨界電流密度
を得ることはできない。そのため、焼結体によるマグネ
ットでは、超伝導状態を維持しながら高磁場を発生する
ことは困難な状況にある(特開昭63−261808号
公報)。
In contrast to a general method for manufacturing a magnet, in which an oxide superconductor is formed into a wire and then formed into a coil,
Considering the difficult workability due to fragility, which is a disadvantage of oxide superconductors, it is also considered to produce a coil-shaped sintered body by heat treatment and use it as a magnet without performing plastic deformation (special characteristics). (Kaisho 63-261808). However, the sintered body (particularly the Y system) basically contains many grain boundaries, which become weak bonds of superconductivity and cannot obtain a high critical current density. Therefore, it is difficult for a magnet made of a sintered body to generate a high magnetic field while maintaining a superconducting state (Japanese Patent Laid-Open No. 63-261808).

【0005】現在のところ、77Kにおいて高磁場中に
おいても高いJcを有するマグネットの材料として使用
可能なバルク材料は、単結晶状のREBa2 Cu3
7-X 中にRE2 BaCuO5 が微細分散した材料(いわ
ゆるQMG材料)のみである。QMG材料は現在Pt添
加法やSeedingにより大型の単結晶材料の製造が
可能になってきている。
At present, a bulk material that can be used as a material for a magnet having a high Jc even at a high magnetic field at 77K is single crystal REBa 2 Cu 3 O.
It is only a material (so-called QMG material) in which RE 2 BaCuO 5 is finely dispersed in 7-X . For the QMG material, it is now possible to manufacture a large single crystal material by the Pt addition method or seeding.

【0006】[0006]

【発明が解決しようとする課題】QMG材料を用いたマ
グネットは実開平4−15811号においてはじめて考
案された。これは円筒形のQMG超伝導体に切れ込み加
工することによりソレノイド状のコイルを形成するもの
である。マグネットの発生する磁界は、通電電流とコイ
ル定数の積で与えられる。コイル定数は巻き数や巻き方
によって変化し、臨界密度以下で使用する時は、巻き数
等を大きくしコイル定数を大きくすることによって、低
い通電電流で大きな磁界が得られることになる。実開平
4−15811号公報中の図からもわかるように、この
ようなソレノイド状のマグネットは、形状付与の観点か
ら、線径を小さくし巻き数を増加させてコイル定数を大
きくすることは難しい。そこで円筒に切れ込み加工した
ソレノイド型コイルではなく、QMG材を用いたコイル
定数の大きい新しいタイプのマグネットおよびその製造
法の開発が課題となっていた。
A magnet using a QMG material was first devised in Japanese Utility Model Laid-Open No. 4-15811. This is to form a solenoidal coil by cutting into a cylindrical QMG superconductor. The magnetic field generated by the magnet is given by the product of the energizing current and the coil constant. The coil constant varies depending on the number of windings and the winding method. When used below the critical density, a large magnetic field can be obtained with a low energizing current by increasing the number of windings and increasing the coil constant. As can be seen from the drawing in Japanese Utility Model Laid-Open No. 4-15811, it is difficult to reduce the wire diameter, increase the number of turns, and increase the coil constant in such a solenoid magnet from the viewpoint of imparting a shape. . Therefore, it has been an issue to develop a new type magnet having a large coil constant using a QMG material and a manufacturing method thereof, instead of a solenoid type coil cut into a cylinder.

【0007】[0007]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、単結晶状のREBa2 Cu37-X
相(REはYを含む希土類元素およびそれらの組み合わ
せ)中にRE2 BaCuO5 が微細分散した組織を有
し、渦巻状のコイル形状を有することを特徴とする超伝
導マグネットである。またここにおいて、REBa2
37-X 相の結晶方位のc軸の方向が40度以内に揃
っており、かつ微量のPtまたはRhの少なくとも一方
を含有すること、前記c軸が渦巻を構成する平面の法線
に対して20度以内に揃っていること、渦巻の内側の線
の断面積が外側の線の断面積に比べて大きくなっている
こと、渦巻を構成する超伝導体の隙間の少なくとも一部
に樹脂が存在することによって補強されていることも特
徴とする。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems, and is a single crystal form of REBa 2 Cu 3 O 7-X.
The superconducting magnet has a structure in which RE 2 BaCuO 5 is finely dispersed in a phase (RE is a rare earth element containing Y and a combination thereof), and has a spiral coil shape. Also here, REBa 2 C
The direction of the c-axis of the crystal orientation of the u 3 O 7-X phase is aligned within 40 degrees, and at least one of Pt and Rh is contained in a minute amount, and the c-axis is a normal to a plane forming a spiral. Within 20 degrees, the cross-sectional area of the inner line of the spiral is larger than the cross-sectional area of the outer line, and at least part of the gap of the superconductor forming the spiral is It is also characterized by being reinforced by the presence of resin.

【0008】また本発明は前記した渦巻状のコイルが複
数積層されていることを特徴とする超伝導マグネットで
ある。またここにおいて、隣接する層の渦巻の方向(右
巻きまたは左巻き)が交互になっていること、積層され
たそれぞれの渦巻状のコイルの端部間が高電気伝導率を
有する金属により接続されているかあるいは積層された
それぞれの渦巻状のコイルの端部間がコイル導体のTf
(REBa2 Cu37-X 相の生成温度)より低いTf
を有する超伝導体であるREBa2 Cu37-X 相によ
り接続されていること、中央部分の渦巻状のコイルの層
の厚さが端部の渦巻状のコイルの層の厚さより厚くなっ
ていること、各渦巻状のコイルの層間の少なくとも一部
に樹脂が存在することによって補強されていることも特
徴とする。
Further, the present invention is a superconducting magnet, characterized in that a plurality of the above-mentioned spiral coils are laminated. Further, here, the spiral directions (right-handed or left-handed) of the adjacent layers are alternated, and the ends of each of the stacked spiral coils are connected by a metal having high electrical conductivity. Tf of the coil conductor is between the ends of each spiral coil which is or is laminated.
Tf lower than (REBa 2 Cu 3 O 7-X phase formation temperature)
Are connected by the REBa 2 Cu 3 O 7-X phase, which is a superconductor having, and the thickness of the spiral coil layer in the central portion is larger than that of the spiral coil layer at the end. It is also characterized by being reinforced by the presence of resin in at least a part of the layers of each spiral coil.

【0009】またさらに前記の1または複数の渦巻状コ
イルによって形成されたコイルの始端と終端とを単結晶
状のREBa2 Cu37-X 相中にRE2 BaCuO5
が微細分散した組織を有する酸化物超伝導材料を用いて
接続することによって超伝導体からなる閉回路を構成
し、かつ電流導入端子および超伝導スイッチからなるこ
とを特徴とする超伝導マグネットである。
Further, the starting end and the terminating end of the coil formed by the above-mentioned one or a plurality of spiral coils are put into a REBa 2 Cu 3 O 7-X phase of RE 2 BaCuO 5
Is a superconducting magnet characterized in that a closed circuit composed of a superconductor is formed by connecting using an oxide superconducting material having a finely dispersed structure, and that it comprises a current introducing terminal and a superconducting switch. .

【0010】また本発明は単結晶状のREBa2 Cu3
7-X 相中にRE2 BaCuO5 が微細分散した組織を
有する酸化物超伝導材料から板状に切り出した後に切れ
目を入れることにより渦巻状のコイル形状に加工するこ
とを特徴とする超伝導マグネットの製造方法である。ま
たここにおいて板状超伝導体を接着剤により支持台に固
定した後、ウォータージェットカッティングにより渦巻
加工することも特徴とする。またあるいは、RE,B
a,Cuの酸化物を含む前駆体から成形体を作製し、成
形体を渦巻状のコイル形状に加工した後、これを211
相と液相からなる半溶融状態に加熱し、その後酸化性雰
囲気中で徐冷することで単結晶状のREBa2 Cu3
7-X 相中にRE2 BaCuO5 が微細分散した組織を有
する超伝導材料を形成せしめることを特徴とする超伝導
マグネットの製造方法である。またここにおいて渦巻状
の成形体の上に渦巻状成形体を覆うように前駆体を配置
し、これらを211相と液相からなる半溶融状態に加熱
し、次に種結晶により結晶方位を制御し、酸化性雰囲気
中で徐冷することも特徴とする。
The present invention also relates to single crystal REBa 2 Cu 3
A superconducting material characterized by being processed into a spiral coil shape by cutting a plate-shaped oxide superconducting material having a structure in which RE 2 BaCuO 5 is finely dispersed in an O 7-X phase and then making a cut. It is a method of manufacturing a magnet. Further, it is also characterized in that the plate-shaped superconductor is fixed to the support base with an adhesive and then spirally processed by water jet cutting. Alternatively, RE, B
After forming a molded body from a precursor containing an oxide of a and Cu and processing the molded body into a spiral coil shape,
Single crystal REBa 2 Cu 3 O by heating to a semi-molten state consisting of liquid phase and liquid phase and then slowly cooling in an oxidizing atmosphere
A method of manufacturing a superconducting magnet, which comprises forming a superconducting material having a structure in which RE 2 BaCuO 5 is finely dispersed in a 7-X phase. Further, here, the precursor is placed on the spirally formed body so as to cover the spirally formed body, these are heated to a semi-molten state composed of a 211 phase and a liquid phase, and then the crystal orientation is controlled by a seed crystal. However, it is also characterized by slow cooling in an oxidizing atmosphere.

【0011】また上記の方法により作製された渦巻状の
コイルを渦巻の方向(右巻きまたは左巻き)が交互にな
るように積層し、各コイルを電気的に接続することを特
徴とする超伝導マグネットの製造方法である。ここにお
いて積層されたコイル全体が超伝導体になるように、コ
イル導体のTfより低いTfを有する超伝導相であるR
EBa2 Cu37-X 相によりそれぞれの渦巻状のコイ
ルの端部間を接続することも特徴とする。また前記のい
ずれかの方法によって形成されたコイルの始端と終端と
を単結晶状のREBa2 Cu37-X 相中にRE2 Ba
CuO5 が微細分散した組織を有する超伝導材料により
接続することを特徴とする超伝導マグネットの製造方法
である。
A superconducting magnet characterized in that the spiral coils produced by the above method are laminated so that the spiral directions (right-handed or left-handed) are alternated, and the respective coils are electrically connected. Is a manufacturing method. R is a superconducting phase having a Tf lower than the Tf of the coil conductor so that the entire coil laminated here becomes a superconductor.
It is also characterized in that the ends of the spiral coils are connected by the EBa 2 Cu 3 O 7-X phase. The RE 2 a beginning and end of a coil formed by any of the methods of the in the single crystalline REBa 2 Cu 3 O 7-X phase Ba
This is a method for manufacturing a superconducting magnet, characterized in that the superconducting material has a structure in which CuO 5 is finely dispersed.

【0012】[0012]

【作用】本発明の超伝導用マグネットに使用する材料は
単結晶状のREBa2 Cu37-X 相中にRE2 BaC
uO5 が微細分散した組織を有するものである。ここで
単結晶状というのは完璧な単結晶でなく小傾角粒界など
実用に差支えない欠陥を有するものも包含するという意
味である。REBa2 Cu37-X 相(123相)およ
びRE2 BaCuO5 相(211相)におけるREは
Y,La,Nd,Sm,Eu,Gd,Dy,Ho,E
r,Tm,Yb,Luからなる希土類元素およびそれら
の組み合わせで、LaとNdを含む123相は1:2:
3の化学量論組成からはずれ、REのサイトにBaが一
部置換した状態になることもある。また211相におい
てもLa,NdはY,Sm,Eu,Gd,Dy,Ho,
Er,Tm,Yb,Luとは幾分異なり、金属元素の比
が非化学量論的組成であったり結晶構造が異なっている
ことが知られている。
The material used for the superconducting magnet of the present invention is RE 2 BaC in the single crystal REBa 2 Cu 3 O 7-X phase.
uO 5 has a finely dispersed structure. Here, the term "single crystal" is meant to include not only a perfect single crystal but also a crystal having a defect such as a small tilt grain boundary that does not impair practical use. RE in the REBa 2 Cu 3 O 7-X phase (123 phase) and RE 2 BaCuO 5 phase (211 phase) is Y, La, Nd, Sm, Eu, Gd, Dy, Ho, E.
The rare earth element consisting of r, Tm, Yb, and Lu, and the combination thereof, the 123 phase containing La and Nd is 1: 2 :.
There is a case where the site of RE deviates from the stoichiometric composition of 3 and Ba is partially replaced. Also in the 211 phase, La and Nd are Y, Sm, Eu, Gd, Dy, Ho,
It is known that, unlike Er, Tm, Yb, and Lu, the ratio of the metal elements is a non-stoichiometric composition or the crystal structure is different.

【0013】また123相は211相とBaとCuとの
複合酸化物からなる液相との包晶反応、 211相+液相(BaとCuの複合酸化物)→123相 によりできる。そしてこの包晶反応により123相がで
きる温度(Tf:123相生成温度)はほぼRE元素の
イオン半径に関連し、イオン半径の減少に伴いTfも低
くなる。
The 123 phase can be formed by a peritectic reaction between the 211 phase and a liquid phase composed of a complex oxide of Ba and Cu, and a 211 phase + liquid phase (complex oxide of Ba and Cu) → 123 phase. The temperature at which the 123 phase is formed by this peritectic reaction (Tf: 123 phase formation temperature) is almost related to the ionic radius of the RE element, and Tf decreases as the ionic radius decreases.

【0014】単結晶状の123相中に211相が微細分
散したQMG材料は123相が結晶成長する際、未反応
の211粒が123相中に取り残されるためにできる。
すなわち、QMG材料は、 211相+液相(BaとCuの複合酸化物)→123相
+211相 で示される反応によりできる。
The QMG material in which the 211 phase is finely dispersed in the single crystal 123 phase can be formed because unreacted 211 grains are left in the 123 phase when the 123 phase crystal grows.
That is, the QMG material can be formed by the reaction represented by 211 phase + liquid phase (composite oxide of Ba and Cu) → 123 phase + 211 phase.

【0015】QMG材料中の211相の微細分散は、J
c向上の観点から極めて重要である。PtまたはRhの
少なくとも一方を微量添加することで、半溶融状態(2
11相と液相からなる状態)での211相の粒成長を抑
制し、結果的にQMG材料中の211相を微細化する。
添加量は微細化効果が現れる量および材料コストの観点
からPtで0.2〜2.0wt%、Rhで0.01〜
0.5wt%が望ましい。添加されたPtまたはRhは
123相中に一部固溶する。また固溶できなかった元素
はBaやCuとの複合酸化物を形成し材料中に点在する
ことになる。
The fine dispersion of the 211 phase in the QMG material is J
It is extremely important from the viewpoint of improving c. By adding a trace amount of at least one of Pt and Rh, a semi-molten state (2
The grain growth of the 211 phase in the state of 11 phases and the liquid phase is suppressed, and as a result, the 211 phase in the QMG material is miniaturized.
The amount of Pt added is 0.2 to 2.0 wt.
0.5 wt% is desirable. The added Pt or Rh partially forms a solid solution in the 123 phase. In addition, the elements that cannot be solid-solved form a complex oxide with Ba or Cu and are scattered in the material.

【0016】本発明の超電導マグネットはある平面内に
多数渦巻状(蚊取線香状)に巻いた形状にQMG材を加
工し、細線化を図りコイル定数の大きなマグネットを作
製する。またはさらに渦巻状QMG材を積層することに
よって、ソレノイド型のコイルでは困難であったコイル
定数(または巻き数)の大きいマグネットを作製するこ
とができる。
In the superconducting magnet of the present invention, a QMG material is processed into a spiral shape (mosquito coil shape) wound in a certain plane, and a magnet having a large coil constant is manufactured by thinning. Alternatively, by further stacking the spiral QMG material, it is possible to manufacture a magnet having a large coil constant (or the number of turns), which was difficult with a solenoid coil.

【0017】具体的には、まずコイルを構成する超伝導
体は磁場中においても高い臨界電流密度(Jc)を有す
る必要がある。この条件を満たすには、超伝導的に弱結
合となる大傾角粒界を含まない単結晶状の123相であ
る必要がある。さらに高いJc特性を有するためには磁
束の動きを止めるためのピンニングセンターが必要とな
る。このピンニングセンターとして機能するものが微細
分散した211相であり、より細かく多数分散している
ことが望ましい。先に述べたようにPtやRhはこの2
11相の微細化を促進する働きがある。また211相は
劈開しやすい123相中に微細分散することによって、
超伝導体を機械的に強化しバルク材料として成り立たす
重要な働きをもしている。
Specifically, first, the superconductor forming the coil must have a high critical current density (Jc) even in a magnetic field. In order to satisfy this condition, it is necessary that the 123 phase is a single crystal state that does not include a large tilt grain boundary that is weakly superconductive. In order to have higher Jc characteristics, a pinning center for stopping the movement of magnetic flux is required. It is the 211 phase that is finely dispersed that functions as this pinning center, and it is desirable that a large number of finely dispersed 211 phases are dispersed. As mentioned above, Pt and Rh
It has the function of promoting the refinement of the 11-phase. In addition, the 211 phase is finely dispersed in the 123 phase that is easily cleaved,
It also plays an important role in mechanically strengthening the superconductor and establishing it as a bulk material.

【0018】このような超伝導導体(QMG材料)を図
1に(a)平面図、(b)側面図を示したように渦巻加
工したコイル1にすることによってコイル定数の大きい
マグネットが比較的容易にできる。図1では比較的コイ
ル内径が小さい物を一例として示したが、内径の比較的
大きな渦巻形状の物についても全く同様に考えることが
できる。内径が比較的大きな物はコイルの巻き数が減少
し発生磁場が減少するが、その一方でより均一で広い磁
場空間が得られる利点がある。また、コイルの発生磁界
が約20kガウス以下の場合、ボアに鉄芯を入れること
により特性が改善されることは、銅コイルと鉄芯からな
る電磁石の例からも明らかである。また、図1にはほぼ
同心円状のコイル形状を示したが、楕円状や四角や六角
等の形状の物についても全く同様に考えられることは明
らかである。
By using such a superconducting conductor (QMG material) as a coiled coil 1 as shown in the plan view (a) and side view (b) of FIG. You can easily. In FIG. 1, a coil having a relatively small inner diameter is shown as an example, but a spiral coil having a relatively large inner diameter can be considered in the same manner. An object having a relatively large inner diameter reduces the number of coil turns and reduces the generated magnetic field, but on the other hand, there is an advantage that a more uniform and wider magnetic field space can be obtained. Further, when the magnetic field generated by the coil is about 20 kGauss or less, it is clear from the example of the electromagnet including the copper coil and the iron core that the characteristics are improved by inserting the iron core into the bore. Further, although FIG. 1 shows a substantially concentric coil shape, it is obvious that an elliptical shape, a square shape, a hexagonal shape and the like can be considered in exactly the same manner.

【0019】QMG材料中には大傾角粒界はないが数度
の小傾角粒界を伴う結晶方位の揺らぎがある。この揺ら
ぎは結晶の成長方向に依存し、a軸方向に成長した部分
は比較的大きな揺らぎの分布を有し、数ミリ角の領域で
約±6度、比較的広い領域について調べたものは36度
程度との報告がある(Proceedings of5
th U.S.−Japan workshop on
high Tcsuperconductor およ
び Advances in Superconduc
tivity II,Springer−Verlag
Tokyo 1990)。ここで述べる単結晶状の1
23相はこのような小傾角粒界を伴っている。
There is no large tilt grain boundary in the QMG material, but there is fluctuation of the crystal orientation accompanied by a small tilt grain boundary of several degrees. This fluctuation depends on the crystal growth direction, and the part grown in the a-axis direction has a relatively large distribution of fluctuations, which is about ± 6 degrees in a region of several millimeters square, and is 36 in a comparatively wide region. There is a report about the degree (Proceedings of 5
th U. S. -Japan workshop on
high Tcsuperconductor and Advances in Superconduc
uniformity II, Springer-Verlag
Tokyo 1990). Single crystal 1 described here
The 23rd phase is accompanied by such a low-angle grain boundary.

【0020】次に123相の結晶構造は2次元的であ
り、a−b面で劈開しやすい性質を持っている。したが
ってa−b面でクラックが発生し易く、現在このような
クラックを完全に無くすことはできていない。このクラ
ックが超伝導電流の流れに悪影響を与えないようにする
ためには、クラックと電流が平行、すなわち図2のよう
に結晶のc軸が電流2と絶えず垂直になっていることが
理想である。しかしながらコイル導体中には、c軸の方
位に40度程度の揺らぎがあるため、ある平面内に渦巻
状にコイルを巻いたときのその平面の法線Nに対し図2
に示すようにc軸の方向3は±20度以内であることが
望まれる。
Next, the crystal structure of the 123 phase is two-dimensional and has a property of easily cleaving in the ab plane. Therefore, cracks are likely to occur on the ab plane, and such cracks cannot be completely eliminated at present. In order to prevent this crack from adversely affecting the flow of superconducting current, it is ideal that the crack and the current are parallel, that is, the c axis of the crystal is constantly perpendicular to the current 2 as shown in FIG. is there. However, since there is a fluctuation of about 40 degrees in the c-axis direction in the coil conductor, when the coil is spirally wound in a plane, the normal line N to that plane is compared with FIG.
It is desired that the c-axis direction 3 be within ± 20 degrees as shown in FIG.

【0021】また、コイルに通電し励磁した場合コイル
の内側の導体は、外側の導体に対してより大きな磁界に
曝されることになる。またJcは磁場の増加に伴い減少
するのが一般的である。したがって、同じ断面積を有す
るコイルに通電した場合、内側の導体が先に臨界状態に
達し、超伝導が壊れコイル自身を損傷することになる。
したがって、Jcの磁場特性に合わせ、より内側の導体
の断面積がより太くなっていることが望ましい。
When the coil is energized and excited, the conductor inside the coil is exposed to a larger magnetic field than the conductor outside the coil. Further, Jc generally decreases as the magnetic field increases. Therefore, when a coil having the same cross-sectional area is energized, the inner conductor reaches a critical state first, causing superconductivity to break and the coil itself to be damaged.
Therefore, it is desirable that the inner conductor has a thicker cross-sectional area according to the magnetic field characteristics of Jc.

【0022】またさらに、磁場を発生している超伝導導
体は電磁相互作用により内側から外側へ向かう力(ロー
レンツ力)を受ける。この力が導体の強度を超えた場
合、導体を破壊する。そこでコイルの破壊を防ぐために
は、導体同士を機械的に結合し補強することが必要であ
る。そのためには、隣合う導体の隙間を非超伝導物質に
より埋め、導体同士を固定することが有効である。この
とき導体を結合する非超伝導物質は、導体と近い熱膨張
係数を有することが望ましい。熱硬化性の樹脂などはこ
の一例といえる。
Furthermore, the superconducting conductor generating the magnetic field receives a force (Lorentz force) from the inside to the outside due to electromagnetic interaction. If this force exceeds the strength of the conductor, it destroys the conductor. Therefore, in order to prevent the breakage of the coil, it is necessary to mechanically connect and reinforce the conductors. For that purpose, it is effective to fix the conductors by filling the gap between the adjacent conductors with a non-superconducting material. At this time, it is desirable that the non-superconducting material that binds the conductor has a thermal expansion coefficient close to that of the conductor. A thermosetting resin or the like is one example of this.

【0023】続いて、上記渦巻状コイルを積層して端部
間と接続し、それぞれの渦巻状コイルが発生する磁場が
互いに強め合うように通電することによって、より強い
磁場を発生するマグネットができる。同数の渦巻状コイ
ルを積層するさい、各渦巻状コイルの隙間を小さくしな
るべく互いに近づけた方がより高い最高発生磁場が得ら
れる。このためには図3のように渦巻の方向が同じにな
るよう積層し電流2を内側から外側(または外側から内
側)になるように揃え、コイル1間を導体4で接続する
方法が考えられる。しかし、図4に(a)積層前、
(b)積層後を示したように渦巻コイル1の渦の方向
(右巻きまたは左巻き)を交互に逆にして積層し、かつ
コイル1の内と外の端を交互に接続することによって図
3では必要であったコイルをつなぐ導体が不要となり、
その厚さの分コイルを密に積層できる。図4(a)にお
いて5が接続部分である。
Subsequently, the above-mentioned spiral coils are laminated and connected between the end portions, and current is applied so that the magnetic fields generated by the respective spiral coils reinforce each other, whereby a magnet that generates a stronger magnetic field can be formed. . When stacking the same number of spiral coils, it is possible to obtain a higher maximum generated magnetic field by reducing the gap between the spiral coils and making them close to each other. For this purpose, as shown in FIG. 3, a method of stacking so that the spiral directions are the same, aligning the currents 2 from the inside to the outside (or from the outside to the inside), and connecting the coils 1 with the conductors 4 is considered. . However, in FIG.
(B) As shown after stacking, the spiral coil 1 is stacked by alternately reversing the direction of the vortex (right-handed or left-handed) and connecting the inner and outer ends of the coil 1 alternately. Then, the conductor that connects the required coil is no longer necessary,
The coils can be densely stacked by the thickness. In FIG. 4A, 5 is a connecting portion.

【0024】積層された渦巻コイルの中央部に位置する
コイルは、端に位置するコイルに比べ高い磁場に曝され
ることになる。したがって、同じ断面積を有する積層コ
イルに通電した場合、中央部のコイルが先に臨界状態に
達し、超伝導が壊れコイル自身を損傷することになる。
したがって、Jcの磁場特性に合わせ、より中央部のコ
イルの断面積がより太くなっていることが理想的であ
る。そのためには中央部分の渦巻コイルの層の厚さが端
部の渦巻コイルの層の厚さより厚くなっていることが望
ましい。
The coil located at the center of the stacked spiral coils is exposed to a higher magnetic field than the coils located at the ends. Therefore, when a laminated coil having the same cross-sectional area is energized, the central coil reaches a critical state first, causing superconductivity to break and the coil itself to be damaged.
Therefore, it is ideal that the cross-sectional area of the coil in the central portion is larger according to the magnetic field characteristics of Jc. For that purpose, it is desirable that the thickness of the spiral coil layer at the central portion is larger than the thickness of the spiral coil layer at the end portion.

【0025】積層を行った場合、上記のように各渦巻コ
イルの端部間を接続する必要があるが、QMG材を冷却
し通電した状態において、この接続部での発熱を零また
は極力小さくすることが望ましい。発熱が大きい場合、
消費電力や冷媒の消耗が大きくなるだけではなく熱が超
伝導導体の超伝導特性を低下させ、さらにはクエンチを
引き起こし導体自身を焼損させてしまう。このような要
請から接続には、接触抵抗の低い電極を形成し、電気伝
導度の大きい金属により接続する必要がある。
When laminating is performed, it is necessary to connect between the ends of each spiral coil as described above, but when the QMG material is cooled and energized, the heat generation at this connection is reduced to zero or as small as possible. Is desirable. If the fever is high,
Not only the power consumption and the consumption of the refrigerant increase, but also the heat deteriorates the superconducting property of the superconducting conductor, which causes quenching and burns the conductor itself. In order to meet these requirements, it is necessary to form electrodes with low contact resistance and connect with a metal having high electrical conductivity.

【0026】接続部の発熱を完全に零にするには、接続
部の電流の経路がすべて超伝導体である必要がある。さ
らに始端と終端とを単結晶状のQMG材料により接続す
ることによってマグネット全体を単結晶になるように
し、この超伝導体からなる閉回路に電流導入端子および
超伝導スイッチを取り付けることによって永久電流モー
ドで動作するマグネットができる。
In order to completely eliminate the heat generation at the connection portion, it is necessary that all the current paths of the connection portion are superconductors. Furthermore, by connecting the start end and the end with a single crystal QMG material, the whole magnet is made into a single crystal, and by attaching a current introducing terminal and a superconducting switch to a closed circuit made of this superconductor, a permanent current mode is obtained. You can have a magnet that works with.

【0027】本発明の超伝導マグネットの製造方法であ
るが、コイル形状を得るには、大別して二通りの方法が
ある。一つは結晶化させた後にコイル形状を付与する方
法(GF法)で、もう一つは前駆体をコイル形状に加工
した後結晶化させる方法(FG法)である。
Regarding the method of manufacturing the superconducting magnet of the present invention, there are roughly two methods for obtaining the coil shape. One is a method of giving a coil shape after crystallization (GF method), and the other is a method of processing a precursor into a coil shape and then crystallizing it (FG method).

【0028】GF法の例を示すと、従来の技術である改
良型QMG法等により円柱状のバルク材料を作製する
(Advances in Superconduct
ivity III,Springer−Verlag
Tokyo 1992)。これを所定の厚さにスライ
スし円盤状に加工する。このスライス加工には、ダイヤ
モンド粉末を埋め込んだブレード等による切断加工が適
している。次に円盤状QMG材料は渦巻状に加工され
る。渦巻加工に関しては小型のダイヤモンドポイントに
よる加工も可能であるが、ウォータージェットカッティ
ング(高圧の水を細いノズルから吹き出して切断加工す
る方法)などの加工性に優れた方法が望ましい。ウォー
タージェットカッティングを用いる場合、水中に硬い粉
末(ざくろ石の粉末等)を混ぜて行うアブレージョンと
呼ばれる方法が適している。また水圧による衝撃により
材料が割れるのを防ぐため、変形しにくい台に材料を樹
脂等で固定して加工することが望ましい。また材料は水
と反応する可能性があり加工後はすばやく乾燥させるこ
とが望ましい。
As an example of the GF method, a columnar bulk material is manufactured by an improved QMG method which is a conventional technique (Advances in Superconduct).
Ivity III, Springer-Verlag
Tokyo 1992). This is sliced into a predetermined thickness and processed into a disk shape. For this slicing, cutting with a blade or the like having diamond powder embedded therein is suitable. Next, the disk-shaped QMG material is processed into a spiral shape. As for the spiral processing, processing with a small diamond point is also possible, but a method having excellent workability such as water jet cutting (a method of blowing high-pressure water through a thin nozzle to perform cutting) is desirable. When using water jet cutting, a method called ablation, which is performed by mixing hard powder (garnet powder, etc.) into water, is suitable. Further, in order to prevent the material from cracking due to impact due to water pressure, it is desirable to fix the material to a table that is difficult to deform with a resin or the like for processing. Also, the material may react with water and it is desirable to dry it quickly after processing.

【0029】次にFG法の例を示すと、まずRE,B
a,Cuの酸化物を211相:123相が所定の比にな
るように混合する。このときPt,Rhを添加すると最
終組織の211が微細化する。この混合粉末を金型等に
より加工成形し前駆体を作製する。この前駆体は圧粉体
であるため結晶化したQMG材とは異なりドリルや鋸を
用い加工が容易にできる。例えば図5のように、切れ込
み7を入れて円柱状の前駆体6を糸鋸によりコイル状に
加工することができる。このとき図6の(a)全体図、
(b)一部を拡大した平面図に示したように一部切り残
した部分8をつくることで半溶融時の変形を少なくする
ことができる。
Next, an example of the FG method will be described. First, RE, B
The oxides of a and Cu are mixed so that the 211 phase: 123 phase has a predetermined ratio. At this time, if Pt and Rh are added, the final structure 211 becomes fine. This mixed powder is processed and molded with a mold or the like to prepare a precursor. Since this precursor is a green compact, it can be easily processed using a drill or a saw, unlike the crystallized QMG material. For example, as shown in FIG. 5, the cylindrical precursor 6 can be processed into a coil shape by making a notch 7 with a saw. At this time, (a) overall view of FIG.
(B) As shown in a partially enlarged plan view, by forming a part 8 left uncut, it is possible to reduce deformation during semi-melting.

【0030】加工された前駆体6は図7のように他のR
E組成を有する前駆体9,10,11と重ねられ炉内に
配置される。このとき、コイルの隙間に雰囲気が出入り
できるようになっていることが結晶成長の観点から望ま
しい。前駆体9は、コイル状前駆体が多くの切れ込みを
有することから、種結晶から成長する結晶が外側のコイ
ルにまで最短距離で届くように、コイル状前駆体6の上
部を覆っていることが望ましい。また前駆体9は結晶成
長の観点から、コイル状前駆体6のRE組成のTf以上
のRE組成からなっていることが望ましい。
The processed precursor 6 has another R as shown in FIG.
The precursors 9, 10, and 11 having the E composition are stacked and placed in the furnace. At this time, it is desirable from the viewpoint of crystal growth that the atmosphere can enter and leave the gap between the coils. Since the coiled precursor has many notches, the precursor 9 may cover the upper part of the coiled precursor 6 so that the crystal growing from the seed crystal reaches the outer coil in the shortest distance. desirable. From the viewpoint of crystal growth, the precursor 9 preferably has an RE composition that is equal to or higher than Tf of the RE composition of the coiled precursor 6.

【0031】また前駆体10はコイル状前駆体6のRE
組成のTfより低いTfのRE組成であり、前駆体11
はコイル状前駆体6のRE組成のTfより高いTfのR
E組成であることが望ましい。半溶融状態で長時間に保
持するためには支持材20との反応を最小限にしかつ種
結晶以外からの結晶成長を抑制する必要がある。冷却過
程において前駆体11はTfが高いため比較的すばやく
結晶化し支持材20との反応を防止する。前駆体10は
Tfが低いため前駆体11からの結晶成長を防止する。
The precursor 10 is the RE of the coiled precursor 6.
The RE composition has a Tf lower than the composition Tf, and the precursor 11
Is the R of Tf higher than the Tf of the RE composition of the coiled precursor 6.
It is desirable that the composition is E. In order to maintain the semi-molten state for a long time, it is necessary to minimize the reaction with the support material 20 and suppress the crystal growth from other than the seed crystal. In the cooling process, the precursor 11 has a high Tf and crystallizes relatively quickly to prevent the reaction with the support material 20. Since the precursor 10 has a low Tf, it prevents crystal growth from the precursor 11.

【0032】Seedingは前駆体6のTf以上、種
結晶のTf以下で行われる。このとき種結晶はより大き
い方が効率的であり望ましい。前駆体9はコイル状前駆
体6と同じRE組成であっても良い。種結晶から成長し
たQMG結晶は前駆体9を結晶化しさらにコイル状前駆
体6を結晶化し、コイル状のQMG結晶ができる。
Seeding is performed above the Tf of the precursor 6 and below the Tf of the seed crystal. At this time, a larger seed crystal is more efficient and desirable. The precursor 9 may have the same RE composition as the coiled precursor 6. The QMG crystal grown from the seed crystal crystallizes the precursor 9 and further crystallizes the coiled precursor 6 to form a coiled QMG crystal.

【0033】コイル状結晶は室温まで冷却された後、ダ
イヤモンドブレード等により所定の厚さにスライスされ
る。このとき図6に示したような切り残した部分がある
ものはスライスするさい機械的ダメージが少ない。切り
残した部分を設けない場合、樹脂等により導体間を補強
した後スライス加工することが望ましい。
The coiled crystal is cooled to room temperature and then sliced to a predetermined thickness with a diamond blade or the like. At this time, when there is a portion left uncut as shown in FIG. 6, mechanical damage is small when slicing. When the uncut portion is not provided, it is desirable to slicing after reinforcing the space between the conductors with resin or the like.

【0034】FG法の利点はコイル加工が成形体(圧粉
体)に対して行われるため、高価な加工装置を必要とせ
ず、安価な工具により容易に作製されることにある。ま
た、結晶成長後にコイル形状(バネ形状)を有している
ために、機械的歪を緩和し、ひび割れが入りにくいこと
などがある。
The advantage of the FG method is that since the coil processing is performed on the molded body (compacted powder), it does not require an expensive processing apparatus and can be easily manufactured by an inexpensive tool. Further, since it has a coil shape (spring shape) after crystal growth, mechanical strain is relaxed, and cracks are less likely to occur.

【0035】上記のようにGF法やFG法により作製さ
れた渦巻状導体に通電するには、電極を設ける必要があ
る。電極の接触抵抗はより小さいことが望ましい。電極
作製の一例をあげると、所定の位置にAgペーストを塗
布した後700℃から超伝導体の分解温度以下の温度域
に昇温した後降温する。この降温の際に、酸素富化処理
をかね酸化性雰囲気(望ましくは純酸素中)で徐冷する
ことは、プロセスの効率上望ましい。このようにして電
極を有する渦巻状のQMG超伝導コイルができる。
To energize the spiral conductor produced by the GF method or the FG method as described above, it is necessary to provide an electrode. It is desirable that the contact resistance of the electrodes be smaller. As an example of electrode production, after applying Ag paste at a predetermined position, the temperature is raised from 700 ° C. to a temperature range below the decomposition temperature of the superconductor and then lowered. It is desirable from the standpoint of process efficiency to gradually cool the oxygen enrichment treatment in an oxidizing atmosphere (preferably in pure oxygen) at the time of this temperature decrease. In this way, a spiral QMG superconducting coil having electrodes can be obtained.

【0036】このような渦巻状コイルは取扱いにおける
外力やローレンツ力に耐えるため機械的に補強する必要
がある。補強には隣合う導体間を結合させることが有効
である。補強の一例としては熱硬化樹脂など、硬化時の
体積変化の少ない接着剤や熱膨張率がQMG材に近いも
のが望ましい。また積層されたマグネットに関しても上
記の理由から各層間を固定(補強)することが望まし
い。
Such a spiral coil must be mechanically reinforced in order to withstand external force and Lorentz force during handling. For reinforcement, it is effective to connect adjacent conductors. As an example of the reinforcement, an adhesive such as a thermosetting resin that has a small volume change during curing or a material having a thermal expansion coefficient close to that of a QMG material is desirable. It is also desirable to fix (reinforce) the layers between the laminated magnets for the above reasons.

【0037】また、各層を超伝導体で接続するには、各
層の結晶方位を合わせる必要がある。結晶方位がほぼ合
った状態で互いの接続位置を決定する。コイル接続部分
12を図8(a)のように加工し、くぼみ14の部分に
超伝導体のTf(Tfc)より低いTf(Tfz)のR
E組成の前駆体13を図8(a)のように配置する。こ
れを前駆体13が半溶融状態になりかつコイルが分解し
ない温度T(Tfc>T>Tfz)にまで加熱する。そ
の後Tfz近傍で徐冷することによって互いに向き合う
各層から図8(b)およびこれの部分拡大図(c)のよ
うに前駆体13は123相の結晶16が成長し(図では
中心部分に結晶成長の残り部分がある)超伝導体15と
なり、これにより接続された多層コイルができる。
In order to connect each layer with a superconductor, it is necessary to match the crystal orientation of each layer. The mutual connection positions are determined in a state where the crystal orientations are substantially matched. The coil connecting portion 12 is processed as shown in FIG. 8A, and R of Tf (Tfz) lower than Tf (Tfc) of the superconductor is formed in the recess 14 portion.
The precursor 13 having the E composition is arranged as shown in FIG. This is heated to a temperature T (Tfc>T> Tfz) where the precursor 13 becomes a semi-molten state and the coil does not decompose. Then, by gradually cooling in the vicinity of Tfz, a 123-phase crystal 16 is grown as a precursor 13 from the respective layers facing each other as shown in FIG. 8B and a partially enlarged view of FIG. 8B. (There is the remaining part of the above) to become a superconductor 15, which forms a connected multilayer coil.

【0038】またさらに1または複数の渦巻状コイルに
よって形成されたコイルの始端と終端とを結ぶ超伝導体
を上記と同様に、導体中のくぼみに前駆体13を配置し
熱処理することで、各層の接続およびコイルの始端と終
端が超伝導体で接続された、超伝導の閉ループを有する
マグネットができる。
Further, as in the above case, the precursor 13 is placed in the recess in the conductor and heat-treated in the same manner as described above for the superconductor connecting the starting end and the terminating end of the coil formed by one or a plurality of spiral coils. A magnet having a closed loop of superconducting, in which the superconducting material is connected and the beginning and end of the coil are connected by a superconductor.

【0039】[0039]

【実施例】【Example】

実施例1 市販されている純度99.9%の各試薬Y23 ,Ba
2 ,CuOをY:Ba:Cuの金属元素のモル比が1
3:17:24(すなわち最終組織の123相:211
相のモル比が7:3)になるように混合した。さらに白
金を0.5重量%添加した。混合粉は一旦800℃で8
時間仮焼され、さらに粉砕された。仮焼粉砕粉は内径8
5mmの円筒状金型により厚さ約18mmの円盤状に成
形された。また上記Y系成形体と同様の方法により厚さ
4mmのSm系およびYb系円盤状成形体を作製した。
Example 1 Commercially available reagents Y 2 O 3 and Ba each having a purity of 99.9%
O 2 and CuO have a molar ratio of the metal elements Y: Ba: Cu of 1
3:17:24 (ie 123 phases of final tissue: 211
The phases were mixed in a molar ratio of 7: 3). Further, 0.5% by weight of platinum was added. Mix powder once at 800 ℃ 8
It was calcined for hours and then crushed. Calcinated pulverized powder has an inner diameter of 8
It was molded into a disk shape having a thickness of about 18 mm by a 5 mm cylindrical mold. In addition, a Sm-based and Yb-based disk-shaped molded product having a thickness of 4 mm was produced by the same method as that for the Y-based molded product.

【0040】これらをAl23 の支持材の上にSm
系,Yb系,Y系の順番で下から重ね炉内に配置した。
これらの前駆体は大気中において1150℃まで8時間
で昇温、30分保持された後、1030℃まで1時間で
降温し1時間保持した。その間予め作製しておいたSm
系の種結晶(QMG結晶)を用いSeedingを行っ
た。種結晶の方位はc軸が円盤状の前駆体の法線になる
ように、劈開面を前駆体の上にのせた。その後1005
〜980℃まで100時間かけて冷却しY系QMG結晶
の成長を行った。さらに室温まで約15時間かけて冷却
し、円筒形の単結晶状のY系QMG結晶を得た。
These are Sm on an Al 2 O 3 support material.
System, Yb system, and Y system in this order from the bottom in the stacking furnace.
These precursors were heated to 1150 ° C. in the air for 8 hours and held for 30 minutes, then cooled to 1030 ° C. for 1 hour and held for 1 hour. In the meantime, Sm that was made in advance
Seeding was performed using a seed crystal (QMG crystal) of the system. As for the orientation of the seed crystal, the cleavage plane was placed on the precursor so that the c-axis was the normal to the disk-shaped precursor. Then 1005
The Y-based QMG crystal was grown by cooling to ~ 980 ° C over 100 hours. The mixture was further cooled to room temperature over about 15 hours to obtain a cylindrical single crystal Y-based QMG crystal.

【0041】この結晶をダイヤモンドブレードを用い切
断(スライス)することによって厚さ4.5mmの円盤
状QMG材を得た。これを厚さ8mmの素焼きの板に膠
により固定した。そして、予めウォータージェットカッ
ティングのノズルが図1(a)に示した渦巻の形状の輪
郭線を動くようにプログラムし、ノズル移動速度を約5
0mm/minに設定し、素焼きの板もろとも渦巻状に
カッティングした。このときざくろ石の粉末を水ととも
に噴出させるアブレージョンと呼ばれる方法を用いた。
This crystal was cut (sliced) with a diamond blade to obtain a disk-shaped QMG material having a thickness of 4.5 mm. This was fixed to an 8 mm thick unglazed plate with glue. Then, the water jet cutting nozzle is programmed in advance so as to move along the contour line of the spiral shape shown in FIG. 1A, and the nozzle moving speed is set to about 5
It was set to 0 mm / min, and the unglazed plate was cut into a spiral shape. At this time, a method called ablation in which garnet powder was ejected together with water was used.

【0042】渦巻加工の後、膠を加熱することでコイル
状QMG結晶は素焼きの板から外された。膠を十分除去
した後、図9のようにコイル1の両端にAgペースト1
8を塗布し、さらに850℃に加熱した。850℃で1
0分保持した後、続いて酸素を炉内に流し650℃から
350℃まで50時間かけて冷却し酸素富化処理を行っ
た。室温に冷却した後、エポキシ樹脂17(商品名:ア
ラルダイト)を用いて図9のように補強した。
After the spiral processing, the coil-shaped QMG crystal was removed from the bisque-fired plate by heating the glue. After sufficiently removing the glue, the Ag paste 1 is applied to both ends of the coil 1 as shown in FIG.
8 was applied and further heated to 850 ° C. 1 at 850 ° C
After holding for 0 minutes, oxygen was then flown into the furnace and cooled from 650 ° C. to 350 ° C. over 50 hours to perform oxygen enrichment treatment. After cooling to room temperature, it was reinforced with an epoxy resin 17 (trade name: Araldite) as shown in FIG.

【0043】このようにして、線の断面積が約3.5m
m(幅)×4.5mm(厚さ)の8回巻きのコイルを作
製した。そして、このコイルのAg電極に超音波半田を
用い銅製の電流端子を接続した。これを液体窒素温度
(約77K)に冷却し550Aの電流を流したところ、
中心部で0.85kガウスの磁場を発生することに成功
した。
In this way, the cross-sectional area of the wire is about 3.5 m.
An eight-turn coil measuring m (width) × 4.5 mm (thickness) was produced. Then, a current terminal made of copper was connected to the Ag electrode of this coil using ultrasonic solder. When this was cooled to liquid nitrogen temperature (about 77K) and a current of 550A was applied,
We succeeded in generating a magnetic field of 0.85k Gauss at the center.

【0044】実施例2 市販されている純度99.9%の各試薬Y23 ,Ba
2 ,CuOをY:Ba:Cuの金属元素のモル比が2
5:35:49(すなわち最終組織の123相:211
相のモル比が75:25)になるように混合した。さら
にRhを0.2重量%添加した。混合粉は一旦830℃
で8時間仮焼され、さらに粉砕された。仮焼粉砕粉は内
径85mmの円筒状金型により厚さ約25mmの円盤状
に成形された。また上記Y系成形体と同様の方法により
厚さ4mmのSm系とDyおよびYb系円盤状成形体を
作製した。さらにY系成形体については、等方静水圧プ
レスにより圧縮加工された。このY系前駆体は図6のよ
うな一部がつながった渦巻形状に加工された。この加工
はまずドリルにより穴開け加工を行い、しかる後にこの
穴に糸鋸の刃を貫通させコイル状に切れ込みを入れるこ
とにより行った。
Example 2 Commercially available reagents of purity 99.9% Y 2 O 3 and Ba
O 2 and CuO have a molar ratio of Y: Ba: Cu of metallic elements of 2
5:35:49 (ie 123 phases of final structure: 211
The phases were mixed in a molar ratio of 75:25). Further, 0.2% by weight of Rh was added. Mixed powder once 830 ℃
It was calcined for 8 hours and further crushed. The calcined pulverized powder was formed into a disk shape having a thickness of about 25 mm by a cylindrical mold having an inner diameter of 85 mm. A Sm-based, Dy, and Yb-based disk-shaped molded product having a thickness of 4 mm was produced by the same method as that for the Y-based molded product. Further, the Y-based compact was compressed by an isotropic hydrostatic press. This Y-based precursor was processed into a spiral shape in which a part is connected as shown in FIG. This processing was performed by first making a hole with a drill, and then making a slit in a coil shape by penetrating the hole with a blade of a thread saw.

【0045】これらの前駆体は図7に示すようにAl2
3 の支持材20の上にSm系,Yb系,Y系,Dy系
の順番で下から重ね炉内に配置した。このとき、雰囲気
がコイルの内部全体に行き渡るようにYb系前駆体に切
れ込みを設けた。これらの前駆体は大気中において11
60℃まで8時間で昇温、40分保持された後、104
0℃まで1時間で降温し1時間保持した。その間予め作
製しておいたNd系の種結晶(QMG結晶)を用いてS
eedingを行った。種結晶の方位はc軸が円盤状の
前駆体の法線になるように、劈開面を前駆体の上にのせ
た。その後1015〜975℃まで150時間かけて冷
却しY系コイル状QMG結晶の成長を行った。さらに室
温まで約15時間かけて冷却した。
As shown in FIG. 7, these precursors are Al 2
Sm, Yb, Y, and Dy systems were arranged in this order from the bottom on the O 3 support material 20 in the stacking furnace. At this time, notches were provided in the Yb-based precursor so that the atmosphere was spread throughout the inside of the coil. These precursors are 11
After heating up to 60 ° C. in 8 hours and holding for 40 minutes, 104
The temperature was lowered to 0 ° C. in 1 hour and kept for 1 hour. In the meantime, Sd was produced by using an Nd-based seed crystal (QMG crystal) that had been prepared in advance.
eding. As for the orientation of the seed crystal, the cleavage plane was placed on the precursor so that the c-axis was the normal to the disk-shaped precursor. Then, it was cooled to 1015 to 975 ° C. over 150 hours to grow a Y-based coiled QMG crystal. Furthermore, it cooled to room temperature over about 15 hours.

【0046】この結晶をダイヤモンドブレードを用い切
断(スライス)することによって厚さ約4mmの渦巻コ
イル状のQMG材を得た。さらにコイルの両端に図10
のようにAgペースト18を塗布し880℃に加熱し
た。880℃で10分保持した後、続いて酸素を炉内に
流し650℃から350℃まで50時間かけて冷却し酸
素富化処理を行った。室温に冷却した後、エポキシ樹脂
17を用いて図10のように補強した。
This crystal was cut (sliced) with a diamond blade to obtain a spiral coil QMG material having a thickness of about 4 mm. Furthermore, as shown in FIG.
Then, the Ag paste 18 was applied and heated to 880 ° C. After holding at 880 ° C. for 10 minutes, oxygen was then flown into the furnace and cooled from 650 ° C. to 350 ° C. over 50 hours to perform oxygen enrichment treatment. After cooling to room temperature, it was reinforced with epoxy resin 17 as shown in FIG.

【0047】このようにして、線の断面積が約3.5m
m(幅)×4.0mm(厚さ)の8回巻きのコイルを作
製した。そして、このコイルのAg電極に超音波半田を
用い銅製の電流端子を接続した。これを液体窒素温度
(約77K)に冷却し500Aの電流を流したところ、
中心部で約0.90kガウスの磁場を発生することに成
功した。
In this way, the cross-sectional area of the wire is about 3.5 m.
An eight-turn coil measuring m (width) × 4.0 mm (thickness) was produced. Then, a current terminal made of copper was connected to the Ag electrode of this coil using ultrasonic solder. When this was cooled to liquid nitrogen temperature (about 77K) and a current of 500A was applied,
We succeeded in generating a magnetic field of about 0.90k Gauss at the center.

【0048】実施例3 実施例1のY系前駆体のRE組成、添加条件、徐冷条件
およびコイルの厚さを表1のように変えて同様に実験を
行った。この表に示したように各RE組成の超伝導マグ
ネットはクエンチすることなくY系とほぼ同等の磁場を
発生した。
Example 3 The same experiment was conducted by changing the RE composition, addition conditions, slow cooling conditions and coil thickness of the Y-based precursor of Example 1 as shown in Table 1. As shown in this table, the superconducting magnet of each RE composition generated a magnetic field almost equal to that of the Y system without quenching.

【0049】[0049]

【表1】 [Table 1]

【0050】実施例4 実施例2のY系前駆体のRE組成、前駆体9(図7参
照)のRE組成、添加条件、徐冷条件およびコイルの厚
さを表2のように変えて同様に実験を行った。この表に
示したように各RE組成の超伝導マグネットはクエンチ
することなくY系とほぼ同等の磁場を発生した。
Example 4 Same as Example 2 except that the RE composition of the Y-based precursor, the RE composition of the precursor 9 (see FIG. 7), the addition conditions, the slow cooling conditions and the coil thickness are changed as shown in Table 2. The experiment was conducted. As shown in this table, the superconducting magnet of each RE composition generated a magnetic field almost equal to that of the Y system without quenching.

【0051】[0051]

【表2】 [Table 2]

【0052】実施例5 実施例2で作製したY系渦巻状コイルを図11の(a)
積層前、(b)積層後の斜視図に示すように4枚積層し
た。この時1層目と3層目のコイル1A,1Cは上から
見て時計回りに電流が流れたときに中心から外へ流れる
向きになっており、また2層目と4層目のコイル1B,
1Dは外から中心に向かうように積層した。そして1層
目のコイル1A中心部の電極と2層目のコイル1Bの中
心部の電極21Aとを低融点の半田(商品名:セラソル
ザー)を用い超音波半田ごてにより接続した。また同様
に2層目のコイル1Cの外側の電極と3層目のコイル1
Dの外側の電極21Bとを、3層目の内側の電極と4層
目の内側の電極とをそれぞれ接続した。そして1層目と
4層目の外側の電極を直流電源の電流リードに接続し
た。さらに層間をエポキシ樹脂により固定した。
Example 5 The Y-based spiral coil produced in Example 2 is shown in FIG.
Four sheets were laminated before lamination and as shown in the perspective view after (b) lamination. At this time, the coils 1A and 1C of the first and third layers are oriented so as to flow outward from the center when a current flows clockwise when viewed from above, and the coils 1B and 2B of the second and fourth layers. ,
1D was laminated from the outside toward the center. Then, the electrode in the central portion of the coil 1A of the first layer and the electrode 21A in the central portion of the coil 1B of the second layer were connected with an ultrasonic soldering iron using a low melting point solder (product name: Cerasolzer). Similarly, the outer electrode of the coil 1C of the second layer and the coil 1 of the third layer
The outer electrode 21B of D was connected to the inner electrode of the third layer and the inner electrode of the fourth layer. The outer electrodes of the first and fourth layers were connected to the current leads of the DC power supply. Further, the layers were fixed with an epoxy resin.

【0053】この4層マグネットを液体窒素中に浸し、
マグネットが77Kまで十分冷却された後、500A通
電した。層間の電極部で幾分窒素の沸騰が大きくなった
ものの、マグネットは軸上で図12のグラフのような磁
界分布を発生した。
Immerse this four-layer magnet in liquid nitrogen,
After the magnet was sufficiently cooled to 77K, 500A was energized. Although the boiling of nitrogen increased to some extent in the electrode portion between the layers, the magnet generated a magnetic field distribution on the shaft as shown in the graph of FIG.

【0054】実施例6 実施例5で作製した4層マグネットを10kガウスの外
部磁場中に配置し、液体窒素を投入し77Kに冷却し
た。そして外部磁場と同じ方向に磁場が発生するように
通電した。このとき245A通電した時に超伝導体の一
部が焼損した。焼損した部分は第2層目の中間から2巻
目であり、超伝導相(123相)は熱により完全に分解
していた。
Example 6 The four-layer magnet produced in Example 5 was placed in an external magnetic field of 10 k Gauss, liquid nitrogen was charged, and it was cooled to 77K. Then, electricity was applied so that a magnetic field was generated in the same direction as the external magnetic field. At this time, a part of the superconductor was burnt out when a current of 245 A was applied. The burned-out portion was from the middle to the second roll of the second layer, and the superconducting phase (123 phase) was completely decomposed by heat.

【0055】そこで渦巻の形状を図13のように線の幅
を中心部5mm、中間部4.5mm、外周部4mmと
し、他の条件を実施例2と同様にして渦巻状コイルを作
製した。このときコイルの厚さを4mmと3.5mmの
2種類にした。そして1層目と4層目を厚さ3.5mm
にし、2層目と3層目を厚さ4mmのものを用いた。実
施例5と同様に4つの層を接続し、補強した。
Then, as shown in FIG. 13, a spiral coil was produced under the same conditions as in Example 2 except that the width of the spiral was 5 mm in the center, 4.5 mm in the middle, and 4 mm in the outer circumference. At this time, there were two types of coil thickness, 4 mm and 3.5 mm. The thickness of the first and fourth layers is 3.5 mm
The second and third layers were 4 mm thick. Four layers were connected and reinforced as in Example 5.

【0056】この4層マグネットを10kガウスの外部
磁場中に配置し、液体窒素を投入し77Kに冷却した。
そして外部磁場と同じ方向に磁場が発生するように通電
した。このとき400A通電することができ中心部にお
いて外部磁場と合わせて13.8kガウスを記録した。
このことから、中心部でより大きい断面積を有するマグ
ネットが断面積がすべて同じものに比べ優れていること
がわかった。
This four-layer magnet was placed in an external magnetic field of 10 kGauss, liquid nitrogen was charged, and the temperature was cooled to 77K.
Then, electricity was applied so that a magnetic field was generated in the same direction as the external magnetic field. At this time, a current of 400 A could be applied, and 13.8 kGauss was recorded in the central part together with the external magnetic field.
From this, it was found that a magnet having a larger cross-sectional area in the central portion was superior to those having the same cross-sectional area.

【0057】実施例7 Agペーストによる電極作製工程およびエポキシ樹脂に
よる補強工程を省いた他は実施例2と同じ方法で作製し
たY系渦巻状コイルを厚さ0.2mmのPt製のスペー
サーを配し先の図11(b)に示したものと同様に4枚
積層した。この時1層目と3層目のコイル1A,1Cは
上から見て時計回りに電流2が流れたときに中心から外
へ流れる向きになっており、また2層目と4層目のコイ
ル1B,1Dから外から中心に向かうように積層した。
そして1層目の中心部の端と2層目の中心部の端とを図
14のように加工し、Yb系前駆体13を配置した。ま
た同様に2層目の外側の端と3層目の外側の端の間、3
層目の内側の端と4層目の内側の端の間においても同様
の加工およびYb系前駆体の配置を行った。またAgペ
ーストを1および4層目の外側の端に塗布した。
Example 7 A Y-based spiral coil manufactured by the same method as in Example 2 except that the electrode manufacturing process using Ag paste and the reinforcing process using epoxy resin were omitted was provided with a Pt spacer having a thickness of 0.2 mm. Then, four sheets were laminated in the same manner as that shown in FIG. 11 (b). At this time, the coils 1A and 1C of the first and third layers are oriented so that the current 2 flows clockwise from the center when viewed from above, and the coils of the second and fourth layers are also oriented. The layers 1B and 1D were laminated from the outside toward the center.
Then, the end of the central portion of the first layer and the end of the central portion of the second layer were processed as shown in FIG. 14 to dispose the Yb-based precursor 13. Similarly, between the outer edge of the second layer and the outer edge of the third layer, 3
Similar processing and placement of the Yb-based precursor were performed between the inner edge of the fourth layer and the inner edge of the fourth layer. Also, Ag paste was applied to the outer edges of the first and fourth layers.

【0058】このように積層されたコイルおよび前駆体
は炉内に配置され、大気中で960℃まで8時間で昇温
された。この温度で5分保持された後、930℃まで2
時間で冷却、さらに870℃まで120時間かけて冷却
した。さらに酸素気流中で700℃から350℃まで6
0時間かけて冷却した後、室温まで冷却した。炉内から
慎重に取り出した後、補強のためにエポキシ樹脂を導体
間および層間の一部に充填し硬化させた。十分硬化させ
た後、スペーサーのPt板を抜き取った。また1層目と
4層目の外側のAg電極に直流電源の電流リードを低融
点半田を用いて接続した。
The coil and the precursor thus laminated were placed in a furnace and heated to 960 ° C. in the atmosphere for 8 hours. After being held at this temperature for 5 minutes, 2 up to 930 ° C
It was cooled in time, and further cooled to 870 ° C. in 120 hours. Furthermore, in an oxygen stream from 700 to 350 ° C 6
After cooling for 0 hours, it was cooled to room temperature. After careful removal from the furnace, epoxy resin was filled and cured between the conductors and a part of the layers for reinforcement. After curing sufficiently, the Pt plate of the spacer was taken out. Further, the current leads of the DC power supply were connected to the Ag electrodes on the outer sides of the first and fourth layers using low melting point solder.

【0059】この4層マグネットを液体窒素中に浸し、
マグネットが77Kまで十分冷却された後、500A通
電した。層間の接続部で窒素の沸騰にはほとんど変化が
なかった。マグネットは、軸上で図15のような磁界分
布を発生した。
Immerse this four-layer magnet in liquid nitrogen,
After the magnet was sufficiently cooled to 77K, 500A was energized. There was almost no change in the boiling of nitrogen at the connection between the layers. The magnet generated a magnetic field distribution on the shaft as shown in FIG.

【0060】実施例8 Agペーストによる電極作製工程およびエポキシ樹脂に
よる補強工程を省いた他は実施例2と同じ方法で作製し
たY系渦巻状コイルおよび板状のY系QMG材料を図1
6のように厚さ0.2mmのPt製のスペーサーを層間
に配し4枚積層した。この時1層目と3層目のコイル1
A,1Bは上から見て時計回りに電流が流れたとき中心
から外へ流れる向きになっており、また2層目と4層目
のコイル1B,1Dは外から中心に向かうように積層し
た。そして1層目の中心部の端と2層目の中心部の端と
を先の図14と同様に加工し、Yb系前駆体を配置し
た。また同様に2層目の外側の端と3層目の外側の端の
間、3層目の内側の端と4層目の内側の端の間において
も同様の加工およびYb系前駆体の配置を行った。
Example 8 A Y-based spiral coil and a plate-shaped Y-based QMG material produced in the same manner as in Example 2 except that the step of forming an electrode with Ag paste and the step of reinforcing with an epoxy resin were omitted are shown in FIG.
As in No. 6, a Pt spacer having a thickness of 0.2 mm was arranged between the layers and four sheets were laminated. At this time, the coil 1 of the first layer and the third layer
A and 1B are oriented so that the current flows from the center to the outside when the current flows clockwise when viewed from above, and the coils 1B and 1D of the second and fourth layers are laminated from the outside to the center. . Then, the end of the central portion of the first layer and the end of the central portion of the second layer were processed in the same manner as in FIG. 14 above, and the Yb-based precursor was placed. Similarly, between the outer edge of the second layer and the outer edge of the third layer, similar processing and placement of the Yb-based precursor are also performed between the inner edge of the third layer and the inner edge of the fourth layer. I went.

【0061】また図16および図17に示したように1
および4層目の外側の端部と板状QMG材料の両端部に
おいても同様のくぼみ加工14およびYb系の前駆体1
3を配置した。このとき、板状QMG材料19は1およ
び4層目のQMGコイル材1A,1Dと結晶方位がほぼ
一致するように配置した。またAgペースト18を1お
よび4層目の外側の端に塗布した。
As shown in FIGS. 16 and 17, 1
Also at the outer end of the fourth layer and at both ends of the plate-shaped QMG material, similar indentation processing 14 and Yb-based precursor 1
3 was placed. At this time, the plate-shaped QMG material 19 was arranged so that the crystal orientations of the QMG coil materials 1A and 1D of the first and fourth layers were substantially the same. Also, Ag paste 18 was applied to the outer edges of the first and fourth layers.

【0062】このように積層されたコイルおよび前駆体
は炉内に配置され、大気中で960℃まで8時間で昇温
された。この温度で5分保持された後、930℃まで2
時間で冷却さらに870℃まで120時間かけて冷却し
た。さらに酸素気流中で700から350℃まで60時
間かけて冷却した後、室温まで冷却した。炉内から慎重
に取り出した後、補強のためにエポキシ樹脂を導体間お
よび層間の一部に充填し硬化させた。十分硬化させた
後、スペーサーのPt板を抜き取った。接続された板状
QMG材料に発熱体としてマンガニン線を50回巻き付
け、エポキシ樹脂により固定し、超伝導スイッチを作製
した。また1層目と4層目の外側のAg電極に直流電源
の電流リードを低温半田を用いて接続した。
The coil and the precursor thus laminated were placed in a furnace and heated to 960 ° C. in the atmosphere for 8 hours. After being held at this temperature for 5 minutes, 2 up to 930 ° C
Cooling in hours Further cooling to 870 ° C. over 120 hours. After further cooling in an oxygen stream from 700 to 350 ° C. for 60 hours, it was cooled to room temperature. After careful removal from the furnace, epoxy resin was filled and cured between the conductors and a part of the layers for reinforcement. After curing sufficiently, the Pt plate of the spacer was taken out. A manganin wire as a heating element was wound around the connected plate-shaped QMG material 50 times and fixed with an epoxy resin to manufacture a superconducting switch. Further, the current leads of the DC power supply were connected to the Ag electrodes on the outer sides of the first layer and the fourth layer using low temperature solder.

【0063】この4層マグネットを液体窒素中に浸し、
マグネットが77Kまで十分冷却し、マンガニン線に8
A通電し一部常伝導状態にした後、マグネットに500
A通電した。その後マンガニン線への通電をやめ、マグ
ネットへの通電を100A/minで減らしゼロにし
た。マグネットは、通電電流をゼロにしてから約30秒
後、軸上で図18のような磁界分布を発生した。これに
より永久電流モードでの動作が確認された。
Immerse this four-layer magnet in liquid nitrogen,
The magnet cools well to 77K, and the manganin wire is 8
After energizing A and making it partly normal conduction, 500 on the magnet
A was energized. After that, the power supply to the manganin wire was stopped and the power supply to the magnet was reduced to 100 A / min to zero. The magnet generated a magnetic field distribution as shown in FIG. 18 on the axis about 30 seconds after the applied current was zero. This confirmed the operation in the persistent current mode.

【0064】[0064]

【発明の効果】以上詳述したごとく本発明は、高品位の
酸化物超伝導マグネットを可能にするもので各種分野で
の応用が可能であり、極めて工業的効果が大きい。具体
例としては、実験用各種マグネット、モーター内の励磁
用マグネット、加速器用マグネット、核磁気共鳴用マグ
ネット等があげられる。
As described above in detail, the present invention enables a high-quality oxide superconducting magnet, can be applied in various fields, and has a great industrial effect. Specific examples thereof include various experimental magnets, excitation magnets in motors, accelerator magnets, nuclear magnetic resonance magnets, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】渦巻状コイルの外観を示す(a)平面図および
(b)側面図
FIG. 1A is a plan view and FIG. 1B is a side view showing the appearance of a spiral coil.

【図2】渦巻状コイルの形状と結晶方位との関係を示す
FIG. 2 is a diagram showing the relationship between the shape of a spiral coil and the crystal orientation.

【図3】渦巻状コイルの積層方法の例を示す図FIG. 3 is a diagram showing an example of a method of stacking spiral coils.

【図4】渦巻状コイルの積層方法の例を示す図で、
(a)積層前、(b)積層後を示す
FIG. 4 is a diagram showing an example of a method of stacking spiral coils,
(A) Before lamination, (b) After lamination

【図5】前駆体の加工方法の例を示す図FIG. 5 is a diagram showing an example of a precursor processing method.

【図6】前駆体の加工方法の例を示す図で、(a)全体
図、(b)一部を拡大した平面図
FIG. 6 is a diagram showing an example of a precursor processing method, in which (a) an overall view and (b) a partially enlarged plan view.

【図7】炉内に配置された前駆体を示す図FIG. 7 is a diagram showing a precursor placed in a furnace.

【図8】超伝導接合の方法の例を示す図で、(a)コイ
ルの接合部における加工、(b)熱処理後の接合部分、
(c)図(b)の一部拡大を示す
FIG. 8 is a diagram showing an example of a superconducting joining method, in which (a) processing at the joining portion of the coil, (b) joining portion after heat treatment,
(C) shows a partial enlargement of FIG.

【図9】渦巻コイルのAgペーストおよび補強用樹脂の
一例を示す図
FIG. 9 is a view showing an example of a Ag paste of a spiral coil and a reinforcing resin.

【図10】熱硬化性樹脂で補強された渦巻コイルの例を
示す図
FIG. 10 is a view showing an example of a spiral coil reinforced with a thermosetting resin.

【図11】渦巻状コイルの積層方法の例を示す図で、
(a)積層前、(b)積層後を示す
FIG. 11 is a diagram showing an example of a method of stacking spiral coils,
(A) Before lamination, (b) After lamination

【図12】本発明の超伝導マグネットの軸上の磁場分布
の例を示すグラフ
FIG. 12 is a graph showing an example of the magnetic field distribution on the axis of the superconducting magnet of the present invention.

【図13】外側の導体の断面積が内側の導体の断面積に
比べ小さくなっている渦巻コイルの例を示す図
FIG. 13 is a diagram showing an example of a spiral coil in which the cross-sectional area of the outer conductor is smaller than the cross-sectional area of the inner conductor.

【図14】超伝導接合方法の例を示す図FIG. 14 is a diagram showing an example of a superconducting joining method.

【図15】本発明の超伝導マグネットの軸上の磁場分布
の例を示すグラフ
FIG. 15 is a graph showing an example of the magnetic field distribution on the axis of the superconducting magnet of the present invention.

【図16】超伝導接続された積層コイルを示す図FIG. 16 is a diagram showing a laminated coil connected in a superconducting manner.

【図17】図16の積層コイルの一部分の超伝導接合方
法を示す図
FIG. 17 is a diagram showing a superconducting joining method for a portion of the laminated coil shown in FIG. 16;

【図18】本発明の超伝導マグネットの軸上の磁場分布
の例を示すグラフ
FIG. 18 is a graph showing an example of the magnetic field distribution on the axis of the superconducting magnet of the present invention.

【符号の説明】 1,1A,1B,1C,1D コイル 2 電流 3 c軸の方位 4 導体 5 接続部分 6,9,10,11,13 前駆体 7 切れ込み 8 切り残した部分 12 接続部分 14 くぼみ 15 超伝導体 16 123相の結晶 17 エポキシ樹脂 18 Agペースト 19 QMG材料 20 支持材 21A,21B 電極 N コイルを形成する面の法線[Explanation of symbols] 1,1A, 1B, 1C, 1D Coil 2 Current 3 c-axis direction 4 Conductor 5 Connection part 6,9,10,11,13 Precursor 7 Notch 8 Uncut part 12 Connection part 14 Recess 15 Superconductor 16 12 3 Phase Crystal 17 Epoxy Resin 18 Ag Paste 19 QMG Material 20 Supporting Material 21A, 21B Electrode N Normal of Surface Forming Coil

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 D H01F 6/00 ZAA 41/04 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication H01B 13/00 565 D H01F 6/00 ZAA 41/04 Z

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 単結晶状のREBa2 Cu37-X
(REはYを含む希土類元素およびそれらの組み合わ
せ)中にRE2 BaCuO5 が微細分散した組織を有
し、渦巻状のコイル形状を有することを特徴とする超伝
導マグネット。
1. A spiral coil having a structure in which RE 2 BaCuO 5 is finely dispersed in a single crystalline REBa 2 Cu 3 O 7-X phase (RE is a rare earth element containing Y and a combination thereof). A superconducting magnet having a shape.
【請求項2】 REBa2 Cu37-X 相の結晶方位の
c軸の方向が40度以内に揃っており、かつ微量のPt
またはRhの少なくとも一方を含有することを特徴とす
る請求項1に記載の超伝導マグネット。
2. The REBa 2 Cu 3 O 7-X phase has a crystallographic orientation in which the c-axis direction is aligned within 40 degrees and a small amount of Pt.
Alternatively, the superconducting magnet according to claim 1, containing at least one of Rh.
【請求項3】 REBa2 Cu37-X 相の結晶方位の
c軸が渦巻を構成する平面の法線に対して20度以内に
揃っていることを特徴とする請求項1または2に記載の
超伝導マグネット。
3. The crystallographic c-axis of the REBa 2 Cu 3 O 7-X phase is aligned within 20 degrees with respect to the normal to the plane forming the spiral, according to claim 1 or 2. The superconducting magnet described.
【請求項4】 渦巻の内側の線の断面積が外側の線の断
面積に比べて大きくなっていることを特徴とする請求項
1ないし3のいずれかに記載の超伝導マグネット。
4. The superconducting magnet according to claim 1, wherein the cross-sectional area of the inner line of the spiral is larger than that of the outer line.
【請求項5】 渦巻を構成する超伝導体の隙間の少なく
とも一部に樹脂が存在することによって補強されている
ことを特徴とする請求項1ないし4のいずれかに記載の
超伝導マグネット。
5. The superconducting magnet according to claim 1, wherein the superconducting magnet is reinforced by the presence of resin in at least a part of the gap of the superconductor forming the spiral.
【請求項6】 請求項1ないし5のいずれかに記載の渦
巻状のコイルが複数積層されていることを特徴とする超
伝導マグネット。
6. A superconducting magnet, wherein a plurality of spiral coils according to claim 1 are stacked.
【請求項7】 隣接する層の渦巻の方向(右巻きまたは
左巻き)が交互になっていることを特徴とする請求項6
に記載の超伝導マグネット。
7. The spiral direction (right-handed or left-handed) of adjacent layers is alternated.
Superconducting magnet described in.
【請求項8】 積層されたそれぞれの渦巻状のコイルの
端部間が高電気伝導率を有する金属により接続されてい
ることを特徴とする請求項6または7に記載の超伝導マ
グネット。
8. The superconducting magnet according to claim 6, wherein the ends of each of the laminated spiral coils are connected by a metal having a high electric conductivity.
【請求項9】 積層されたそれぞれの渦巻状のコイルの
端部間がコイル導体のTf(REBa2 Cu37-X
の生成温度)より低いTfを有する超伝導体であるRE
Ba2 Cu37-X 相により接続されていることを特徴
とする請求項6または7に記載の超伝導マグネット。
9. A RE, which is a superconductor having a Tf between the ends of each of the laminated spiral coils that is lower than the Tf (REBa 2 Cu 3 O 7 -X phase formation temperature) of the coil conductor.
The superconducting magnet according to claim 6 or 7, wherein the superconducting magnets are connected by a Ba 2 Cu 3 O 7-X phase.
【請求項10】 中央部分の渦巻状のコイルの層の厚さ
が端部の渦巻状のコイルの層の厚さより厚くなっている
ことを特徴とする請求項6ないし9のいずれかに記載の
超伝導マグネット。
10. The spiral coil layer at the central portion is thicker than the spiral coil layer at the end portion, according to any one of claims 6 to 9. Superconducting magnet.
【請求項11】 各渦巻状のコイルの層間の少なくとも
一部に樹脂が存在することによって補強されていること
を特徴とする請求項6ないし10のいずれかに記載の超
伝導マグネット。
11. The superconducting magnet according to claim 6, wherein the spiral coil is reinforced by the presence of resin in at least a part of the layers between the spiral coils.
【請求項12】 請求項1ないし11のいずれかに記載
の1または複数の渦巻状コイルによって形成されたコイ
ルの始端と終端とを単結晶状のREBa2 Cu37-X
相中にRE2 BaCuO5 が微細分散した組織を有する
酸化物超伝導材料を用いて接続することによって超伝導
体からなる閉回路を構成し、かつ電流導入端子および超
伝導スイッチからなることを特徴とする超伝導マグネッ
ト。
12. A single crystal REBa 2 Cu 3 O 7-X having a starting end and an ending end of a coil formed by one or a plurality of spiral coils according to any one of claims 1 to 11.
A closed circuit composed of a superconductor is formed by connecting an oxide superconducting material having a structure in which RE 2 BaCuO 5 is finely dispersed in the phase, and is composed of a current introducing terminal and a superconducting switch. And a superconducting magnet.
【請求項13】 単結晶状のREBa2 Cu37-X
中にRE2 BaCuO5 が微細分散した組織を有する酸
化物超伝導材料から板状に切り出した後に切れ目を入れ
ることにより渦巻状のコイル形状に加工することを特徴
とする超伝導マグネットの製造方法。
13. A spiral shape is obtained by cutting a plate-shaped oxide superconducting material having a structure in which RE 2 BaCuO 5 is finely dispersed in a single-crystal REBa 2 Cu 3 O 7-X phase and then making a cut. A method for manufacturing a superconducting magnet, which is characterized in that it is processed into a coil shape.
【請求項14】 板状超伝導体を接着剤により支持台に
固定した後、ウォータージェットカッティングにより渦
巻加工することを特徴とする請求項13に記載の超伝導
マグネットの製造方法。
14. The method for manufacturing a superconducting magnet according to claim 13, wherein the plate-shaped superconductor is fixed to the support base with an adhesive and then spirally processed by water jet cutting.
【請求項15】 RE,Ba,Cuの酸化物を含む前駆
体から成形体を作製し、成形体を渦巻状のコイル形状に
加工した後、これを211相と液相からなる半溶融状態
に加熱し、その後酸化性雰囲気中で徐冷することで単結
晶状のREBa2 Cu37-X 相中にRE2 BaCuO
5 が微細分散した組織を有する超伝導材料を形成せしめ
ることを特徴とする超伝導マグネットの製造方法。
15. A molded body is produced from a precursor containing oxides of RE, Ba, and Cu, and the molded body is processed into a spiral coil shape, which is then made into a semi-molten state consisting of a 211 phase and a liquid phase. By heating and then slowly cooling in an oxidizing atmosphere, RE 2 BaCuO is formed in the single crystal REBa 2 Cu 3 O 7-X phase.
5. A method for manufacturing a superconducting magnet, wherein 5 forms a superconducting material having a finely dispersed structure.
【請求項16】 渦巻状の成形体の上に渦巻状成形体を
覆うように前駆体を配置し、これらを211相と液相か
らなる半溶融状態に加熱し、次に種結晶により結晶方位
を制御し、酸化性雰囲気中で徐冷することを特徴とする
請求項15に記載の超伝導マグネットの製造方法。
16. A precursor is disposed on a spirally formed body so as to cover the spirally formed body, these are heated to a semi-molten state composed of a 211 phase and a liquid phase, and then a crystal orientation is obtained by a seed crystal. 16. The method for producing a superconducting magnet according to claim 15, wherein the temperature is controlled and gradually cooled in an oxidizing atmosphere.
【請求項17】 請求項13ないし16のいずれかに記
載の方法により作製された渦巻状のコイルを渦巻の方向
(右巻きまたは左巻き)が交互になるように積層し、各
コイルを電気的に接続することを特徴とする超伝導マグ
ネットの製造方法。
17. A spiral coil produced by the method according to claim 13 is laminated so that the spiral directions (right-handed or left-handed) alternate, and each coil is electrically connected. A method for manufacturing a superconducting magnet, characterized by connecting.
【請求項18】 積層されたコイル全体が超伝導体にな
るように、コイル導体のTfより低いTfを有する超伝
導相であるREBa2 Cu37-X 相によりそれぞれの
渦巻状のコイルの端部間を接続することを特徴とする請
求項17に記載の超伝導マグネットの製造方法。
18. The spiral coil of each REBA 2 Cu 3 O 7-X phase, which is a superconducting phase having a Tf lower than the Tf of the coil conductor, so that the entire laminated coil becomes a superconductor. The method for manufacturing a superconducting magnet according to claim 17, wherein the ends are connected to each other.
【請求項19】 請求項13ないし18のいずれかに記
載の方法によって形成されたコイルの始端と終端とを単
結晶状のREBa2 Cu37-X 相中にRE2 BaCu
5 が微細分散した組織を有する超伝導材料により接続
することを特徴とする超伝導マグネットの製造方法。
19. The method of claim 13 to 18 RE 2 BaCu the beginning and end of the coil formed by the method described in the single crystalline REBa 2 Cu 3 O 7-X phase either
A method for manufacturing a superconducting magnet, which comprises connecting with a superconducting material having a structure in which O 5 is finely dispersed.
JP5828394A 1994-03-04 1994-03-04 Manufacturing method of superconducting magnet Expired - Lifetime JP3794591B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5828394A JP3794591B2 (en) 1994-03-04 1994-03-04 Manufacturing method of superconducting magnet
CNB951903039A CN1152396C (en) 1994-03-04 1995-03-03 Superconducting magnet and production method thereof
PCT/JP1995/000351 WO1995024047A1 (en) 1994-03-04 1995-03-03 Superconducting magnet and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5828394A JP3794591B2 (en) 1994-03-04 1994-03-04 Manufacturing method of superconducting magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006044723A Division JP2006222435A (en) 2006-02-22 2006-02-22 Superconducting magnet

Publications (2)

Publication Number Publication Date
JPH07245211A true JPH07245211A (en) 1995-09-19
JP3794591B2 JP3794591B2 (en) 2006-07-05

Family

ID=13079870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5828394A Expired - Lifetime JP3794591B2 (en) 1994-03-04 1994-03-04 Manufacturing method of superconducting magnet

Country Status (3)

Country Link
JP (1) JP3794591B2 (en)
CN (1) CN1152396C (en)
WO (1) WO1995024047A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191538A (en) * 2003-12-02 2005-07-14 Nippon Steel Corp Working method of oxide superconductor, oxide superconductive element and superconducting magnet
JP2006332577A (en) * 2005-04-28 2006-12-07 Nippon Steel Corp Oxide superconductor coil, its manufacturing method, its exciting method, its cooling method and magnet system
JP2009170550A (en) * 2008-01-11 2009-07-30 Nippon Steel Corp Oxide superconducting magnet, its manufacturing method, and cooling method
WO2011071071A1 (en) * 2009-12-08 2011-06-16 新日本製鐵株式会社 Oxide superconducting bulk magnet member
JP2011142303A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
JP2011142304A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
JP2020113631A (en) * 2019-01-10 2020-07-27 国立大学法人山梨大学 High frequency superconducting laminate

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474168B (en) * 2012-06-07 2016-08-03 清华大学 superconducting wire
RU2254633C1 (en) * 2003-10-27 2005-06-20 Российский научный центр "Курчатовский институт" Method for manufacturing superconductor windings (alternatives)
WO2007000687A2 (en) * 2005-06-28 2007-01-04 Koninklijke Philips Electronics N.V. Ferromagnetic shield for magnetic resonance imaging
WO2015119013A1 (en) 2014-02-05 2015-08-13 古河電気工業株式会社 Superconductive coil
CN104779841B (en) * 2015-04-09 2017-03-08 浙江东晶电子股份有限公司 A kind of method that utilization spherical coil supporting structure carries out superconducting rotor suspension
CN106298150B (en) * 2016-09-13 2018-07-31 华北电力大学 A kind of superconducting magnet and preparation method based on ReBCO spiral coating conductor pieces
CN106298149B (en) * 2016-09-13 2018-01-23 华北电力大学 A kind of conduction cooling superconducting magnet and preparation based on ReBCO spiral coating conductor pieces
CN106449006B (en) * 2016-10-10 2018-06-22 华北电力大学 A kind of conduction cooling magnet based on ReBCO coating conductor pieces
CN106298151B (en) * 2016-10-10 2018-06-22 华北电力大学 A kind of class bit superconducting magnet based on ReBCO coatings
DE112018002493T5 (en) * 2017-05-15 2020-02-20 Riken Superconducting magnet
CN108470617A (en) * 2018-05-30 2018-08-31 上海交通大学 High-temperature superconductor closing coil constant current switch structure and its working method
US20210125761A1 (en) * 2018-05-31 2021-04-29 Mitsubishi Electric Corporation Superconducting magnet and method of manufacturing superconducting magnet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777168B2 (en) * 1987-03-31 1995-08-16 住友電気工業株式会社 Superconducting coil
JPH0713924B2 (en) * 1987-04-24 1995-02-15 住友電気工業株式会社 Superconducting magnet
JPH0782939B2 (en) * 1989-01-20 1995-09-06 新日本製鐵株式会社 Magnet using oxide superconductor and method for manufacturing the same
JP3018534B2 (en) * 1991-03-20 2000-03-13 住友電気工業株式会社 High temperature superconducting coil
JPH0582330A (en) * 1991-09-20 1993-04-02 Furukawa Electric Co Ltd:The Manufacture of oxide series superconductor coil
JPH0812820B2 (en) * 1992-04-02 1996-02-07 新日本製鐵株式会社 Superconducting magnet
JPH05301716A (en) * 1992-04-28 1993-11-16 Nippon Steel Corp Oxide superconductor produced by utilizing solid-phase diffusion and production process
JPH05315127A (en) * 1992-05-06 1993-11-26 Sumitomo Heavy Ind Ltd Manufacture of superconducting coil

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191538A (en) * 2003-12-02 2005-07-14 Nippon Steel Corp Working method of oxide superconductor, oxide superconductive element and superconducting magnet
JP4603331B2 (en) * 2003-12-02 2010-12-22 新日本製鐵株式会社 Oxide superconductor processing method, oxide superconducting energization element and superconducting magnet
JP2006332577A (en) * 2005-04-28 2006-12-07 Nippon Steel Corp Oxide superconductor coil, its manufacturing method, its exciting method, its cooling method and magnet system
JP2009170550A (en) * 2008-01-11 2009-07-30 Nippon Steel Corp Oxide superconducting magnet, its manufacturing method, and cooling method
WO2011071071A1 (en) * 2009-12-08 2011-06-16 新日本製鐵株式会社 Oxide superconducting bulk magnet member
JP2011142303A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
JP2011142304A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
JP2011199298A (en) * 2009-12-08 2011-10-06 Nippon Steel Corp Oxide superconducting bulk magnet member
CN102640234A (en) * 2009-12-08 2012-08-15 新日本制铁株式会社 Oxide superconducting bulk magnet member
US8948829B2 (en) 2009-12-08 2015-02-03 Nippon Steel & Sumitomo Metal Corporation Oxide superconducting bulk magnet member
JP2020113631A (en) * 2019-01-10 2020-07-27 国立大学法人山梨大学 High frequency superconducting laminate

Also Published As

Publication number Publication date
CN1152396C (en) 2004-06-02
WO1995024047A1 (en) 1995-09-08
CN1127050A (en) 1996-07-17
JP3794591B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
JP3794591B2 (en) Manufacturing method of superconducting magnet
EP1925040B1 (en) High temperature superconducting wires and coils
EP2511917B1 (en) Oxide superconducting bulk magnet member
EP0634379B1 (en) Joined product of of superconductive oxide materials and its manufacture
JP4653555B2 (en) Oxide superconducting magnet material and oxide superconducting magnet system
US6569811B1 (en) Enhancement of JC in oxide superconductors
JP4799979B2 (en) Oxide superconductor coil, oxide superconductor coil manufacturing method, oxide superconductor coil excitation method, oxide superconductor coil cooling method, and magnet system
JP4362009B2 (en) Method of manufacturing a coil from high temperature superconducting material and low AC loss high temperature superconducting coil
JP4865081B2 (en) Oxide superconducting bulk magnet member
JP5675232B2 (en) Superconducting current lead
JP4603331B2 (en) Oxide superconductor processing method, oxide superconducting energization element and superconducting magnet
JP4903729B2 (en) Oxide superconducting magnet, manufacturing method thereof, and cooling method
JP5405069B2 (en) Tape-shaped oxide superconductor and substrate used therefor
JP2006222435A (en) Superconducting magnet
JP2012064323A (en) Superconductive current lead
JPH09275009A (en) Plate-shaped conductor with triaxial orientation oxide superconductors and laminated superconductive magnet
JPH05319824A (en) Production of oxide superconductor laminated body
JPH10188696A (en) Oxide superconductive wire and its connecting method
KR970005161B1 (en) Method of fabricating a superconductive body and apparatus and systems comprising the body
JPH0950718A (en) Rare earth oxide superconducting material and its manufacture
EP0734081A1 (en) Oxide superconducting wire and manufacturing method
JP2019176086A (en) Oxide superconducting bulk body and method for manufacturing the same
JPH0948617A (en) Production of rare earth element oxide superconductive material
JPH0645140A (en) Oxide superconductor current lead

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

EXPY Cancellation because of completion of term