JPH07243881A - Vortex flowmeter - Google Patents

Vortex flowmeter

Info

Publication number
JPH07243881A
JPH07243881A JP6062080A JP6208094A JPH07243881A JP H07243881 A JPH07243881 A JP H07243881A JP 6062080 A JP6062080 A JP 6062080A JP 6208094 A JP6208094 A JP 6208094A JP H07243881 A JPH07243881 A JP H07243881A
Authority
JP
Japan
Prior art keywords
vortex
filter
frequency band
signal
pressure difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6062080A
Other languages
Japanese (ja)
Inventor
Hiroo Kashimoto
廣男 樫本
Atsuro Sen
敦朗 千
Yutaka Inada
豊 稲田
Hiroshi Yoshikura
博史 吉倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokico Ltd
Original Assignee
Osaka Gas Co Ltd
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokico Ltd filed Critical Osaka Gas Co Ltd
Priority to JP6062080A priority Critical patent/JPH07243881A/en
Publication of JPH07243881A publication Critical patent/JPH07243881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To provide a vortex flowmeter which enables the obtaining of a better measuring accuracy by adjusting a passing frequency band of a filter properly. CONSTITUTION:An upstream side pressure sensor 11 and a downstream side pressure sensor 12 are provided respectively on the upstream side and the downstream side of a vortex generation body 2 of a pipeline 1 and an arithmetic device 10A is interposed between the upstream side pressure sensor 11 and the downstream side pressure sensor 12 and a filter 7. The arithmetic device 10A sets a passing frequency band of the filter 7 based on a gas pressure difference between the upstream side and the downstream side of the vortex generation body 2 of the pipeline 1. Here, as the passing frequency band of the filter 7 is set based on the gas pressure difference varying corresponding to an average flow rate of the gas, the setting is possible stably and at a higher response speed as compared with that based on a vortex signal A to achieve higher accuracy of a measured value obtained with a flow rate computing device 9. This also allows the setting of the passing frequency band of the filter 7 without being affected by a large change of the vortex signal A thereby enabling the checking of possible melfunctioning inevitable in the traditional art.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は渦流量計に関する。FIELD OF THE INVENTION This invention relates to vortex flow meters.

【0002】[0002]

【従来の技術】従来の渦流量計の一例として図3に示す
渦流量計がある。図において、流体の流れる管路1に渦
発生体2を設け、その下流側にカルマン渦を発生するよ
うにしている。管路1の渦発生体2の下流側には、発振
回路3に接続した超音波送信器4及び超音波受信器5が
相対向して設けられている。発振回路3及び超音波受信
器5に接続して渦信号検出器6が設けられており、超音
波受信器5が受ける超音波の変調量を求めて渦信号Aと
して出力する。渦信号検出器6には通過周波数帯域可変
のフィルタ7及び波形整形器8を介して流量演算器9が
接続されている。
2. Description of the Related Art An example of a conventional vortex flowmeter is a vortex flowmeter shown in FIG. In the figure, a vortex generator 2 is provided in a pipeline 1 through which a fluid flows, and a Karman vortex is generated downstream of the vortex generator 2. An ultrasonic transmitter 4 and an ultrasonic receiver 5 connected to the oscillation circuit 3 are provided on the downstream side of the vortex generator 2 in the pipe line 1 so as to face each other. A vortex signal detector 6 is provided so as to be connected to the oscillation circuit 3 and the ultrasonic receiver 5, and the vortex signal A is obtained by obtaining the modulation amount of the ultrasonic wave received by the ultrasonic receiver 5. A flow rate calculator 9 is connected to the vortex signal detector 6 via a filter 7 having a variable pass frequency band and a waveform shaper 8.

【0003】フィルタ7は、フローノイズ等の不要な信
号を除去する。すなわち、カルマン渦以外の流体の乱れ
に起因して渦信号Aにフローノイズ等の不要な信号が重
畳するが、フィルタ7は、この不要な信号を除去するよ
うにしている。波形整形器8は、渦の発生に対応する周
波数のパルス信号B(渦信号A)を出力する。
The filter 7 removes unnecessary signals such as flow noise. That is, although an unnecessary signal such as flow noise is superimposed on the vortex signal A due to the turbulence of a fluid other than the Karman vortex, the filter 7 removes this unnecessary signal. The waveform shaper 8 outputs a pulse signal B (vortex signal A) having a frequency corresponding to the generation of the vortex.

【0004】渦信号検出器6の出力側と前記フィルタ7
との間には演算器10が介装されており、渦信号Aの周波
数に基づいてフィルタ7の通過周波数帯域を調整(トラ
ッキング制御)するようにしている。すなわち、上述し
たフローノイズ等の不要な信号は流体の流量に応じて変
化するため、フィルタ7の通過周波数帯域を一定にして
おくと、流量によってはフィルタ7を通過した渦信号A
のSN比(S/N)が大きく低下することがあり、この
問題を回避するために演算器10を設け、渦信号Aをトラ
ッキング制御に対しリファレンス信号として用いフィル
タ7の通過周波数帯域をカルマン渦の周波数帯域に一致
させるようにしている。なお、流体がガス体である場合
には、渦信号Aに比較的大きなフローノイズが重畳し、
かつ測定流量レンジが比較的広く設定されるため、計測
精度の向上を図る上でトラッキング制御が極めて重要な
ものとなる。
The output side of the vortex signal detector 6 and the filter 7
An arithmetic unit 10 is interposed between and, and the pass frequency band of the filter 7 is adjusted (tracking control) based on the frequency of the vortex signal A. That is, since unnecessary signals such as the above-described flow noise change according to the flow rate of the fluid, if the pass frequency band of the filter 7 is kept constant, the vortex signal A that has passed through the filter 7 may be changed depending on the flow rate.
The SN ratio (S / N) may significantly decrease. To avoid this problem, an arithmetic unit 10 is provided, and the vortex signal A is used as a reference signal for tracking control so that the pass frequency band of the filter 7 becomes a Karman vortex. It is designed to match the frequency band of. When the fluid is a gas body, a relatively large flow noise is superimposed on the vortex signal A,
Moreover, since the measured flow rate range is set to be relatively wide, tracking control becomes extremely important in order to improve the measurement accuracy.

【0005】この渦流量計では、渦発生体2が流体の流
速に比例する周波数のカルマン渦を発生し、このカルマ
ン渦によって超音波送信器4からの超音波が変調されて
超音波受信器5に受信され、超音波の変調量を渦信号検
出器6が求め、この変調量を流量演算器9が復調するこ
とにより流体の流量を計測する。
In this vortex flowmeter, the vortex generator 2 generates a Karman vortex having a frequency proportional to the flow velocity of the fluid, and the Karman vortex modulates the ultrasonic wave from the ultrasonic transmitter 4 to generate the ultrasonic receiver 5. The vortex signal detector 6 obtains the modulation amount of the ultrasonic wave, and the flow rate calculator 9 demodulates the modulation amount to measure the flow rate of the fluid.

【0006】[0006]

【発明が解決しようとする課題】ところで、渦信号Aは
流れの乱れにより周波数が不規則になったり、あるいは
欠落(信号出力が中断)したりすることが起こり得、こ
れにより渦信号Aが不安定なものになりやすい。このた
め、渦信号Aをトラッキング制御に対しリファレンス信
号として用いている従来技術では、フィルタ7の通過周
波数帯域の設定が不安定になり、フィルタ7を通過する
渦信号Aにノイズが重畳されて計測精度が劣ったものに
なってしまう虞があった。
By the way, the vortex signal A may be irregular in frequency due to turbulence of the flow, or may be missing (interrupted signal output). It tends to be stable. Therefore, in the conventional technique in which the vortex signal A is used as a reference signal for tracking control, the setting of the pass frequency band of the filter 7 becomes unstable, and noise is superimposed on the vortex signal A passing through the filter 7 for measurement. There was a possibility that the accuracy would be poor.

【0007】また、フィルタ7の通過周波数帯域の設定
の不安定さを減少させるために、リファレンス信号とし
て用いる渦信号Aに時定数を持たせることが考えられる
が、この場合、フィルタ7の応答速度が低下し、渦信号
Aが大きく変化した際に追従できなくなり誤動作を招い
てしまい適切な解決策になり得なかった。
In order to reduce the instability of the setting of the pass frequency band of the filter 7, it is conceivable that the vortex signal A used as the reference signal has a time constant. In this case, the response speed of the filter 7 is increased. When the vortex signal A changes significantly, it becomes impossible to follow up, resulting in a malfunction, which cannot be an appropriate solution.

【0008】本発明は、上記事情に鑑みてなされたもの
で、フィルタの通過周波数帯域の調整を適正に行って良
好な計測精度を得られる渦流量計を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a vortex flowmeter capable of appropriately adjusting the pass frequency band of a filter to obtain good measurement accuracy.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するために、ガスの流れる管路に渦発生体を設け、管
路に発振回路に接続した超音波送信器及び超音波受信器
を相対向させて設け、発振回路及び超音波受信器に接続
して該超音波受信器が受ける超音波の変調量を求めて渦
信号として出力する渦信号検出器を設け、該渦信号検出
器に通過周波数帯域可変のフィルタを接続した渦流量計
において、前記管路の渦発生体の上流側及び下流側のガ
ス圧力差を検出する圧力差検出手段を設け、圧力差検出
手段が検出した圧力差に基づいて前記フィルタの通過周
波数帯域を設定させる制御手段を設けたことを特徴とす
る。
In order to achieve the above object, the present invention provides an ultrasonic transmitter and an ultrasonic receiver in which a vortex generator is provided in a pipe through which gas flows and which is connected to an oscillating circuit. Are provided to face each other, and a vortex signal detector is provided which is connected to the oscillation circuit and the ultrasonic receiver to obtain the modulation amount of the ultrasonic wave received by the ultrasonic receiver and outputs the vortex signal as the vortex signal. In the vortex flowmeter in which a filter having a variable pass frequency band is connected to, a pressure difference detection means for detecting a gas pressure difference between the upstream side and the downstream side of the vortex generator in the pipeline is provided, and the pressure detected by the pressure difference detection means Control means for setting the pass frequency band of the filter based on the difference is provided.

【0010】[0010]

【作用】このような構成とすれば、ガスの平均流量に対
応して変化する、管路の渦発生体の上流側及び下流側の
ガス圧力差に基づいてフィルタの通過周波数帯域を設定
するので、通過周波数帯域の調整を渦信号に基づく設定
の場合に比して安定してかつ高い応答速度で行えること
になる。
With such a configuration, the pass frequency band of the filter is set based on the gas pressure difference between the upstream side and the downstream side of the vortex generator in the pipeline, which changes in accordance with the average gas flow rate. Therefore, the adjustment of the pass frequency band can be performed more stably and at a higher response speed than in the case of the setting based on the vortex signal.

【0011】[0011]

【実施例】以下、本発明の一実施例の渦流量計を図1及
び図2に基づいて説明する。図において、ガスの流れる
管路1に渦発生体2を設け、その下流側にカルマン渦を
発生するようにしている。管路1の渦発生体2の下流側
には、発振回路3に接続した超音波送信器4及び超音波
受信器5が相対向して設けられている。発振回路3及び
超音波受信器5に接続して渦信号検出器6が設けられて
おり、超音波受信器5が受ける超音波の変調量を求めて
渦信号Aとして出力する。渦信号検出器6には通過周波
数帯域可変のフィルタ7及び波形整形器8を介して流量
演算器9が接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A vortex flowmeter according to an embodiment of the present invention will be described below with reference to FIGS. In the figure, a vortex generator 2 is provided in a gas passage 1 and a Karman vortex is generated downstream of the vortex generator 2. An ultrasonic transmitter 4 and an ultrasonic receiver 5 connected to the oscillation circuit 3 are provided on the downstream side of the vortex generator 2 in the pipe line 1 so as to face each other. A vortex signal detector 6 is provided so as to be connected to the oscillation circuit 3 and the ultrasonic receiver 5, and the vortex signal A is obtained by obtaining the modulation amount of the ultrasonic wave received by the ultrasonic receiver 5. A flow rate calculator 9 is connected to the vortex signal detector 6 via a filter 7 having a variable pass frequency band and a waveform shaper 8.

【0012】フィルタ7は、フローノイズ等の不要な信
号を除去する。すなわち、カルマン渦以外の流体の乱れ
に起因して渦信号Aにフローノイズ等の不要な信号が重
畳するが、フィルタ7は、後述するようにして設定され
た通過周波数帯域に入る渦信号Aのみを通過させて前記
不要な信号を除去するようにしている。波形整形器8
は、渦の発生に対応する周波数のパルス信号B(渦信号
A)を出力する。
The filter 7 removes unnecessary signals such as flow noise. That is, although an unnecessary signal such as flow noise is superimposed on the vortex signal A due to the turbulence of the fluid other than the Karman vortex, the filter 7 only includes the vortex signal A in the pass frequency band set as described later. Is passed through to remove the unnecessary signal. Wave shaper 8
Outputs a pulse signal B (vortex signal A) having a frequency corresponding to the generation of the vortex.

【0013】管路1の渦発生体2の上流側及び下流側に
は上流側、下流側圧力センサ11,12が設けられており、
管路1の渦発生体2の上流側及び下流側におけるガスの
圧力を検出し、上流側、下流側圧力信号P1,P2を出力す
るようにしている。上流側、下流側圧力センサ11,12と
フィルタ7との間には演算器10A が介装されている。演
算器10A は、上流側、下流側圧力信号P1,P2の差分を取
って管路1の渦発生体2の上流側及び下流側の圧力差を
求めると共に、この圧力差に基づいて、すなわちこの圧
力差をリファレンス信号としてフィルタ7の通過周波数
帯域を設定(トラッキング制御)するようにしている。
Upstream and downstream pressure sensors 11 and 12 are provided on the upstream side and downstream side of the vortex generator 2 in the pipe line 1,
The gas pressures on the upstream side and the downstream side of the vortex generator 2 in the pipeline 1 are detected, and the upstream side and downstream side pressure signals P 1 and P 2 are output. An arithmetic unit 10A is provided between the upstream and downstream pressure sensors 11 and 12 and the filter 7. The computing unit 10A obtains the pressure difference between the upstream side and the downstream side of the vortex generator 2 in the pipe line 1 by taking the difference between the upstream side and downstream side pressure signals P 1 and P 2 , and based on this pressure difference, That is, the pass frequency band of the filter 7 is set (tracking control) by using this pressure difference as a reference signal.

【0014】この渦流量計では、渦発生体2が流体の流
速に比例する周波数のカルマン渦を発生し、このカルマ
ン渦によって超音波送信器4からの超音波が変調されて
超音波受信器5に受信され、超音波の変調量を渦信号検
出器6が求めて渦信号Aをフィルタ7に出力する。一
方、上流側、下流側圧力センサ11,12からの上流側、下
流側圧力信号P1,P2に基づいて演算器10A が管路1の渦
発生体2の上流側及び下流側の圧力差を求めると共に、
この圧力差をリファレンス信号としてフィルタ7の通過
周波数帯域を設定(トラッキング制御)する。そして、
フィルタ7は、設定された通過周波数帯域に入る渦信号
Aのみを通過させて不要な信号を除去した渦信号Aを波
形整形器8に出力する。そして、波形整形器8から不要
な信号が除去されたパルス信号B(渦信号A)が流量演
算器9に送られてガスの流量が計測される。
In this vortex flowmeter, the vortex generator 2 generates a Karman vortex having a frequency proportional to the flow velocity of the fluid, and the Karman vortex modulates the ultrasonic wave from the ultrasonic transmitter 4 to generate the ultrasonic receiver 5. Is received by the vortex signal detector 6, and the vortex signal detector 6 determines the modulation amount of the ultrasonic wave and outputs the vortex signal A to the filter 7. On the other hand, based on the upstream and downstream pressure signals P 1 and P 2 from the upstream and downstream pressure sensors 11 and 12, the calculator 10A determines the pressure difference between the upstream side and the downstream side of the vortex generator 2 in the pipeline 1. As well as
Using this pressure difference as a reference signal, the pass frequency band of the filter 7 is set (tracking control). And
The filter 7 passes only the vortex signal A that falls within the set pass frequency band and removes unnecessary signals, and outputs the vortex signal A to the waveform shaper 8. Then, the pulse signal B (vortex signal A) from which the unnecessary signal is removed is sent from the waveform shaper 8 to the flow rate calculator 9 to measure the gas flow rate.

【0015】ここで、上述した管路1の渦発生体2の上
流側及び下流側の圧力差は、渦発生体2によって発生す
る圧力損失に相当し、かつこの圧力損失はガスの流量に
比例して変化するので、前記圧力差は、ほぼガスの平均
流量に依存した値になる。このため、圧力差をリファレ
ンス信号としてフィルタ7の通過周波数帯域を設定(ト
ラッキング制御)することにより通過周波数帯域の調整
が安定してかつ高い応答速度で行われることとなり、ひ
いては流量演算器9で得られる計測値の精度が高くな
る。さらに渦信号Aの大きな変化に影響されずにフィル
タ7の通過周波数帯域を設定(トラッキング制御)でき
るので、渦信号Aをリファレンス信号とした従来技術で
惹起した誤動作の発生を抑制できることになる。
Here, the pressure difference between the upstream side and the downstream side of the vortex generator 2 in the pipe line 1 corresponds to the pressure loss generated by the vortex generator 2, and this pressure loss is proportional to the gas flow rate. Therefore, the pressure difference becomes a value substantially dependent on the average gas flow rate. Therefore, by setting (tracking control) the pass frequency band of the filter 7 using the pressure difference as a reference signal, the pass frequency band can be adjusted stably and at a high response speed, which in turn can be obtained by the flow rate calculator 9. The accuracy of the measured value is increased. Furthermore, since the pass frequency band of the filter 7 can be set (tracking control) without being affected by a large change in the vortex signal A, it is possible to suppress the malfunction caused by the conventional technique using the vortex signal A as a reference signal.

【0016】上述したようにトラッキング制御を安定し
てかつ応答性よく行えるので、フィルタ7に急峻な特性
のものを用いてもフィルタ7の通過周波数帯域が渦信号
Aの周波数から外れることがなく、よりクリアな信号を
得ることができる。
As described above, since the tracking control can be performed stably and with good responsiveness, the pass frequency band of the filter 7 does not deviate from the frequency of the vortex signal A even if the filter 7 having a steep characteristic is used. A clearer signal can be obtained.

【0017】なお、本実施例では、圧力差検出手段を上
流側、下流側圧力センサ11,12及び演算器10A から構成
すると共に、演算器10A が制御手段を兼ねたものになっ
ているが、これに代えて圧力差検出手段を、管路1の渦
発生体2の上流側及び下流側のガス圧力差を検出する差
圧センサで構成すると共に制御手段を独立して設けるよ
うに構成してもよい。
In this embodiment, the pressure difference detecting means is composed of the upstream and downstream pressure sensors 11, 12 and the arithmetic unit 10A, and the arithmetic unit 10A also serves as the control means. Instead of this, the pressure difference detecting means is constituted by a differential pressure sensor for detecting the gas pressure difference between the upstream side and the downstream side of the vortex generator 2 in the pipeline 1, and the control means is provided independently. Good.

【0018】[0018]

【発明の効果】本発明は、以上説明したように構成され
た渦流量計であるから、ガスの平均流量に対応して変化
する管路の渦発生体の上流側及び下流側のガス圧力差に
基づいてフィルタの通過周波数帯域を設定して、通過周
波数帯域の調整を渦信号に基づく設定の場合に比して安
定してかつ高い応答速度で行えるので、計測値の精度を
高くできる。さらに渦信号の大きな変化に影響されずに
フィルタの通過周波数帯域を設定できるので、渦信号に
基づいてフィルタの通過周波数帯域を設定する従来技術
で惹起する誤動作の発生を抑制できる。
Since the present invention is the vortex flowmeter constructed as described above, the gas pressure difference between the upstream side and the downstream side of the vortex generator in the conduit which changes corresponding to the average gas flow rate. Since the pass frequency band of the filter is set on the basis of, and the pass frequency band can be adjusted more stably and at a higher response speed than in the case of the setting based on the vortex signal, the accuracy of the measured value can be increased. Furthermore, since the pass frequency band of the filter can be set without being affected by a large change in the vortex signal, it is possible to suppress the occurrence of malfunction caused by the conventional technique of setting the pass frequency band of the filter based on the vortex signal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の渦流量計を模式的に示す図
である。
FIG. 1 is a diagram schematically showing a vortex flowmeter according to an embodiment of the present invention.

【図2】同渦流量計を示す断面図である。FIG. 2 is a sectional view showing the vortex flowmeter.

【図3】従来の渦流量計の一例を模式的に示す図であ
る。
FIG. 3 is a diagram schematically showing an example of a conventional vortex flowmeter.

【符号の説明】[Explanation of symbols]

1 管路 3 発振回路 4 超音波送信器 5 超音波受信器 6 渦信号検出器 7 フィルタ 9 流量演算器 10A 演算器(圧力差検出手段、制御手段) 11 上流側圧力センサ(圧力差検出手段) 12 下流側圧力センサ(圧力差検出手段) 1 Pipeline 3 Oscillation circuit 4 Ultrasonic transmitter 5 Ultrasonic receiver 6 Vortex signal detector 7 Filter 9 Flow rate calculator 10A Calculator (pressure difference detection means, control means) 11 Upstream pressure sensor (pressure difference detection means) 12 Downstream pressure sensor (pressure difference detection means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千 敦朗 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 稲田 豊 神奈川県川崎市川崎区富士見1丁目6番3 号 トキコ株式会社内 (72)発明者 吉倉 博史 神奈川県川崎市川崎区富士見1丁目6番3 号 トキコ株式会社内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Atsuro Sensen 4-1-2, Hirano-cho, Chuo-ku, Osaka, Osaka Gas Co., Ltd. (72) Inventor Yutaka Inada 1-3-6 Fujimi, Kawasaki-ku, Kawasaki-shi, Kanagawa No. Tokiko Co., Ltd. (72) Inventor Hiroshi Yoshikura 1-3-6 Fujimi, Kawasaki-ku, Kawasaki-shi, Kanagawa Tokiko Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガスの流れる管路に渦発生体を設け、管
路に発振回路に接続した超音波送信器及び超音波受信器
を相対向させて設け、発振回路及び超音波受信器に接続
して該超音波受信器が受ける超音波の変調量を求めて渦
信号として出力する渦信号検出器を設け、該渦信号検出
器に通過周波数帯域可変のフィルタを接続した渦流量計
において、前記管路の渦発生体の上流側及び下流側のガ
ス圧力差を検出する圧力差検出手段を設け、圧力差検出
手段が検出した圧力差に基づいて前記フィルタの通過周
波数帯域を設定させる制御手段を設けたことを特徴とす
る渦流量計。
1. A vortex generator is provided in a pipe through which gas flows, and an ultrasonic transmitter and an ultrasonic receiver connected to an oscillating circuit are provided in the pipe so as to face each other, and connected to the oscillating circuit and the ultrasonic receiver. Then, in the vortex flowmeter in which a vortex signal detector that obtains the modulation amount of the ultrasonic wave received by the ultrasonic receiver and outputs it as a vortex signal is provided, and the vortex signal detector is connected to a filter having a variable pass frequency band, A pressure difference detecting means for detecting a gas pressure difference between the upstream side and the downstream side of the vortex generator in the pipeline is provided, and a control means for setting the pass frequency band of the filter based on the pressure difference detected by the pressure difference detecting means. A vortex flowmeter characterized by being provided.
JP6062080A 1994-03-07 1994-03-07 Vortex flowmeter Pending JPH07243881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6062080A JPH07243881A (en) 1994-03-07 1994-03-07 Vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6062080A JPH07243881A (en) 1994-03-07 1994-03-07 Vortex flowmeter

Publications (1)

Publication Number Publication Date
JPH07243881A true JPH07243881A (en) 1995-09-19

Family

ID=13189737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6062080A Pending JPH07243881A (en) 1994-03-07 1994-03-07 Vortex flowmeter

Country Status (1)

Country Link
JP (1) JPH07243881A (en)

Similar Documents

Publication Publication Date Title
GB2252627B (en) System and method for valve monitoring using pipe-mounted ultrasonic transducers
JPH11287817A (en) Apparatus and method for measuring velocity
JPH0660832B2 (en) Vortex flowmeter
US4240299A (en) Method and apparatus for determining fluid density and mass flow
US8024136B2 (en) Method for signal processing of measurement signals of a vortex flow transducer
JPH07243881A (en) Vortex flowmeter
JPH01134213A (en) Flowmeter
GB1598581A (en) Flowmeters
JP2004294175A (en) Connecting pipe blockage detector
JP4117635B2 (en) Vortex flow meter
JPH0324607B2 (en)
JPH11287680A (en) Vortex flowmeter
JPH0227220A (en) Differential pressure type steam flowmeter
JP2927295B2 (en) Vortex flow meter
KR100559139B1 (en) Ultrasonic wave flow meter using correlation
JP3672997B2 (en) Correlation flowmeter and vortex flowmeter
JPS6040914A (en) Vortex flowmeter
EP0022828A1 (en) A method of and apparatus for determining the mass flow rate of a fluid stream.
JPS6022625A (en) Ultrasonic detection type karman's vortex street current meter
JPS6331725B2 (en)
JPH0792396B2 (en) Vortex flowmeter
JPH1172363A (en) Vortex flowmeter
JPH08285643A (en) Vortex flow meter
JPS6082813A (en) Pulsation-pressure correcting device in measurement
JPH07209042A (en) Vibration type flow meter