JPH07236880A - Algae removing method and apparatus therefor - Google Patents

Algae removing method and apparatus therefor

Info

Publication number
JPH07236880A
JPH07236880A JP6030644A JP3064494A JPH07236880A JP H07236880 A JPH07236880 A JP H07236880A JP 6030644 A JP6030644 A JP 6030644A JP 3064494 A JP3064494 A JP 3064494A JP H07236880 A JPH07236880 A JP H07236880A
Authority
JP
Japan
Prior art keywords
algae
water
fibers
contact
contact material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6030644A
Other languages
Japanese (ja)
Other versions
JP2986330B2 (en
Inventor
Mitsumasa Murakami
光正 村上
Kiyoshi Nishimoto
潔 西本
Takeshi Kiuchi
武 木内
Takeshi Morinaga
豪 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Plastics Co Ltd
Original Assignee
Dainippon Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12309535&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07236880(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dainippon Plastics Co Ltd filed Critical Dainippon Plastics Co Ltd
Priority to JP6030644A priority Critical patent/JP2986330B2/en
Publication of JPH07236880A publication Critical patent/JPH07236880A/en
Application granted granted Critical
Publication of JP2986330B2 publication Critical patent/JP2986330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To remove algae with high removal efficiency while saving the labor of maintenance and control without using an ultraviolet irradiation method by putting a contact material constituted of fibers with a specific diameter arranged at a specific relative interval in water containing algae and imparting extremely slow flow to water. CONSTITUTION:Contact materials 2 each constituted of fibers with a diameter of 0.01-2mm arranged at a relative interval of 1-30mm are uniformly arranged in water, for example, over a distance of about 1-10m and water containing algae is allowed to flow to a water channel, a tank or an arranging part at a slow speed of about 0.01-10mm/sec. Whereupon, algae are flocculated on the surfaces of the fibrous contact materials and the suspended matter of water is removed. The self-flocculated matter based on algae of the arranging part generates autolysis but, when the fibrous contact materials 2 become a saturated state, flow velocity is increased by an aeration, vibration or drain method to peel algae from fibers to discharge them to the outside of the system. Since a chemical agent such as a flocculant is not added for flocculating algae, an ecosystem is not disruped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は藻類除去方法及びその
装置に関し、さらに詳しくは、池、濠、湖沼及び汽水域
の水質浄化に関するものであり、所要動力を小さくして
水中の藻類を凝集除去するものである。藻類を凝集する
のに凝集剤等の薬品は一切添加しないため、生態系の破
壊が危惧される場合に特に有効である。又、小さい所要
動力で、窒素・リンを多量に含む藻類を除去することに
より、富栄養化した水域の窒素・リンの除去にも応用可
能な藻類除去方法及びその装置である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing algae and an apparatus therefor, and more particularly to water purification in ponds, moats, lakes and brackish waters. To do. No chemicals such as flocculants are added to flocculate algae, which is especially effective when there is a risk of ecosystem destruction. Further, it is an algae removing method and apparatus applicable to removal of nitrogen / phosphorus in an eutrophic water area by removing algae containing a large amount of nitrogen / phosphorus with a small required power.

【0002】[0002]

【従来の技術】池、濠、湖沼及び汽水域の水の汚濁質の
主なものは藻類であり、それ以外に、藻類を捕食する動
物プランクトン及びバクテリアが共存している。湖沼等
が富栄養化すると藻類の増殖が激しくなり、水面上にこ
れが凝集し、ついには腐敗するようになる。浄化対策と
しては、水中の窒素及びリンを除去するか、藻類を直接
除去する方法が考えられるが、前者の直接除去は困難な
場合が多く、後者の藻類の除去が課題となっている。従
来の浄化方法は、主に排水処理技術や工場の生産現場技
術の転用によるものが殆どであった。従って何れも所要
動力が大きい。主な方法は紫外線照射法、オゾン処理
法、排水処理の生物ろ床法の応用技術、上水道の緩速ろ
過に類似したろ過法等である。
2. Description of the Related Art The main pollutants of water in ponds, moats, lakes and brackish waters are algae, and besides that, zooplankton and bacteria that prey on algae coexist. When lakes and marshes become eutrophication, the growth of algae becomes intense, and they agglomerate on the surface of the water, and eventually they rot. As a purification measure, a method of removing nitrogen and phosphorus in water or directly removing algae can be considered, but the former direct removal is often difficult, and the latter removal of algae is an issue. Most of the conventional purification methods are mainly by diversion of wastewater treatment technology and factory production site technology. Therefore, both require large power. The main methods are ultraviolet irradiation method, ozone treatment method, applied technology of biological filter method for wastewater treatment, filtration method similar to slow filtration of water supply, etc.

【0003】紫外線照射法はろ過法と組みあわせて実用
化されている。基本は藻類を紫外線で殺すことにより効
果を生じるが、原理的に所要動力が大きく、紫外線ラン
プの稼動費も高額である。オゾン処理も紫外線法に類似
したものであるが、建設費及び維持費に難点があり、処
理対象が大容量の水域となるとさらに問題である。
The ultraviolet irradiation method has been put into practical use in combination with the filtration method. Basically, the effect is produced by killing algae with ultraviolet rays, but in principle the required power is large and the operating cost of the ultraviolet lamp is high. Ozone treatment is also similar to the ultraviolet method, but there are difficulties in construction and maintenance costs, and it is even more problematic when the treatment target is a large-volume water area.

【0004】ろ過法には生物膜ろ過および機械的ろ過法
がある。前者は砂等のろ材を密充填し、ろ過速度30〜20
0m/d(0.35〜2.3mm/s)というゆっくりした速さでろ
過するものである。上水道の緩速ろ過に相当するもの
で、ろ過と生物膜処理を兼ね備えたものであるが、損失
水頭が高く、維持管理が容易ではない。また、浮遊汚濁
物質が多く、処理対象が大容量となる場合には大規模の
装置が必要となる。機械的ろ過法には特殊ろ布を用いて
ドラム式のろ過機でろ過する方法、急速砂ろ過類似法等
がある。特に急速ろ過には、ろ床にボール状繊維を充填
した方法、長繊維を密に並べる方法等が提案されてい
る。これらの方法は損失水頭が数100mm〜2,000mmと低
く、従来の方法に比べてかなり所要動力を低減出来る
が、除去率、除去量が尚、十分とは言えない。特に10μ
m以下の微細な藻類が除去しにくい。
Filtration methods include biofilm filtration and mechanical filtration methods. The former is densely packed with a filter medium such as sand, and the filtration speed is 30 to 20.
It filters at a slow speed of 0 m / d (0.35 to 2.3 mm / s). It is equivalent to slow filtration of water supply and combines filtration and biofilm treatment, but the head loss is high and maintenance is not easy. In addition, a large-scale apparatus is required when the amount of suspended pollutants is large and the processing target has a large capacity. Mechanical filtration methods include a method of filtering with a drum type filter using a special filter cloth, a method similar to rapid sand filtration. In particular, for rapid filtration, a method of filling the filter bed with ball-shaped fibers, a method of densely arranging long fibers, and the like have been proposed. These methods have a low head loss of several 100 mm to 2,000 mm and can considerably reduce the required power as compared with the conventional methods, but the removal rate and the removal amount are still insufficient. Especially 10μ
It is difficult to remove fine algae of m or less.

【0005】一方、生物ろ床用の接触材を河川等に設置
して浄化する方法がある。この方法の目的は主に生物膜
によるBOD成分の除去であり通常流速100〜1000mm/sの
流れの中に配置される。しかし、藻類は生きた植物であ
り、生物膜を使用しても藻類の除去効果は少ない。最
近、生物ろ床法を池水の循環処理に使用する方法も提案
されているが、運転条件、接触材の選択等において多く
の確立すべき課題を有している。
On the other hand, there is a method in which a contact material for biological filter is installed in a river or the like for purification. The purpose of this method is mainly the removal of BOD components by biofilm, which is usually placed in a flow with a flow rate of 100-1000 mm / s. However, algae are living plants, and even if a biofilm is used, the effect of removing algae is small. Recently, a method of using the biological filter method for circulating treatment of pond water has been proposed, but it has many problems to be established in operating conditions, selection of contact materials, and the like.

【0006】湖沼等の水を浄化するには藻類の増殖量以
上に除去量を上げなければならない。本願発明者らは水
が常に富栄養である水のモデル計算を行い除去率50%の
装置で循環処理する場合、1日1〜3回処理する必要が
あることを実地調査とあわせて確認した。藻類の除去は
このような循環処理以外にも、浄化して工業用水等に用
いるなどの場合もあるが、いずれにしても処理量が膨大
である。従って、建設費、維持費の安価であること、維
持管理の容易な方法の開発が、要望されている。
[0006] In order to purify water in lakes and the like, it is necessary to increase the removal amount beyond the growth amount of algae. The inventors of the present application confirmed that it is necessary to perform treatment 1 to 3 times a day when performing circulation calculation with a device having a removal rate of 50% by performing a model calculation of water in which water is always eutrophic, together with a field survey. . In addition to such circulation treatment, algae may be purified and used for industrial water or the like, but in any case, the treatment amount is enormous. Therefore, there is a demand for the development of a method that is low in construction costs and maintenance costs and that is easy to maintain.

【0007】[0007]

【発明が解決しようとする課題】既存の技術では、湖沼
等の水を循環浄化するとして1000m3当たりの所要動力の
少ないものでも5〜15kw必要になり維持管理費が膨大な
ものとなる。したがって、実用化するとなると、この動
力を数十分の1にする技術が必要である。しかし、通常
のろ過法等既存の方法では原理的にも省エネルギー化に
は限界があり、維持管理費を低減することも困難であ
る。
According to the existing technology, 5 to 15 kw is required even for a device requiring a small amount of power per 1000 m 3 to circulate and purify water in lakes and marshes, resulting in enormous maintenance costs. Therefore, when it comes to practical use, there is a need for a technique for making this power several tenths. However, in principle, existing methods such as normal filtration have a limit in energy saving, and it is also difficult to reduce maintenance costs.

【0008】また、藻類は小さいものでは3〜5μmの
ものもあり、このような微粒子を低い圧力水頭でろ過す
るのは原理的にも難しい。凝集剤を用いればろ過は容易
になるが、環境面からの問題点が多い。凝集剤等の試薬
を用いることなく、藻類を集めることが出来る方法を発
明することが課題である。藻類を集めた後系外に除く方
法もろ過では問題がある。通常ろ過の圧力水頭がある基
準まで上昇した時、曝気により汚泥を分離し、その後引
き抜くのであるが、エネルギーを消費する曝気以外の方
法も課題である。
[0008] In addition, there are small algae having a size of 3 to 5 µm, and it is theoretically difficult to filter such fine particles with a low pressure head. Filtration becomes easier if a flocculant is used, but there are many environmental problems. It is an object to invent a method capable of collecting algae without using a reagent such as an aggregating agent. The method of collecting algae and removing it from the system is also problematic in filtration. Normally, when the pressure head of filtration rises to a certain standard, sludge is separated by aeration and then extracted, but methods other than aeration that consume energy are also problems.

【0009】この発明の目的は、紫外線照射法、オゾン
処理法、生物ろ床法、ろ過法、凝集剤等を用いずに維持
管理の省力化を図りかつ除去効率の高い藻類の除去方法
を提供することにある。
An object of the present invention is to provide a method for removing algae, which achieves labor-saving maintenance and high removal efficiency without using an ultraviolet irradiation method, an ozone treatment method, a biological filter method, a filtration method, a flocculant, or the like. To do.

【0010】[0010]

【課題を解決するための手段】研究の結果、藻類を含む
水を小容器に取り、1〜2日放置すると底面に藻類のフ
ィルム状構造物が出来、発生した気泡により薄布を一部
もちあげたようになることを見出した。しかしこの膜状
構造は不安定である。そこで、安定した凝集法として工
学的に利用することを追求した。
[Means for Solving the Problems] As a result of research, when water containing algae is placed in a small container and left for 1 to 2 days, a film-like structure of algae is formed on the bottom surface, and a thin cloth is partially lifted by the air bubbles generated. I found that However, this membranous structure is unstable. Therefore, we pursued engineering use as a stable aggregation method.

【0011】その結果、細長い繊維を藻類を含む水に入
れ、非常にゆっくりした流れを与えることにより、繊維
の表面まで運ばれた藻類、動物プランクトン、およびバ
クテリア等をその表面上に安定に凝集させることが出来
ることを見出した。すなわち、繊維状接触材を多数配置
した構造物(モジュール)に水を接触させるならば、水
中に懸濁している藻類等は順次その繊維上に凝集し、結
果として藻類が除去されるのである。本発明では繊維の
密度と除去出来る藻類の大きさとは全く関係がなく、1
0μm以下の藻類であっても処理が可能なのである。繊
維を密に充填したろ材では単にろ過となるが、本発明は
ろ過ではない。繊維形状のものを立体的に、互いに大き
な空隙をもって配置する。それらの配置は平行でもよい
が、ビーカー洗矢等の放射状(ブラシ状)、紐状接触材
等のランダム状、金網等の網状等いろいろなやり方で良
い。また繊維の断面は円形である必要はなく、形状は問
わない。問題は繊維間の相対間隔である。原理的には繊
維間には制限がないが、極端に広げると装置全体が大き
くなり、容積当たりの効率が非常に悪くなる。
As a result, the elongated fibers are immersed in water containing algae, and a very slow flow is given to stably aggregate algae, zooplankton, bacteria and the like carried to the surface of the fibers on the surface. I found that I could do it. That is, when water is brought into contact with a structure (module) in which a large number of fibrous contact materials are arranged, algae and the like suspended in water are sequentially aggregated on the fibers, and as a result, algae are removed. In the present invention, there is no relation between the density of fibers and the size of algae that can be removed.
Even algae of 0 μm or less can be treated. Although the filter medium in which the fibers are densely packed simply provides filtration, the present invention does not provide filtration. Fiber-shaped ones are three-dimensionally arranged with a large gap therebetween. They may be arranged in parallel, but various methods such as radial (brush-like) such as beaker washing, random such as string-like contact material, and mesh such as wire mesh may be used. Further, the cross section of the fiber does not have to be circular, and the shape does not matter. The problem is the relative spacing between the fibers. In principle, there is no restriction between fibers, but if it is extremely widened, the entire device becomes large and the efficiency per volume becomes very poor.

【0012】一方、繊維の間隔を1mm以下というように
狭くすると、実質上ろ過の機能を有することになり、目
詰まり、高い損失水頭、逆洗回数の増大をもたらす。そ
こで、検討を続けた結果、繊維間の間隔を1mm以上30
mm以下とするのが良いことを確認した。この間隔はあく
までも理想的な場合である。例えば紐状接触材を考える
と、繊維本数で空間を平均化すると1mm以下である場合
もある。しかしながら、紐状接触材の繊維は均一に分布
しているのではない。数本づつ集まり、その集合体間の
相互間隔は1〜30mmの距離がある。藻類は数本の集合
体上に凝集する。従ってこの集合体を1本の繊維と見な
し、それらが1〜30mmの間隔で配置されていると考え
るのである。
On the other hand, if the distance between the fibers is narrowed to 1 mm or less, the fiber has a filtering function, which causes clogging, a high head loss, and an increase in backwashing. Therefore, as a result of continuing the study, the spacing between the fibers is 1 mm or more 30
It was confirmed that it is better to set it to mm or less. This interval is an ideal case. For example, considering a string-shaped contact material, the space averaged by the number of fibers may be 1 mm or less. However, the fibers of the string-shaped contact material are not uniformly distributed. Several pieces are collected, and the mutual distance between the aggregates is 1 to 30 mm. Algae aggregate on several aggregates. Therefore, this aggregate is regarded as one fiber and they are arranged at intervals of 1 to 30 mm.

【0013】次に繊維状構造物の配置について検討を要
する場合がある。例えば、紐状接触材等の繊維状接触材
は、多数組み合わせて一つの構造物(モジュール)とす
る。その繊維状接触材は互いに直接接触させる配置でも
よいし、0.05〜10cm程度の隙間をもたすことも
できる。しかし、これは単に、モジュール化する場合の
繊維状構造物の配置方法の問題であり、水路と処理部と
いうような考え方をしなければならない。金網を用いる
場合の構造に関する検討は比較的簡単である。流れに直
角に、目開き(繊維間の間隔)がいくらのものを、何枚
設置するかと言うことになる。枚数は多いほど藻類の除
去率は高くなる。目開き6mmで100〜200枚程度で
除去率50%以上となる。もちろん目開きが2mmという
ように小さいものを使用し繊維部分の密度を高め、目詰
まりを避けるために流れに平行にやや隙間をおくという
ような構造物とすることも出来る。
Next, it may be necessary to examine the arrangement of the fibrous structure. For example, a large number of fibrous contact materials such as string-like contact materials are combined into one structure (module). The fibrous contact materials may be arranged so as to be in direct contact with each other, or may have a gap of about 0.05 to 10 cm. However, this is simply a problem of the method of arranging the fibrous structure in the case of modularization, and it is necessary to think about the channels and the treatment section. The study on the structure using a wire net is relatively simple. How many openings (inter-fiber spacing) should be installed at right angles to the flow. The larger the number, the higher the removal rate of algae. The removal rate is 50% or more when the opening is 6 mm and the number of sheets is about 100 to 200. Of course, it is also possible to use a structure with a small opening such as 2 mm to increase the density of the fiber part and to make a structure with a slight gap in parallel to the flow to avoid clogging.

【0014】次に繊維としての線径(太さ)である。ど
のような大きさでも付着するわけではなく、0.01〜
2mm、すなわち、2mm以下の線径にすることが肝要であ
る。固体表面と藻類の関係は、下水処理の生物膜の場合
とは明らかに別のものとして考える必要がある。浸漬ろ
床法に使われる波板状接触材のようなものは上面になる
部分のみ藻類が不安定に堆積するのである。同様に外径
が大きい棒は上面あるいは上流面に藻類が不安定に堆積
することになり、これらの堆積藻類は常時脱落を起こ
し、日光が当たると気泡を生成して浮上し、嫌気状態で
は腐敗する。
Next, the wire diameter (thickness) of the fiber. It does not adhere to any size, but 0.01 to
It is important that the wire diameter is 2 mm, that is, 2 mm or less. The relationship between solid surfaces and algae should be considered distinctly from that of biofilm for sewage treatment. In the corrugated plate-like contact material used in the immersion filter method, algae are unstablely deposited only on the upper surface. Similarly, a rod with a large outer diameter causes unstable algae deposition on the upper surface or upstream surface, and these algae deposits constantly fall off, forming bubbles when exposed to sunlight, and spoiling under anaerobic conditions. To do.

【0015】しかし、おおむね線径2mm以下の繊維を有
する接触材で凝集させた場合、藻類を主成分とする懸濁
質は繊維を厚く取り巻くように凝集する。この凝集構造
物はそれぞれ別れているので気泡を発生して剥離した
り、内部が嫌気状態になることも無い。繊維の細い方
は、例えば、カーボン繊維のように10μm程度であっ
ても、やや能力は低下するが、藻類は凝集するという実
験結果を得ており、実質上制約は無いものとしてよい。
However, when agglomerated with a contact material having fibers having a wire diameter of generally 2 mm or less, the suspended substance containing algae as the main component aggregates so as to surround the fibers thickly. Since these agglomerated structures are separated from each other, bubbles are not generated and separated, and the inside does not become anaerobic. For example, carbon fibers having a finer fiber, such as carbon fiber, have a slightly reduced ability even if the fiber has a diameter of about 10 μm, but have obtained experimental results that algae agglomerate, and there may be substantially no restriction.

【0016】繊維としての材質は、動物性および植物性
の親水性の天然繊維あるいは繊維状水草が使用できるの
みならず、合成繊維の塩化ビニール、ポリエチレンや、
ビニロン、ポリ塩化ビニリデン、ポリエチレンやポリプ
ロピレンも使用出来ることを実験的に確認した。また、
鉄、ステンレス、アルミニウム等でもよいことを実験的
に確認した。このように材質にはほとんど影響を受けな
い。また形態としては、紐状、網状、ビーカー洗矢等の
ブラシ状等、多様な繊維構造物が適用できる。繊維の表
面の化学的性質には大きな影響を受けない自己凝集が重
要な機構となっているのである。
As the material of the fiber, not only animal and plant hydrophilic natural fibers or fibrous aquatic plants can be used, but also synthetic fibers such as vinyl chloride and polyethylene,
It was confirmed experimentally that vinylon, polyvinylidene chloride, polyethylene and polypropylene can also be used. Also,
It was experimentally confirmed that iron, stainless steel, aluminum, etc. may be used. In this way, the material is hardly affected. In addition, as a form, various fiber structures such as a string shape, a net shape, and a brush shape such as beaker washing can be applied. Self-aggregation, which is not significantly affected by the surface chemistry of the fiber, is an important mechanism.

【0017】単位体積当たりの処理能力の高さを競うこ
とがあるが、本発明はむしろその反対である。体積当り
の処理能力は落しても省エネルギーを追求する方法であ
る。紐状接触材を河川や滝に設置する浄化法が既に提案
されている。しかし、河川の流れは速く、通常100〜
1000mm/sである。このような流速では下水処理と
してのBOD成分の除去は出来るとしても、藻類を繊維
状に凝集することは不可能である。
While there may be competition for high throughput per unit volume, the present invention is rather the opposite. This is a method of pursuing energy saving even if the processing capacity per volume is reduced. A purification method for installing a string-like contact material in a river or a waterfall has already been proposed. However, the flow of the river is fast, usually 100-
It is 1000 mm / s. At such a flow rate, although it is possible to remove the BOD component as sewage treatment, it is impossible to aggregate algae into fibers.

【0018】下水処理の浸漬ろ床法の場合はろ床内流速
は50mm/s以上が要件であり、自然流下式ろ床法によ
る雑排水等の処理の場合は10〜50mm/s程度であ
る。しかし、本発明の場合は、およそ10mm/s以下の
流速でなければならない。生物ろ床法(浸漬ろ床法及び
自然流下式ろ床法等)では、流速が低すぎて能力が大幅
に落ちる条件となる。基本的に通常の生物ろ床とは異な
るのである。
In the case of the immersion filter method of sewage treatment, the flow velocity in the filter is required to be 50 mm / s or more, and in the case of treatment of sewage and the like by the natural flow filter method, it is about 10 to 50 mm / s. However, in the case of the present invention, the flow velocity should be about 10 mm / s or less. In the biological filter method (immersion filter method, natural flow-through filter method, etc.), the flow rate is too low, resulting in a large drop in capacity. Basically, it is different from normal biological filter.

【0019】流速そのものを見ると、緩速ろ過あるいは
生物膜ろ過と言われている方法とよく類似している。し
かし、生物膜ろ過といえども基本的にはろ過であるので
ろ過の損失水頭は高く、逆洗頻度が高くなる。しかし、
本発明では繊維状接触材が広い間隔で設置されており、
繊維の周囲に厚く藻類が凝集するが、損失水頭は処理を
続けてもほとんど増加せず、絶対値も生物膜ろ過の数十
分の1である。凝集物が互いに接触するまで処理を行な
わせたとしても、僅かの水圧によって凝集物が部分的に
剥離し下部に落下・堆積するので、凝集能力は僅かしか
低下せず、損失水頭はほとんど上昇することがない。本
発明は基本的にろ過とは異なるものである。
Looking at the flow velocity itself, it is very similar to the method called slow filtration or biofilm filtration. However, even though biofilm filtration is basically filtration, the head loss due to filtration is high and the frequency of backwashing is high. But,
In the present invention, the fibrous contact material is installed at wide intervals,
Although algae are thickly aggregated around the fiber, the head loss is hardly increased even if the treatment is continued, and the absolute value is one tenth of biofilm filtration. Even if the treatment is carried out until the agglomerates come into contact with each other, the agglomerates partially peel off due to a slight water pressure and fall and accumulate in the lower part, so the agglomeration capacity decreases only slightly, and the head loss is mostly increased. Never. The present invention is fundamentally different from filtration.

【0020】なお、ここで言う流速とは繊維状構造物が
ない場合の断面平均流速である。したがって、実際の装
置内では、部分的には平均流速の2倍以上の速度で流れ
るところと、逆に数分の1の流速の所があることにな
る。この平均流速は遅いほどよく、2mm/s以下の場合
が最も除去率が高い。但し、遅くなるほど装置の体積が
大きくなるから、それぞれ用いる場合に合致した値を選
択する。もう一つの方法として池あるいは湖沼に直接、
繊維状接触材を設置することも考えられる。何らかの
池、湖沼は風、水温差等で緩やかに流動しているもので
ある。そこへ繊維状接触材を設置すれば浄化できること
になる。この場合2mm/s以下の流速とみなすことがで
きる。
The flow velocity referred to here is the average cross-sectional flow velocity when there is no fibrous structure. Therefore, in an actual device, there are a part where the flow velocity is twice as high as the average flow velocity and a place where the flow velocity is a fraction of the flow velocity. The lower the average flow velocity, the better, and the removal rate is highest when the average flow velocity is 2 mm / s or less. However, the slower it is, the larger the volume of the apparatus becomes, and therefore, the value that matches each case is selected. Alternatively, directly on the pond or lake,
It is also possible to install a fibrous contact material. Some ponds and lakes are flowing gently due to wind and water temperature differences. If a fibrous contact material is installed there, it can be purified. In this case, the flow velocity can be regarded as 2 mm / s or less.

【0021】ろ過で層高に相当する設計因子としては、
繊維状構造物を流れる距離、流下距離、あるいは接触距
離がある。接触距離は実施例でみるならば1m〜1.5
m以上あれば良いと判断される。しかし、この接触距離
は流速および繊維の密度と関係しているので一定ではな
い。例えば、目開き6mmの金網を使う場合、200枚を
1cm間隔に並べると全長2m、4cm間隔で並べると8m
となる。流速2mm/sで接触距離2mの条件を、流速4
mm/sと2倍にする場合は4m程度の接触距離とする必
要がある。
As a design factor corresponding to the bed height in filtration,
There is a distance flowing down, a distance flowing down, or a contact distance through the fibrous structure. The contact distance is 1 m to 1.5 according to the embodiment.
It is judged to be good if it is m or more. However, this contact distance is not constant because it is related to flow velocity and fiber density. For example, when using a wire mesh with 6 mm openings, if 200 sheets are arranged at 1 cm intervals, the total length is 2 m, and if they are arranged at 4 cm intervals, 8 m.
Becomes Flow rate 2 mm / s, contact distance 2 m, flow rate 4
When doubled to mm / s, the contact distance needs to be about 4 m.

【0022】結局、流路断面と長さの兼ね合いの問題と
なるのであり、それぞれの状況に合わせて設計すれば良
い。もちろん除去率を高くするには長くする必要があ
る。また、安全対策として接触距離を長くしておくと上
流部分が、飽和状態になった時その上流部分では凝集物
塊を僅かの水圧で脱落させながら一方で凝集させるので
やや能力が落ちるが、下流部分では正常に凝集機構が働
くため未処理水が流出する心配がない。逆に接触距離を
極端に短くする場合もある。例えば、1m3程度の小型
の水槽で水を繰り返し処理するというような場合は、接
触距離を10cm程度にするのも良い方法である。
After all, there is a problem of a trade-off between the cross section of the flow path and the length, and the design may be made according to each situation. Of course, to increase the removal rate, it is necessary to lengthen it. Also, if the contact distance is increased as a safety measure, when the upstream part becomes saturated, the aggregated mass will drop off with a small amount of water pressure in the upstream part, while it will agglomerate on the other hand, but the capacity will drop slightly, but There is no risk of untreated water flowing out in the part because the coagulation mechanism works normally. On the contrary, the contact distance may be extremely shortened. For example, in the case of repeatedly treating water in a small water tank of about 1 m 3 , it is a good method to set the contact distance to about 10 cm.

【0023】繊維構造物上の、藻類を主成分とした汚泥
の系外への引抜きについて述べる。凝集機構は懸濁物そ
のものが集まる力即ち自己凝集であるから、凝集物を軽
く攪拌あるいは振動させることによって再び元の懸濁状
態に復帰させることが出来る。従って凝集物を剥離させ
るため流速を5〜10倍程度にする方法でも系外に引き
抜くことが出来る。但し、凝集時の流速が2mm/s以下
の場合、剥離させるための流速を10mm/s以上とす
る。
Extraction of sludge containing algae as a main component from the fiber structure to the outside of the system will be described. Since the aggregation mechanism is a force of gathering the suspension itself, that is, self-aggregation, the suspension can be restored to the original suspension state by lightly stirring or vibrating the aggregate. Therefore, in order to exfoliate the agglomerates, it can be pulled out of the system by a method of increasing the flow rate by about 5 to 10 times. However, when the flow rate at the time of aggregation is 2 mm / s or less, the flow rate for peeling is 10 mm / s or more.

【0024】例えば、繊維構造物による装置を複数並列
に並べ1台のポンプで処理させるのであれば、洗浄時に
原水流入を1列に集中させて流速を高め、汚泥除去を行
なわすことができる。バルブ操作だけ必要であるから、
特別の装置も不要で、自動化も可能である。その他の方
法としては従来の方法の曝気による剥離も利用できる。
さらに、水を抜く、振動を与える、あるいは繊維構造物
を水面上に引き上げることによっても、藻類を剥離させ
ることが出来る。以上のように本発明では多種多様な方
法で剥離させ、系外に汚泥を引き抜くことが出来るの
で、省エネルギー・自動化・簡便さ等、目的に合致した
多様な汚泥処理が可能である。
For example, if a plurality of devices each having a fiber structure are arranged in parallel and treated by one pump, the raw water inflow can be concentrated in one line at the time of washing to increase the flow rate and remove sludge. Since only the valve operation is required,
No special equipment is required, and automation is possible. As another method, conventional peeling by aeration can be used.
Further, the algae can be exfoliated by draining water, giving vibration, or pulling the fiber structure above the water surface. As described above, according to the present invention, the sludge can be separated by various methods and the sludge can be drawn out of the system. Therefore, various sludge treatments suitable for the purpose such as energy saving, automation, and simplicity can be performed.

【0025】以上論述したように、本発明では繊維状接
触材を用いて、接触材の繊維外径(太さ)2mm以下、繊
維相対間隔は1〜30mmで構成する繊維状接触材に、藻
類を含む水を平均流速10mm/s以下で接触させ、繊維
状接触材の表面に藻類を凝集させて水中に懸濁する藻類
を除去する方法を見い出した。
As described above, in the present invention, the fibrous contact material is used, and the fiber outer diameter (thickness) of the contact material is 2 mm or less and the relative distance between the fibers is 1 to 30 mm. A method of removing algae suspended in water by contacting water containing water with an average flow rate of 10 mm / s or less to agglomerate algae on the surface of the fibrous contact material was found.

【0026】繊維状接触材の形態としては紐状、網状、
及びブラシ状のものが適用でき、また繊維状接触材の繊
維が複数の素線の集合体になっていることが好ましい。
さらに具体的には、繊維状接触材として多数のループ状
繊維を放射状に有する紐状接触材を用いることがより好
ましく、本接触材を多数配置した藻類除去接触装置を設
計することができる。
The form of the fibrous contact material is string-like, net-like,
Also, a brush-like material can be applied, and it is preferable that the fibers of the fibrous contact material are an assembly of a plurality of strands.
More specifically, it is more preferable to use, as the fibrous contact material, a string-shaped contact material having a large number of loop-shaped fibers in a radial shape, and it is possible to design an algae removal contact device in which a large number of this contact material are arranged.

【0027】[0027]

【作用】外径が0.01〜2mmの繊維を1〜30mm間隔
で、例えば、長さ1〜10m程度設置し、均一に水と接
触するように配置し、次に、この水路、槽、あるいは設
置部に藻類を含む水を、0.01〜10mm/s程度のゆ
っくりした速さで流すと、藻類は繊維状接触材表面に凝
集し、水中の懸濁物は除去される。設置部分の藻類を主
成分とした自己凝集物は自己分解も起こすが、繊維状接
触材の凝集物が飽和状態になった場合は、流速を上げ
る、曝気、振動、水抜き等の方法で繊維から剥離させ系
外に排出させる。
The fibers having an outer diameter of 0.01 to 2 mm are provided at intervals of 1 to 30 mm, for example, about 1 to 10 m in length, and arranged so as to be in uniform contact with water. Alternatively, when water containing algae is allowed to flow through the installation portion at a slow speed of about 0.01 to 10 mm / s, the algae aggregate on the surface of the fibrous contact material, and the suspended matter in water is removed. Although the self-aggregates containing algae as the main component at the installation site also undergo self-decomposition, if the agglomerates of the fibrous contact material become saturated, increase the flow rate, aerate, vibrate, or drain the fibers. It is peeled off and discharged from the system.

【0028】[0028]

【実施例】次に、本発明の実施方法とその結果を例を挙
げて説明する。図1に藻類自己凝集法の基本原理とな
る、異なる線径の繊維における藻類の生成過程の相違を
示した。
EXAMPLES Next, the method of carrying out the present invention and the results thereof will be described by way of examples. Fig. 1 shows the difference in the process of algae formation in fibers of different wire diameters, which is the basic principle of the algae self-aggregation method.

【0029】本発明において、藻類は繊維の周りに自己
凝集による膜状構造物(藻膜)を作る。線径が小さい場
合、藻類は繊維の全周囲を囲み込み安定化し、肥大し
た。一方、線径が大きい場合(線径が2mmを超える場
合)には、凝集する藻膜は微小で、流れの上流方向の面
にのみ形成されその反対側には形成されなかった。この
ように、線径が大きい場合、繊維の片面にのみ藻類が発
達しようとするため不安定となって常時脱落し発達しな
いものと考えられる。
In the present invention, algae form a membranous structure (algae membrane) around the fibers by self-aggregation. When the wire diameter was small, the alga surrounded the entire circumference of the fiber, stabilized, and enlarged. On the other hand, when the wire diameter was large (when the wire diameter exceeded 2 mm), the algal membranes that aggregated were minute and formed only on the surface in the upstream direction of the flow and not on the opposite side. As described above, when the wire diameter is large, it is considered that algae tend to develop only on one side of the fiber and become unstable, so that the algae always drop off and do not develop.

【0030】実施例1 図2は、この発明の一実施例としての藻類除去装置を構
成する網状接触材をしめす。網状接触材2は、線径0.
01〜2mmの化学繊維を、目開き1〜30mmで網状
に形成したものであり、例えば、図示しない枠体に両端
を固定され緩やかな水流中に保持される。この場合、目
開きが接触材を構成する繊維の相対間隔となる。
Embodiment 1 FIG. 2 shows a mesh contact material which constitutes an algae removing device as an embodiment of the present invention. The mesh contact material 2 has a wire diameter of 0.
A chemical fiber of 01 to 2 mm is formed in a mesh shape with an opening of 1 to 30 mm. For example, both ends are fixed to a frame body (not shown) and held in a gentle water stream. In this case, the mesh size is the relative distance between the fibers forming the contact material.

【0031】実施例2 図3〜4は、この発明の一実施例としての藻類除去装置
を構成する紐状接触材を示す。紐状接触材3は、紐材4
と、紐材4から放射状に配設され線径0.01〜2mm
の繊維5からなる複数のループ状繊維体6とを備えてい
る。ループ状繊維6は、図に示すように紐材4を中心に
螺旋状に形成することもできるし、あるいは、紐材4の
同一の周面から多方向に形成することができる。繊維5
は、線径が概ね0.01〜2mmが好ましい。また、各
ループ状繊維体6の相対間隔Lは約1〜30mmが好ま
しい。
Embodiment 2 FIGS. 3 to 4 show a cord-shaped contact member constituting an algae removing device as an embodiment of the present invention. The string-shaped contact material 3 is the string material 4
And a wire diameter of 0.01 to 2 mm arranged radially from the cord 4.
And a plurality of loop-shaped fibrous bodies 6 each of which is composed of the fibers 5. The loop-shaped fiber 6 can be formed in a spiral shape around the string material 4 as shown in the figure, or can be formed in multiple directions from the same peripheral surface of the string material 4. Fiber 5
Preferably has a wire diameter of approximately 0.01 to 2 mm. The relative distance L between the loop-shaped fiber bodies 6 is preferably about 1 to 30 mm.

【0032】図5〜6は、この発明の一実施例としての
藻類除去装置を構成するブラシ状接触材をしめす。ブラ
シ状接触材7は、棒材8と、棒材8から放射状に配設さ
れ線径0.01〜2mmの繊維9からなる植毛体11と
を備えている。また、各植毛体11の相対間隔Lは約1
〜30mmが好ましい。
5 to 6 show a brush-like contact material which constitutes an algae removing device as an embodiment of the present invention. The brush-shaped contact member 7 includes a rod member 8 and a flocked body 11 made of fibers 9 radially arranged from the rod member 8 and having a wire diameter of 0.01 to 2 mm. Further, the relative distance L between the flocked bodies 11 is about 1
-30 mm is preferable.

【0033】〔実験例1〕図7〜9に複数の水路を使っ
た処理実験を示す。藻類を主成分とした浮遊物濃度(S
S)が30〜60mg/lの池水をポンプで図8に示した実
験装置の分配槽に導き、5つの水路に整流部を通して流
入させた。水路は幅100mm、水深200mm、長さ10
00mmである。水路には種々な接触材を設置した。水路
の平均流速は0.1mm/sである。まず、最初の実験結
果を図9に示す。縦軸は浮遊物濃度〔mg/l〕、横軸は経
過日数〔d〕である。洗矢(図7)は直径80mmのもの
を10本設置した。波板状接触材(図示せず)は塩ビ製
でピッチ22mmで流れに平行に設置した。紐状接触材は
直径45mmであり、流れに平行に6本設置した。紐状接
触材3は図3および図4に示したものである。
[Experimental Example 1] FIGS. 7 to 9 show treatment experiments using a plurality of water channels. Algae-based suspended matter concentration (S
S) of 30 to 60 mg / l of pond water was pumped into the distribution tank of the experimental apparatus shown in FIG. The waterway has a width of 100 mm, a water depth of 200 mm, and a length of 10.
It is 00 mm. Various contact materials were installed in the waterway. The average flow velocity in the water channel is 0.1 mm / s. First, the result of the first experiment is shown in FIG. The vertical axis represents the concentration of suspended solids [mg / l], and the horizontal axis represents the number of days elapsed [d]. Ten washers (Fig. 7) with a diameter of 80 mm were installed. The corrugated plate-shaped contact material (not shown) was made of vinyl chloride, and was placed parallel to the flow with a pitch of 22 mm. The string-shaped contact material had a diameter of 45 mm, and six strings were installed in parallel with the flow. The string-shaped contact material 3 is the one shown in FIGS. 3 and 4.

【0034】図9に示すように、原水に対して全ての水
路で藻類の除去が行なわれているが、図9中の接触材な
しについては実際の池等ではこのような除去は起こらな
いのであり、単に水路が小さいので沈殿効果が見られた
ものである。波板状接触材に比べ、洗矢等のブラシ状繊
維構造の方がよく除去する。除去率としては平均60%
であるが、これらは水路断面に平均して設置しているの
ではなく、むしろ流れに平行に配置しており、偏流が起
き易くなっている。除去率としては低いのであるが、目
詰まりが起きにくいという利点もある。図10は線径
1.1mmの金網50枚を水路に直角に設置した例であ
る。最初は図中の曲線の目開き3.1mmと6.1mmのも
のが除去が良い。一方、目開き9.1mmのものは1週間
後には除去が良くなっている。最初は9.1mm目のため
凝集部が少なく凝集能力は小さいが、日数を経るに従っ
て藻類が凝集して針金の周囲に付き膨れてきて凝集部が
増加するのである。図中の曲線の目開き3.1mmのもの
は1週間後には外観は目詰まりしたかの如くであるが、
水圧により剥離を起こしながら凝集を続けており能力低
下は僅かである。このように余剰汚泥除去をしないで長
期間運転出来るのである。
As shown in FIG. 9, the algae are removed from all the water channels in the raw water. However, without the contact material in FIG. 9, such removal does not occur in an actual pond or the like. Yes, and because the waterway was simply small, a precipitation effect was seen. Compared to corrugated plate contact materials, brush-like fiber structures such as washing arrows are better removed. 60% average removal rate
However, these are not installed evenly in the cross section of the water channel, but rather are arranged in parallel to the flow, and uneven flow is likely to occur. Although the removal rate is low, it also has the advantage that clogging is less likely to occur. FIG. 10 shows an example in which 50 pieces of wire mesh having a wire diameter of 1.1 mm are installed at right angles in a water channel. At first, it is better to remove the curves with openings of 3.1 mm and 6.1 mm. On the other hand, the one with an opening of 9.1 mm is well removed after one week. At the beginning, since it is 9.1 mm, the agglutination is small and the aggregating ability is small, but as the days pass, algae agglomerate and bulge around the wire, and the agglutination increases. The appearance of the curve with an opening of 3.1 mm in the figure seems to be clogged after 1 week,
The separation is caused by water pressure and the aggregation continues, resulting in a slight decrease in performance. In this way, long-term operation is possible without removing excess sludge.

【0035】〔実験例2〕図11に示す塔を用いた。塔
は内径77mm、全長1770mmの透明塩ビ製である。そ
の中に直径80mmの洗矢を15本直列に設置した。下部
の流入口から浮遊物濃度(SS)が30〜60mg/lの池
水を流速を変えて流入させ、入口水と出口水の浮遊物濃
度(SS)を測定し、除去率を求めた。最初の運転は塔
内の見掛けの流速即ち空塔速度を次第に高くしていっ
た。その結果を図12の曲線に示した。縦軸はSS除去
率、横軸は塔内の見掛けの流速である。静置状態に近い
極めてゆっくりした流れの場合、80%のSS除去率を
得た。流速を次第に大きくして、2mm/sを越えると除
去率は低下するようになり、10mm/s以上では逆に凝
集藻類の剥離が起こった。即ち2mm/s以下の流速で処
理した場合は、10mm/s以上の流速とすることにより
剥離できることを示している。流速を大きくすることで
凝集汚泥の剥離が出来るのである。
[Experimental Example 2] The column shown in FIG. 11 was used. The tower is made of transparent PVC with an inner diameter of 77 mm and a total length of 1770 mm. Fifteen washing arrows with a diameter of 80 mm were installed in series in it. The pond water having a suspended solids concentration (SS) of 30 to 60 mg / l was introduced from the lower inflow port at different flow rates, the suspended solid concentrations (SS) of the inlet water and the outlet water were measured, and the removal rate was obtained. In the first operation, the apparent flow velocity in the tower, that is, the superficial velocity, was gradually increased. The result is shown in the curve of FIG. The vertical axis represents the SS removal rate, and the horizontal axis represents the apparent flow velocity in the tower. In the case of a very slow flow close to a static state, an SS removal rate of 80% was obtained. When the flow velocity was gradually increased and the removal rate exceeded 2 mm / s, the removal rate decreased, and when the flow rate exceeded 10 mm / s, the flocculation of agglomerated algae occurred. That is, it is shown that when the treatment is performed at a flow rate of 2 mm / s or less, the peeling can be performed at a flow rate of 10 mm / s or more. The coagulated sludge can be separated by increasing the flow velocity.

【0036】次に、十分速い流れで塔内の藻類を剥離し
た後、徐々に流速を弱める実験を行なった。その結果を
図中の別の曲線に示した。30mm/sにおいて既に除去
率30%となった。10mm/sでは除去率40%とまず
まずの結果が得られた。一定流速で処理する場合、およ
そ10mm/s以下の流速とすることが最大の効果を得ら
れる条件である。また、損失水頭は6mm以下と非常に小
さい。すなわち、通常の方法に比べ、超省エネルギー方
式であることを示している。
Next, an experiment was conducted in which the algae in the tower were peeled off with a sufficiently fast flow, and then the flow velocity was gradually reduced. The results are shown in another curve in the figure. The removal rate was already 30% at 30 mm / s. At 10 mm / s, a removal rate of 40% and a decent result was obtained. When processing at a constant flow rate, a flow rate of about 10 mm / s or less is a condition for obtaining the maximum effect. Moreover, the head loss is very small, 6 mm or less. That is, it indicates that the method is an ultra energy-saving method as compared with the normal method.

【0037】〔実験例3〕塩ビ製容器に藻類を主とした
浮遊物濃度(SS)を40mg/l含む池水10リットルを
入れ、中央に次の各種試料を設置した。それらは、波板
状接触材、および2本直列に接続した直径100mmの洗
矢12(図7)である。その結果を表1に示す。
[Experimental Example 3] 10 liters of pond water containing 40 mg / l of suspended matter concentration (SS) mainly composed of algae was placed in a vinyl chloride container, and the following various samples were set in the center. They are a corrugated plate-like contact material, and two washing arrows 12 (FIG. 7) having a diameter of 100 mm connected in series. The results are shown in Table 1.

【0038】[0038]

【表1】 表中の値は透視度(何cmの水深までみえるかというc
m値)である。経時的に見ると、4時間後には何を入れ
なくても透視度は2倍になっている。これは容器が小さ
いための効果であって、実際の池等で濁ったままであ
る。この接触材なしのデータに比較し、良くなれば効果
があることを示す。洗矢が優れている。すなわち、繊維
表面に藻類が凝集したため、池水の藻類が減少するので
ある。これに対して、生物ろ床用波板状接触材は全く凝
集効果がなかった。
[Table 1] The values in the table are the transparency (how many cm the water depth can be seen c
m value). When viewed over time, the transparency is doubled after 4 hours, no matter what. This is an effect because the container is small, and it remains cloudy in an actual pond. Compared to the data without this contact material, it is shown that the improvement is effective. Washing arrows is excellent. In other words, the algae aggregate on the fiber surface, which reduces the algae in the pond water. On the other hand, the corrugated plate contact material for biological filter had no aggregation effect.

【0039】〔実験例4〕図13に示す角型水槽で実験
を行なった。浮遊物濃度(SS)を55mg/l含む池水を
幅245mm、長さ385mm、高さ270mmの角型水槽に
25リットル入れ、その中に直径80mmの洗矢3本を設
置した。水のSS濃度を長時間観察した結果を図14に
示す、水槽と気温の温度差および太陽光線によって、槽
内の温度差が発生し、藻類を含む水はゆっくりと洗矢に
接触する。藻類は、洗矢の1本1本の繊維の表面に自己
凝集し、ついには直径5mmにも成長した。槽内の藻類
は、日中増殖しているのであるが、全体としては125
時間後でもなお凝集する傾向にある。このように、繊維
状構造物に自己凝集した藻類は長期間安定にその構造保
っていた。
[Experimental Example 4] An experiment was conducted in a rectangular water tank shown in FIG. 25 liters of pond water containing 55 mg / l of suspended solid concentration (SS) was placed in a rectangular water tank having a width of 245 mm, a length of 385 mm, and a height of 270 mm, and three washing arrows having a diameter of 80 mm were installed therein. The result of observing the SS concentration of water for a long time is shown in FIG. 14. Due to the temperature difference between the water tank and the air temperature and the sun rays, a temperature difference occurs in the tank, and the water containing algae slowly contacts the washing arrow. The algae self-aggregated on the surface of each fiber of the washed arrow and eventually grew to a diameter of 5 mm. The algae in the tank grow during the day, but as a whole, 125
It still tends to aggregate after hours. Thus, the algae self-aggregated in the fibrous structure maintained its structure stably for a long period of time.

【0040】[0040]

【発明の効果】以上の如く本発明は、池、濠、湖沼、お
よび汽水域の水を浄化することが出来る。この藻類の除
去方法は、繊維状接触材の繊維の相対間隔を1〜30mm
でモジュール化するため、損失水頭が5mm以下という非
常に小さい値であり、原理的に、超省エネルギー浄化法
である。また、凝集した藻類は省エネルギーで余剰汚泥
として系外に引抜くことが出来る。したがって本発明は
鑑賞池のような比較的小規模な池に限らず湖沼のような
大きな水域の浄化にも適用できるものである。さらに、
藻類を凝集するのに凝集剤等の薬品は添加しないため、
生態系を破壊することがない。
As described above, the present invention can purify water in ponds, moats, lakes, and brackish waters. This algae removal method uses a fibrous contact material having a fiber-to-fiber relative spacing of 1 to 30 mm.
Since it is modularized, the head loss is a very small value of 5 mm or less, which is, in principle, a super energy-saving purification method. In addition, the agglomerated algae can be drawn out of the system as energy-saving and excess sludge. Therefore, the present invention can be applied not only to a relatively small pond such as a viewing pond, but also to purification of a large body of water such as a lake. further,
No chemicals such as flocculants are added to flocculate algae,
It does not destroy the ecosystem.

【0041】凝集した藻類は窒素・リンを多量に含む。
省エネルギーで藻類を除去することが出来るということ
は、結果として富栄養化した水域の窒素・リンの除去に
も応用できることを示すものである。
Aggregated algae contain a large amount of nitrogen and phosphorus.
The fact that the algae can be removed with energy saving shows that it can be applied to the removal of nitrogen and phosphorus in the eutrophic water area as a result.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の藻類除去方法の基本原理を線径の異
なる繊維における藻類の凝集過程の違いによって説明す
る図である。
FIG. 1 is a diagram explaining the basic principle of the method for removing algae of the present invention by the difference in agglomeration process of algae in fibers having different wire diameters.

【図2】網状接触材の配置状態と、藻類が凝集して膜状
構造をつくった状態をしめす図である。
FIG. 2 is a diagram showing an arrangement state of a mesh contact material and a state in which algae aggregate to form a film structure.

【図3】紐状接触材の正面図である。FIG. 3 is a front view of a string-shaped contact member.

【図4】図3の紐状接触材の平面図である。FIG. 4 is a plan view of the cord-shaped contact material of FIG.

【図5】ブラシ状接触材の断面図である。FIG. 5 is a cross-sectional view of a brush-shaped contact material.

【図6】ブラシ状接触材の平面図である。FIG. 6 is a plan view of a brush-shaped contact member.

【図7】実験例で示された試料接触材の1つである洗矢
の斜視図である。
FIG. 7 is a perspective view of a washing arrow which is one of the sample contact materials shown in the experimental example.

【図8】藻類除去比較試験用装置の斜視図である。FIG. 8 is a perspective view of an algae removal comparison test device.

【図9】実験例1のSS除去試験の結果を示すグラフで
ある。
FIG. 9 is a graph showing the results of the SS removal test of Experimental Example 1.

【図10】実験例1の金網を使用したSS除去試験の結
果を示すグラフである。
FIG. 10 is a graph showing the results of an SS removal test using the wire net of Experimental Example 1.

【図11】実験例2の実験装置の概略図である。FIG. 11 is a schematic diagram of an experimental apparatus of Experimental Example 2.

【図12】実験例2のSS除去試験の結果を示すグラフ
である。
FIG. 12 is a graph showing the results of the SS removal test of Experimental Example 2.

【図13】実験例3のSS除去試験装置を示す図であ
る。
FIG. 13 is a diagram showing an SS removal test apparatus of Experimental Example 3.

【図14】実験例3のSS除去試験の結果を示すグラフ
である。
FIG. 14 is a graph showing the results of the SS removal test of Experimental Example 3.

【符号の説明】[Explanation of symbols]

1,5,9 繊維 2 網状接触材(藻類除去装置) 3 紐状接触材(藻類除去装置) 4 紐材 6 ループ状繊維体 7 ブラシ状接触材(藻類除去装置) 8 棒材 10 集合体状繊維 11 植毛体 12 洗矢 1, 5, 9 fibers 2 mesh contact material (algae removal device) 3 string contact material (algae removal device) 4 string material 6 loop fiber body 7 brush-shaped contact material (algae removal device) 8 bar material 10 aggregated form Fiber 11 Flocked body 12 Washing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木内 武 兵庫県姫路市網千区余子浜224−1 網千 コーポ102号 (72)発明者 森永 豪 兵庫県姫路市的形町的形2929−29 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Kiuchi 224-1 Ayokohama 224-1 Ayokohama, Ameku-ku, Himeji-shi, Hyogo Prefecture (72) Inventor Go Morinaga 2929-29 Higataji, Himeji-shi, Hyogo Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 線径が0.01〜2mmの繊維を1〜3
0mmの相対間隔で配設して構成された接触材を静止状
態もしくは緩やかな移動状態にある水と接触させて、前
記水中の藻を除去することを特徴とする藻類除去方法。
1. A fiber having a wire diameter of 0.01 to 2 mm
A method for removing algae, which comprises contacting contact materials, which are arranged at a relative interval of 0 mm, with water in a stationary state or a gentle moving state to remove algae in the water.
【請求項2】 接触材と接触する水が、平均流速0.0
1〜10mm/sである請求項1記載の藻類除去方法。
2. Water having a mean flow velocity of 0.0 in contact with the contact material.
The method for removing algae according to claim 1, wherein the method is 1 to 10 mm / s.
【請求項3】 接触材が、前記繊維を網状、紐状または
ブラシ状に配設してなる請求項1記載の藻類除去方法。
3. The method for removing algae according to claim 1, wherein the contact material comprises the fibers arranged in a mesh shape, a string shape, or a brush shape.
【請求項4】 繊維が、複数の素線の集合体である請求
項1記載の藻類除去方法。
4. The method for removing algae according to claim 1, wherein the fiber is an assembly of a plurality of strands.
【請求項5】 接触材が、ループ状に形成された前記繊
維を放射状に有する紐状接触材である請求項1記載の藻
類除去方法。
5. The algae removing method according to claim 1, wherein the contact material is a string-shaped contact material radially having the fibers formed in a loop shape.
【請求項6】 紐材と、紐材から放射状に配設され線径
0.01〜2mmの繊維からなるループ状繊維体とを備
え、 ループ状繊維体が、1〜30mmの相対間隔で紐材の軸
方向に連続して配置された紐状接触材を構成し、さら
に、紐状接触材が、互いに接して、もしくは0.05〜
10cmのすきまをもって配設された構造体を形成し、
この構造体に静止状態もしくは緩やかな移動状態にある
水と接触させて、前記水中の藻を除去することを特徴と
する藻類除去装置。
6. A cord material, and a loop-shaped fibrous body made of fibers having a wire diameter of 0.01 to 2 mm radially arranged from the cord material, wherein the loop-shaped fibrous material is at a relative interval of 1 to 30 mm. Constituting a string-like contact material continuously arranged in the axial direction of the material, further, the string-like contact material is in contact with each other, or 0.05 ~
Form a structure that is arranged with a gap of 10 cm,
An algae removing device, wherein the alga in the water is removed by bringing this structure into contact with water in a stationary state or a gentle moving state.
JP6030644A 1994-02-28 1994-02-28 Algae removal method Expired - Fee Related JP2986330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6030644A JP2986330B2 (en) 1994-02-28 1994-02-28 Algae removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6030644A JP2986330B2 (en) 1994-02-28 1994-02-28 Algae removal method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12444099A Division JP3222115B2 (en) 1999-04-30 1999-04-30 Algae removal equipment

Publications (2)

Publication Number Publication Date
JPH07236880A true JPH07236880A (en) 1995-09-12
JP2986330B2 JP2986330B2 (en) 1999-12-06

Family

ID=12309535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6030644A Expired - Fee Related JP2986330B2 (en) 1994-02-28 1994-02-28 Algae removal method

Country Status (1)

Country Link
JP (1) JP2986330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109200628A (en) * 2018-11-29 2019-01-15 北京揽山环境科技股份有限公司 A kind of cohesive fiber material for water-oil separating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179960A (en) * 1975-01-09 1976-07-12 Kuraray Co Haisuino shorihoho
JPS5845794A (en) * 1981-09-16 1983-03-17 Mitsubishi Plastics Ind Ltd Purification of waste water using waterway
JPS6233588A (en) * 1985-08-08 1987-02-13 Nippon Sangyo Kikai Kk Device for removing water bloom
JP3123596U (en) * 2006-05-11 2006-07-20 怡業股▲ふん▼有限公司 Suction cup structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179960A (en) * 1975-01-09 1976-07-12 Kuraray Co Haisuino shorihoho
JPS5845794A (en) * 1981-09-16 1983-03-17 Mitsubishi Plastics Ind Ltd Purification of waste water using waterway
JPS6233588A (en) * 1985-08-08 1987-02-13 Nippon Sangyo Kikai Kk Device for removing water bloom
JP3123596U (en) * 2006-05-11 2006-07-20 怡業股▲ふん▼有限公司 Suction cup structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109200628A (en) * 2018-11-29 2019-01-15 北京揽山环境科技股份有限公司 A kind of cohesive fiber material for water-oil separating

Also Published As

Publication number Publication date
JP2986330B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
Losordo et al. Recirculating aquaculture tank production systems
KR20110136222A (en) Ecological sewage water treatment system
US20140263000A1 (en) Methods and Apparatuses for Water Treatment
CN102515432A (en) Method for removing microcystin and odor substances in high-algae source water
JP3222115B2 (en) Algae removal equipment
CN208717084U (en) Water environment cleaning treatment system
JP2986330B2 (en) Algae removal method
JP2003290784A (en) Iron and manganese remover and method for the same
KR100534567B1 (en) The Purification System of River Water Quality and The Purification Method
JPH04126528A (en) Method for cleaning hollow-fiber membrane filter device the same
CN208667425U (en) A kind of strenuous primary treatment system of rain dirt overflow port
CN209161685U (en) A kind of efficient Multistage wastewater purifying processing device
JPS61271090A (en) Treating device for waste water using immobilized microorganism
CN203295304U (en) Zero-discharge treating system for waste water of fish and shrimp factory farming
JP2573902B2 (en) Water purification method and apparatus
Ranjan et al. Recirculating Aquaculture System engineering: Design, components and construction
JP2831498B2 (en) Upflow sludge blanket type wastewater treatment equipment
KR100887760B1 (en) Water treatment system using fluidized bed media
KR100697985B1 (en) Circulating water purification system to lake or pond
CN213141619U (en) Novel wastewater treatment for weaving device
JP2000197895A (en) Water purifying treatment method and apparatus
CN216863930U (en) Comprehensive purification tail water treatment system based on water conservancy
CN111943352B (en) Biological filter for wastewater treatment
CN211712730U (en) Sewage treatment device with double aeration biological membranes
CN221397538U (en) Film-hanging water purifying device suitable for industrial circulating water culture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990907

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees