JPH0723490B2 - Batch production method of hot metal - Google Patents

Batch production method of hot metal

Info

Publication number
JPH0723490B2
JPH0723490B2 JP5088787A JP5088787A JPH0723490B2 JP H0723490 B2 JPH0723490 B2 JP H0723490B2 JP 5088787 A JP5088787 A JP 5088787A JP 5088787 A JP5088787 A JP 5088787A JP H0723490 B2 JPH0723490 B2 JP H0723490B2
Authority
JP
Japan
Prior art keywords
ore
furnace
gas
carbonaceous material
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5088787A
Other languages
Japanese (ja)
Other versions
JPS63216908A (en
Inventor
秀行 山岡
富夫 宮崎
康夫 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5088787A priority Critical patent/JPH0723490B2/en
Publication of JPS63216908A publication Critical patent/JPS63216908A/en
Publication of JPH0723490B2 publication Critical patent/JPH0723490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は高炉法によらない銑鉄の製造方法に係り、よ
り詳しくは回分式の精錬形態を採用し、低品質の原料を
使用して効率的に溶銑を製造する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing pig iron that does not rely on the blast furnace method, and more particularly, adopts a batch-type refining method and efficiently uses a low-quality raw material. The present invention relates to a method for producing hot metal.

従来技術とその問題点 現在における製銑法の主流は高炉法である。高炉法にお
ける主要な化学反応は下記〜式で表わすことができ
る。
Conventional technology and its problems At present, the mainstream of the ironmaking method is the blast furnace method. The main chemical reactions in the blast furnace method can be represented by the following formulas.

C+1/2O2→CO+29.410Kcal/Kmol C … Fe2O3+CO→2FeO+CO2+2.330Kca l/Kmol Fe2O3 … FeO+CO→Fe+CO2+4.390Kcal/Kmol FeO … FeO+C→Fe+CO−33.790Kcal/Kmol FeO … すなわち、炉頂から装入されたコークスは羽口前に降下
し、 式の反応で高温の還元性ガスに転換され、降下する鉱
石と向流で上昇する過程において、ガスの顕熱と化学エ
ネルギーは下方から順次残存酸化鉄の溶融還元(
式)、予備還元鉄の溶解と酸化鉄の予備還元(,
式)、および鉱石の予熱に利用される。このように高炉
法はガスと鉱石を向流させることにより高い熱効率、還
元能力を達成している。
C + 1 / 2O 2 → CO + 29.410Kcal / Kmol C… Fe 2 O 3 + CO → 2 FeO + CO 2 + 2.330Kcal / Kmol Fe 2 O 3 … FeO + CO → Fe + CO 2 + 4.390Kcal / Kmol FeO… FeO + C → Fe + CO-33.790Kcal / Kmol FeO… That is, the coke charged from the furnace top falls to the front of the tuyere, is converted into high-temperature reducing gas by the reaction of the formula, and the sensible heat of the gas and Chemical energy is reduced from the bottom by smelting reduction of residual iron oxide (
Formula), pre-reduction of iron and pre-reduction of iron oxide (,
Formula) and ore preheating. In this way, the blast furnace method achieves high thermal efficiency and reduction capacity by counterflowing gas and ore.

しかし、単一容器で安定なガスと鉱石の向流反応を達成
するためには、高強度、低反応性のコークスと高強度、
高被還元性の鉱石を必須とするため、原料炭と鉄鉱石の
厳選、並びにコークス炉、焼結機、ペレット設備等大型
の事前処理設備を必要とし、資源の有効利用、省エネル
ギーおよび環境保全の面でコストアップの原因となって
いる。
However, in order to achieve a stable gas and ore countercurrent reaction in a single vessel, high strength, low reactivity coke and high strength,
Since highly reducible ore is essential, careful selection of coking coal and iron ore and large pretreatment equipment such as coke oven, sintering machine and pellet equipment are required, and effective use of resources, energy saving and environmental conservation In terms of cost, it is a cause of cost increase.

これらの問題に対し、原料制約の緩和と事前処理設備の
簡素化を目的として、鉄鉱石を加熱溶解した後固体還元
剤で還元する溶融還元法が開発されている。
For these problems, a smelting reduction method has been developed in which iron ore is heated and melted and then reduced with a solid reducing agent for the purpose of relaxing raw material restrictions and simplifying pretreatment equipment.

溶融還元法の化学反応は下記,式で表わされる。The chemical reaction of the smelting reduction method is represented by the following formula.

Fe2O3+3C→2Fe+3CO−108.090Kcal/Kmol Fe2O3 … CO+1/2O2→CO2+67.590Kcal/Kmol CO … すなわち、高炉法とは逆に、酸化鉄はまず溶解され、溶
融状態で炭素により還元される(式)。この反応は大
きな吸熱を伴うが、式に示すように溶融還元反応で副
生したCOガスの燃焼熱により補償される。
Fe 2 O 3 + 3C → 2Fe + 3CO−108.090Kcal / Kmol Fe 2 O 3 … CO + 1 / 2O 2 → CO 2 + 67.590Kcal / Kmol CO… That is, contrary to the blast furnace method, iron oxide is first melted and melted. Reduced by carbon (formula). This reaction has a large endotherm, but is compensated by the heat of combustion of CO gas by-produced in the smelting reduction reaction as shown in the equation.

このようにして、酸化鉄を液体状態で還元することによ
り原料品質制約の緩和をはかろうとするのが初期段階に
おけるDored法やEketorp Vallac法に代表される溶融還
元法であった。
In this way, the smelting reduction method represented by the Dored method and the Eketorp Vallac method in the initial stage tried to alleviate the raw material quality constraint by reducing the iron oxide in the liquid state.

しかるに、溶融還元法の場合は、高いエネルギー効率を
指向しようとして式の反応を促進させると炉内の還元
性雰囲気が低下し、酸化鉄を十分に還元できない状態が
発生して鉄歩留りの低下やスラグ中鉄酸化物による耐火
物損傷の問題が発生するため、これらの試みは実用化さ
れるまでには至らなかった。
However, in the case of the smelting reduction method, when the reaction of the formula is promoted in an attempt to direct high energy efficiency, the reducing atmosphere in the furnace is lowered, and a state in which iron oxide cannot be sufficiently reduced occurs and the iron yield is lowered. Due to the problem of refractory damage due to iron oxide in slag, these attempts have not been put to practical use.

かかる対策として、現在、別の炉で酸化鉄の予備還元を
強化させる試み(COIN法、CIG法等)や、溶融還元の熱
補償として式に変えて電力を使用する試み(Elred
法、Inred法等)がなされているが、いずれも原料制約
条件を緩和させる一方で、プルセスの複雑化を招く結果
となっている。
As such measures, we are currently trying to enhance the preliminary reduction of iron oxide in another furnace (COIN method, CIG method, etc.), or to use electric power instead of formula as heat compensation for smelting reduction (Elred
Method, Inred method, etc.) have been implemented, but all of them result in complicating the process while relaxing the raw material constraint conditions.

この発明はこのような高炉法、溶融還元法の有する諸問
題を解決し、簡素な方法で、劣質原料を使用して高エネ
ルギー効率の下に溶銑を製造する方法を提案せんとする
ものである。
The present invention proposes a method for solving various problems of the blast furnace method and the smelting reduction method and producing a hot metal with high energy efficiency by using a poor quality raw material by a simple method. .

問題点を解決するための手段 この発明は従来の前記問題点を解決する手段として、回
分式の精錬形態を採用し、低品質の原料を使用して効率
的に溶銑を製造する方法を提案するもので、その要旨
は、上部に原料装入とガス回収のための開口を有し、炉
底に支燃性ガス吹込みノズルと溶銑滓抽出口を有する筒
型炉を用い、炉内に炭材と鉱石の充填層を形成し、底吹
きノズルより吹込む空気、酸素等の支燃性ガスにより炭
材を燃焼させて高温の還元性ガスを生成させるととも
に、該還元性ガスにより鉱石を予備還元し、さらに上吹
きランスにて炭材と鉱石の充填層内に空気、酸素等の支
燃性ガスを吹込み鉱石の還元に寄与しないガスを燃焼さ
せて鉱石を予熱し、炉内に炭材を残存させた状態で底吹
きノズルおよび上吹きランスより炉底部および鉱石と炭
材の充填層部に支燃性ガスを吹込み、炭材を燃焼させて
前記予備還元鉱石を溶解精錬し、生成した溶銑と溶滓を
溶銑滓抽出口より抽出することを特徴とする溶銑の回分
式製造方法にある。
Means for Solving Problems This invention proposes a method for efficiently producing hot metal by using a batch-type refining method and using low-quality raw materials, as a means for solving the above-mentioned conventional problems. The main point of this is to use a cylindrical furnace with an opening for charging raw materials and gas recovery at the top and a combustion-supporting gas injection nozzle and a molten pig iron extraction port at the bottom of the furnace. Form a packed bed of wood and ore, burn the carbonaceous material with a combustion-supporting gas such as air and oxygen blown from the bottom blowing nozzle to generate high-temperature reducing gas, and reserve the ore with the reducing gas. In addition to reducing, the top blowing lance blows a combustion-supporting gas such as air and oxygen into the packed bed of carbonaceous material and ore to burn gas that does not contribute to the reduction of the ore to preheat the ore, and With the material remaining, the bottom of the furnace and the Injecting a combustion-supporting gas into the packed bed of stone and carbonaceous material, burning the carbonaceous material to melt and smelt the preliminary reduced ore, and extracting the generated hot metal and molten slag from the molten iron slag extraction port. This is a batch-type manufacturing method of hot metal.

高炉法は連続式のプロセスで、還元の主体をガス還元
(,式)に置こうとするため、良質の鉱石とコーク
スを必須とした。一方、溶融還元法は溶融還元に主体を
置き、溶融還元吸熱を、副生するガスの燃焼発熱(
式)で補償しようとしたため、還元能力の低下を引起こ
した。
The blast furnace method is a continuous process, and since the main body of reduction is to place gas reduction (, formula), high quality ore and coke are essential. On the other hand, the smelting reduction method mainly focuses on smelting reduction and absorbs the smelting reduction endotherm by the combustion heat generation (
Since it tried to compensate with the formula), it caused a reduction in the reducing ability.

そこで、この発明では、高炉法における〜式の反応
と、溶融還元法における,式の反応のいずれをも取
込み、かつ回分式の処理方法を採用し、時間的に順次鉱
石の予熱、予備還元、溶解、溶融還元を行なわせること
により劣質原料の使用を可能とし、かつ高いエネルギー
効率と鉄歩留りて溶銑を製造し得る方法を提案したもの
である。
Therefore, in the present invention, the reaction of the formula ~ in the blast furnace method, and the reaction of the formula in the smelting reduction method are both taken in, and a batch type processing method is adopted, and the ore preheating, pre-reduction, It proposes a method that enables the use of inferior raw materials by performing melting and smelting reduction, and that can produce hot metal with high energy efficiency and iron yield.

なおこの発明において、回分式の処理方式を採用したの
は、劣質の炭材や鉱石の使用をはかるためである。
In the present invention, the batch type treatment method is adopted in order to use inferior carbonaceous materials and ores.

作用 図面はこの発明の一実施例を模式的に示す製造工程図で
ある。
Operation The drawings are manufacturing process diagrams schematically showing an embodiment of the present invention.

まず、この発明で用いる反応容器としては、上部に原料
の装入とガス回収のための開口(2)を有し、底部に空
気、酸素等の支燃性ガス吹込み用底吹きノズル(3)と
溶銑滓抽出口(4)を有する筒型炉(1)を用いる。
First, the reaction vessel used in the present invention has an opening (2) for charging raw materials and gas recovery in the upper part, and a bottom blowing nozzle (3) for blowing a combustion-supporting gas such as air or oxygen in the bottom. ) And a tubular furnace (1) having a molten pig iron extraction port (4).

使用する原料としては、炭材と鉱石が主体である。炭材
としてはコークス、成型炭、石炭のいずれでもよく、粒
度としては5mm以上のものが望ましい。鉱石としては塊
鉱石、焼成ペレット、生ペレット、焼結鉱等いずれでも
よく、粒度としては2mm以上が望ましい。他に石炭石、
ドロマイト、その他の造滓剤を必要に応じて使用する。
The raw materials used are mainly carbonaceous materials and ores. The carbonaceous material may be coke, briquette, or coal, and the particle size is preferably 5 mm or more. The ore may be any of lump ore, calcined pellets, green pellets, sinter ore, and the particle size is preferably 2 mm or more. Coal stone,
Dolomite and other slag-making agents are used as needed.

すなわち、まず筒型炉(1)の上部開口(2)より炭材
(6)と鉱石(7)、必要に応じて造滓剤(8)を炉内
に装入して炉内に充填層(9)を形成する。その際の装
入方法としては、炭材と鉱石および造滓剤を層状に装入
するか、もしくは混合して装入してもよいが、炉底部に
炭材を集中させることが望ましい(図a)。
That is, first, the carbonaceous material (6) and the ore (7) and, if necessary, the slag forming agent (8) are charged into the furnace through the upper opening (2) of the cylindrical furnace (1) and the packed bed is packed in the furnace. (9) is formed. As a charging method at that time, the carbonaceous material and the ore and the slag-forming agent may be charged in a layered manner or may be mixed and charged, but it is preferable to concentrate the carbonaceous material on the bottom of the furnace (Fig. a).

次に、底吹きノズル(3)より空気または酸素等の支燃
性ガス(10)を吹込み炭材(6)に着火せしめる。炭材
の燃焼が進むとともに、燃焼生成ガス中のO2,CO2,H2O
は減少し、下記式に示す反応によりCOとH2を主成分と
する還元性ガスを生成する(図b)。
Next, the bottom blowing nozzle (3) is blown with a combustion-supporting gas (10) such as air or oxygen to ignite the carbonaceous material (6). As the combustion of carbonaceous materials progresses, O 2 , CO 2 , and H 2 O in the combustion product gas
Decreases, and a reducing gas containing CO and H 2 as main components is produced by the reaction shown in the following formula (FIG. B).

上記の反応が安定した段階で、炉底からの支燃性ガス吹
込み量を増加し、かつ上吹きランス(5)を充填層
(9)内に挿入し空気、酸素等の支燃性ガスを吹込む。
この段階では充填層内の鉱石の温度は低い状態にある。
したがって、下記に示す燃焼反応が起る。
When the above reaction is stable, the amount of combustion-supporting gas blown from the furnace bottom is increased, and the top-blowing lance (5) is inserted into the packed bed (9) to support combustion-supporting gas such as air and oxygen. Blow in.
At this stage, the temperature of the ore in the packed bed is low.
Therefore, the combustion reaction shown below occurs.

O2+CO(H2)→CO2(H2O)+67590(57800)Kcal/Kmol
CO(H2) … この燃焼熱により、鉱石は加熱されて昇温するととも
に、前記式の反応で生成したCOとH2を主成分とする還
元性ガスによる還元反応(,式)が生起する(図
c)。
O 2 + CO (H 2 ) → CO 2 (H 2 O) +67590 (57800) Kcal / Kmol
CO (H 2 ) ... Due to this heat of combustion, the ore is heated and the temperature rises, and the reduction reaction (, formula) caused by the reducing gas containing CO and H 2 as the main components is generated. (Fig. C).

Fe2O3+CO(H2)→2FeO+CO2(H2O)+2330(−7460)K
cal/Kmol Fe2O3 … FeO+CO(H2)→Fe+CO2(H2O)+4390(−5400)Kcal/
Kmol FeO … すなわち、この段階では、炉底部において式の反応で
生成した還元性ガスを燃料および還元剤として利用し、
鉱石の予熱、予備還元を促進させる。またこの時、炉底
部で式の反応により生成するCO,H2ガスが全量CO2,H2
Oに転換され、排出されるガス中のCO,H2がゼロとなるよ
うに充填層(9)内に吹込む支燃性ガス(O2)量を調整
する。
Fe 2 O 3 + CO (H 2) → 2FeO + CO 2 (H 2 O) +2330 (-7460) K
cal / Kmol Fe 2 O 3 … FeO + CO (H 2 ) → Fe + CO 2 (H 2 O) +4390 (−5400) Kcal /
Kmol FeO ... That is, at this stage, the reducing gas generated by the reaction of the formula at the bottom of the furnace is used as a fuel and a reducing agent,
Promotes preheating and pre-reduction of ore. At this time, the total amount of CO, H 2 gas generated by the reaction of the equation at the bottom of the furnace is CO 2 , H 2
The amount of the combustion-supporting gas (O 2 ) blown into the packed bed (9) is adjusted so that the CO and H 2 in the gas converted to O and discharged are zero.

その後、炉内に炭材を残存させた状態でさらに底吹きノ
ズル(3)および上吹きランス(5)より支燃性ガスの
吹込みを継続することにより、炭材の燃焼により予備還
元鉱石の温度が融点に到達し、鉱石類の溶け落ちが始ま
る。この段階では〜式の反応で生成するCO2,H2Oは
再び炭材中Cと反応してCO,H2に転換される。したがっ
て、この段階では底吹きノズル(3)および上吹きラン
ス(5)からの送酸量を増加させても排出ガス(11)の
温度が過上昇するのみで、排出されるガス中のCO2,H2O
の増加の度合が少なくなるので、底吹きノズル(3)お
よび上吹きランス(5)からの送酸量を低減させる。こ
の間、鉱石の溶解が進行し、スラグ中に残存する酸化鉄
は炭材中のCと下記11式の反応を生起して還元される
(図d)。
After that, by continuing to blow the combustion-supporting gas from the bottom-blowing nozzle (3) and the top-blowing lance (5) with the carbonaceous material remaining in the furnace, the carbonaceous material is burned to produce the pre-reduced ore. The temperature reaches the melting point and the ore begins to burn through. At this stage, CO 2 and H 2 O produced by the reaction of the formula-react with C in the carbonaceous material and are converted into CO and H 2 . Therefore, at this stage, even if the amount of acid fed from the bottom blowing nozzle (3) and the top blowing lance (5) is increased, the temperature of the exhaust gas (11) only rises excessively, and the CO 2 in the exhaust gas is reduced. , H 2 O
Therefore, the amount of acid fed from the bottom blowing nozzle (3) and the top blowing lance (5) is reduced. During this time, the dissolution of the ore proceeds, and the iron oxide remaining in the slag is reduced by causing the reaction of C in the carbonaceous material with the following formula 11 (Fig. D).

FeO+C→Fe+CO−33790Kcal/Kmol FeO … その後、鉱石は全量溶解、還元され、炉内には溶銑とス
ラグが生成する。さらに、原料装入時点において、炭材
を過剰に装入しておくことにより、炉内には炭材も共存
した状態となっている。鉱石の還元が全量完了したか否
かは、例えば送酸量と排出されるガス中のO2量が一致し
たことで確認できるので、この時点で送酸を停止し、炉
内の溶銑(12)および溶滓(13)を溶銑滓抽出口(4)
から抽出する(図e)。ここで、炉内に残存する炭材は
次回への繰り越し分としてそのまま残存させることが望
ましい。
FeO + C → Fe + CO-33790Kcal / Kmol FeO ... After that, the entire ore is melted and reduced, and hot metal and slag are generated in the furnace. Furthermore, since the carbonaceous material is excessively charged at the time of charging the raw materials, the carbonaceous material also exists in the furnace. Whether or not the reduction of the ore has been completed can be confirmed, for example, by the fact that the amount of oxygen fed and the amount of O 2 in the discharged gas match, so at this point, the feeding of oxygen is stopped and the hot metal (12 ) And molten slag (13) to the molten pig iron extraction port (4)
(Fig. E). Here, it is desirable that the carbonaceous material remaining in the furnace is left as it is as a carry-over amount to the next time.

上記この発明方法における式の反応は、高炉における
式の反応と同じである。また、,,式の反応は
高炉における,,の反応式と同じである。すなわ
ち、高炉と同じ反応で構成されているとみなすことがで
きる。ただし、高炉は連続式に運転されるのに対し、こ
の発明は回分式に運転される。この回分式を採用したこ
とにより、高炉では使用できない劣質の炭材や鉱石の使
用が可能となる。
The reaction of the formula in the above method of the present invention is the same as the reaction of the formula in the blast furnace. The reaction of the equation is the same as that of the blast furnace. That is, it can be considered that the same reaction as that of the blast furnace is performed. However, while the blast furnace is operated continuously, the present invention is operated batchwise. By adopting this batch system, it is possible to use inferior carbonaceous materials and ores that cannot be used in blast furnaces.

すなわち、炭材は高炉におけるコークスのように炉下部
において長時間の間コークス充填層を形成させる必要は
なく、運転の最終段階では大半が消失してしまうもので
ある。したがって、強度や厳格な粒度管理は不要とな
る。一方、鉱石における被還元性も問わない。その理由
は、被還元性に優れた鉱石の場合には、炉下部で生成す
る還元性ガスで鉱石を還元するとともに還元に寄与しな
いガスを燃焼させて鉱石を予熱する過程(図c)の段階
で式の反応を強化させ、生成するCO,H2ガスで,
式により鉱石を還元させることができる一方、被還元性
の悪い鉱石の場合には前記図(c)の段階で式の反応
を促進させて早期に溶解せしめ、予備還元鉱石の溶解精
錬過程(図d)に移行させて後、式の反応で還元させ
ることができるためである。
That is, unlike the coke in a blast furnace, it is not necessary to form a coke packed bed in the lower part of the furnace for a long time, and most of the carbonaceous material disappears in the final stage of operation. Therefore, strength and strict grain size control are unnecessary. On the other hand, the reducibility of ore does not matter. The reason is that in the case of an ore that is highly reducible, the reducing gas generated in the lower part of the furnace reduces the ore and the gas that does not contribute to the reduction is burned to preheat the ore (Fig. C). With the generated CO and H 2 gas, the reaction of the formula is strengthened by
While the ore can be reduced by the formula, in the case of an ore with poor reducibility, the reaction of the formula is promoted at the stage of the above-mentioned figure (c) to dissolve it early, and the dissolution and refining process of the pre-reduced ore (Fig. This is because the compound can be reduced by the reaction of the formula after shifting to d).

ここで、被還元性の良好な鉱石の場合の反応形態は、主
に,,式であり高炉法の,,式と同じであ
る。一方、被還元性の悪い鉱石の場合の反応形態は、
,式が主体であり、これは溶融還元法における,
式と同じである。ただし、この場合溶融還元法では同
時的に,式を進行させるため、還元能力の低下を引
起こしていたが、この発明の場合は式と式の反応
を、回分式運転方式を採用したことにより時間的に鉱石
の還元と予熱段階(図c)と予備還元鉱石の溶解精錬段
階(図d)とに区別しているため、還元能力が低下する
ことはない。勿論、,,式の反応の合計と、,
式の反応の合計は全体として等価であり、共に高炉法
に匹敵する高いエネルギー効率(ガス利用率)が期待で
きることになる。
Here, the reaction form in the case of an ore having a good reducibility is mainly the equation, which is the same as the equation of the blast furnace method. On the other hand, the reaction form in the case of ores with poor reducibility is
, Equation is the main, which is used in the smelting reduction method
Same as the formula. However, in this case, in the smelting reduction method, the formula was simultaneously advanced, which caused a reduction in the reduction ability. However, in the case of the present invention, the reaction between the formula and the formula is caused by adopting the batch operation method. Since the ore reduction and the preheating stage (Fig. C) and the smelting and refining stage of the pre-reduced ore (Fig. D) are temporally distinguished, the reducing ability does not decrease. Of course, the total of the reactions in the equation ,,
The total number of reactions in the equation is equivalent as a whole, and both can be expected to have high energy efficiency (gas utilization rate) comparable to that of the blast furnace method.

発明の効果 以上説明したごとく、この発明は回分式の操作手順を取
り、炉内に鉱石と炭材の充填層を形成し、炉底部から支
燃性ガスを吹込み、炭材を燃焼させて生成する還元性ガ
スを鉱石の還元に利用するとともに、鉱石の還元に利用
されなかったCO,H2ガスを鉱石と炭材の充填層内にO2
吹込むことにより燃焼させ、顕熱として利用することに
より、劣質の炭材と鉱石を使用して還元能力を損うこと
なく高いエネルギー効率で溶銑を製造することが可能で
ある。したがって、この発明によれば、大幅な銑鉄製造
コスト低減がはかられるという大なる効果を奏するもの
である。
As described above, according to the present invention, a batch type operation procedure is adopted, a packed bed of ore and carbonaceous material is formed in the furnace, and a combustion-supporting gas is blown from the bottom of the furnace to burn the carbonaceous material. The reducing gas produced is used for ore reduction, and the CO, H 2 gas that was not used for ore reduction is burned by blowing O 2 into the packed bed of ore and carbonaceous material to generate sensible heat. By utilizing it, it is possible to produce hot metal with high energy efficiency by using inferior carbonaceous materials and ores without impairing the reducing ability. Therefore, according to the present invention, there is a great effect that a significant reduction in pig iron production cost can be achieved.

実施例 7t/チャージの上底吹き転炉においてこの発明方法を実
施した。
Example The process according to the invention was carried out in a 7 t / charge top-bottom converter.

その際、鉱石としてFe2O386%,脈石13.8%,脈石中SiO
226%,Al2O312%,CaO49%,粒度2mm以上が100%のもの
を使用し、炭材として炭素87.5%,灰分10%,粒度10mm
以上のコークスを使用した。
At that time, Fe 2 O 3 86%, gangue 13.8%, SiO in gangue as ore
2 26%, Al 2 O 3 12%, CaO 49%, grain size 2 mm or more 100% is used, carbon material 87.5%, ash content 10%, grain size 10 mm
The above coke was used.

まず、鉱石11.2tonとコークス3.7tonを十分に加熱した
転炉内に装入して鉱石とコークスの充填層に形成した。
ただし、炉底部にはコークス1tonを単味で装入し、その
上にコークスと鉱石の混合物を装入した。
First, 11.2 ton of ore and 3.7 ton of coke were charged into a sufficiently heated converter to form a packed bed of ore and coke.
However, 1 ton of coke was simply charged in the bottom of the furnace, and a mixture of coke and ore was charged on it.

次に、底吹きノズルから空気1000Nm3/hを吹込んだ。吹
込み後、約5分で排出ガス中にCOが検出されたため底吹
きノズルからの空気量を3860Nm3/hに増加させるととも
に、充填層内に装入した上吹きランスから排出ガス中の
COとO2がゼロとなるように吹込み量を調整して空気を吹
込んだ。この間の所要時間は約60分であり、充填層内へ
吹込んだ空気量は60分間の平均で650Nm3/hであった。
Next, 1000 Nm 3 / h of air was blown from the bottom blowing nozzle. Since CO was detected in the exhaust gas in about 5 minutes after blowing, the amount of air from the bottom blowing nozzle was increased to 3860 Nm 3 / h and the amount of exhaust gas from the top blowing lance charged in the packed bed was changed.
Air was blown in by adjusting the blowing amount so that CO and O 2 became zero. The time required during this period was about 60 minutes, and the amount of air blown into the packed bed was 650 Nm 3 / h on average for 60 minutes.

上記過程の後半において、充填層内への空気吹込み量を
増加させても排ガス中のCOが消失しないようになったこ
とにより、コークスが生成CO2と反応してCOに転換され
るほどの高温(1080℃以上)になったと判断されたた
め、底吹きと充填層内への送風をO2に切換え送風を続行
した。その後、約40分で吹き込み酸素量と排出されるガ
ス中の酸素量がほぼ一致してきたので、送酸を停止し
た。この間の底吹きノズルからの送酸量の平均は1436Nm
3/h、充填層への送酸量平均は212Nm3/hであった。また
この間、排出されたガスの平均利用率CO/CO+CO2は約50
%であり、4914Mcalのガスが回収された。
In the latter half of the above process, even if the amount of air blown into the packed bed is increased, the CO in the exhaust gas does not disappear, so that the coke reacts with the generated CO 2 and is converted into CO. Since it was judged that the temperature became high (above 1080 ° C), the air blowing into the bottom and the packed bed was switched to O 2 and the air blowing was continued. Then, in about 40 minutes, the amount of oxygen blown in and the amount of oxygen in the discharged gas almost matched, so the oxygen transfer was stopped. During this period, the average amount of acid sent from the bottom blowing nozzle was 1436 Nm.
3 / h, the average amount of acid fed to the packed bed was 212 Nm 3 / h. During this period, the average utilization rate of exhausted gas CO / CO + CO 2 was about 50.
% And 4914 Mcal of gas was recovered.

次に、送酸を停止し、炉内に蓄積した溶銑とスラグを抽
出したところ、溶銑7tとともにスラグ1.89tが回収さ
れ、炉内には約0.4tonのコークスが残存した。
Next, when the acid transfer was stopped and the hot metal and slag accumulated in the furnace were extracted, 7t of hot metal and 1.89t of slag were recovered, and about 0.4 ton of coke remained in the furnace.

得られた溶銑は温度1500℃、C3.5%,Siはほぼゼロ、S
は0.1%未満にとどまった。またスラグはCaO約40%,Si
O2約31%,Al2O315%,FeO0.5%以下、S0.8%であった。
The obtained hot metal is 1500 ℃, C3.5%, Si is almost zero, S
Remained below 0.1%. The slag is about 40% CaO and Si.
O 2 was about 31%, Al 2 O 3 15%, FeO 0.5% or less, and S 0.8%.

第1表には銑鉄1トン当りの原燃料使用量を示す。Table 1 shows the amount of raw fuel used per ton of pig iron.

また、精錬に要した時間は合計1時間45分であり、溶銑
滓抽出、装入に要する時間を含めると1チャージ当り2
時間程度となる。
In addition, the time required for refining is 1 hour and 45 minutes in total, and if the time required for hot metal extraction and charging is included, it is 2 per charge.
It will be about time.

なお、炭材にコークスを使用した場合に限らず、成型
炭、塊石炭を使用た場合においても、炭材使用量は多少
増加するものの、十分に操業可能であった。
Not only when the coke was used as the carbonaceous material but also when the forming coal or the agglomerated coal was used, although the amount of the carbonaceous material used was slightly increased, it was possible to operate sufficiently.

上記の実施例から明らかなごとく、本発明法により高炉
法では使用できない細粒子径の原料を使用して高炉法に
匹敵するエネルギー原単位の下に溶銑を製造することが
できた。
As is clear from the above examples, the method of the present invention enables the production of molten pig iron with an energy unit equivalent to that of the blast furnace method by using a raw material having a fine particle size which cannot be used in the blast furnace method.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を模式的に示す製造工程図
で、同図(a)は炉内に炭材と鉱石を装入する過程、同
図(b)は炉底部から空気または酸素等の支燃性ガスを
吹込み、炉底部の炭材を燃焼させて高温の還元性ガスを
製造する過程、同図(c)は炉下部で生成する還元性ガ
スで鉱石を還元するとともに、還元に寄与しないガスを
燃焼させて鉱石を予熱する過程、同図(d)は炉内に炭
材を残存させた状態で炉底部および炉上部より支燃性ガ
スを吹込み、炭材を燃焼させて予備還元鉱石を溶解精錬
し溶銑と溶滓を製造する過程、同図(e)は製造された
溶銑と溶滓を抽出する過程をそれぞれ示す。 1…筒型炉、2…開口、3…底吹きノズル、4…溶銑滓
抽出口、5…上吹きランス、6…炭材、7…鉱石、9…
充填層、12…溶銑、13…溶滓。
FIG. 1 is a manufacturing process diagram schematically showing an embodiment of the present invention. FIG. 1 (a) is a process of charging carbonaceous material and ore into the furnace, and FIG. The process of injecting a combustion-supporting gas such as oxygen and burning the carbonaceous material at the bottom of the furnace to produce a high-temperature reducing gas, (c) in the figure shows that the reducing gas generated in the lower part of the furnace reduces the ore. , The process of preheating the ore by burning the gas that does not contribute to the reduction, the figure (d) shows that the carbonaceous material is blown from the furnace bottom and the furnace upper part with the carbonaceous material remaining in the furnace. The process of combusting and refining the pre-reduced ore to produce hot metal and molten slag, and the process of extracting the produced hot metal and molten slag are shown in FIG. DESCRIPTION OF SYMBOLS 1 ... Cylindrical furnace, 2 ... Opening, 3 ... Bottom blowing nozzle, 4 ... Hot metal slag extraction port, 5 ... Top blowing lance, 6 ... Carbon material, 7 ... Ore, 9 ...
Packed bed, 12 ... hot metal, 13 ... molten slag.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】上部に原料装入とガス回収のための開口を
有し、炉底に支燃性ガス吹込みノズルと溶銑滓抽出口を
有する筒型炉を用い、炉内に炭材と鉱石の充填層を形成
し、底吹ノズルより吹込む支燃性ガスにより炭材を燃焼
させて高温の還元性ガスを生成させるとともに、該還元
性ガスにより鉱石を予備還元し、さらに上吹ランスにて
炭材と鉱石の充填層内に支燃性ガスを吹込み鉱石の還元
に寄与しないガスを燃焼させて鉱石を予熱し、炉内に炭
材を残存させた状態で底吹ノズルおよび上吹きランスよ
り炉底部および鉱石と炭材の充填層部に支燃性ガスを吹
込み、炭材を燃焼させて前記予備還元鉱石を溶解精錬
し、生成した溶銑と溶滓を溶銑滓抽出口より抽出するこ
とを特徴とする溶銑の回分式製造方法。
1. A cylindrical furnace having an opening for charging raw materials and recovering gas at the upper part, and having a combustion-supporting gas blowing nozzle and a molten pig iron extraction port at the bottom of the furnace is used. A packed bed of ore is formed, and the carbonaceous material is burned by the combustion-supporting gas blown from the bottom-blowing nozzle to generate a high-temperature reducing gas, and the ore is pre-reduced, and the top-blowing lance is further supplied. In order to preheat the ore by injecting a combustion-supporting gas into the packed bed of carbonaceous material and ore to burn the gas that does not contribute to the reduction of the ore, and leaving the carbonaceous material in the furnace, the bottom blowing nozzle and the top A combustion-supporting gas is blown from the blowing lance to the bottom of the furnace and the packed bed of ore and carbonaceous material, the carbonaceous material is burned to smelt and smelt the preliminary reduced ore, and the hot metal and slag generated are extracted from the hot metal slag extraction port. A batch-type manufacturing method of hot metal, which comprises extracting.
JP5088787A 1987-03-04 1987-03-04 Batch production method of hot metal Expired - Lifetime JPH0723490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5088787A JPH0723490B2 (en) 1987-03-04 1987-03-04 Batch production method of hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5088787A JPH0723490B2 (en) 1987-03-04 1987-03-04 Batch production method of hot metal

Publications (2)

Publication Number Publication Date
JPS63216908A JPS63216908A (en) 1988-09-09
JPH0723490B2 true JPH0723490B2 (en) 1995-03-15

Family

ID=12871243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5088787A Expired - Lifetime JPH0723490B2 (en) 1987-03-04 1987-03-04 Batch production method of hot metal

Country Status (1)

Country Link
JP (1) JPH0723490B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021372A1 (en) * 1996-11-11 1998-05-22 Sumitomo Metal Industries, Ltd. Method and apparatus for manufacturing reduced iron
TW368521B (en) * 1996-11-20 1999-09-01 Sumitomo Metal Ind Manufacturing method and apparatus for deoxidized iron

Also Published As

Publication number Publication date
JPS63216908A (en) 1988-09-09

Similar Documents

Publication Publication Date Title
US6143054A (en) Process of producing molten metals
CA2236587C (en) Duplex procedure for the production of metals and metal alloys from oxidic metal ores
US7169205B2 (en) Method for producing a melt iron in an electric furnace
US6582492B1 (en) Method for producing melt iron
JP4060986B2 (en) How to use dust in converter steelmaking.
JPH0723490B2 (en) Batch production method of hot metal
EP0950117B1 (en) A method for producing metals and metal alloys
JP2638861B2 (en) Melt reduction method
JP2600733B2 (en) Smelting reduction method
US4412862A (en) Method for the production of ferrochromium
Usachev et al. Modern Processes for the Coke-Less Production of Iron.
JPS6143406B2 (en)
JP2666397B2 (en) Hot metal production method
JPH0723495B2 (en) Operation method of smelting reduction furnace
JPS59104419A (en) Steel-making process in arc furnace
JP4772436B2 (en) How to use dust in converter steelmaking and how to operate a dust melting converter
JPH08209211A (en) Method for melting scrap by vertical furnace
JP2600229B2 (en) Smelting reduction method and equipment
CN117187470A (en) New smelting reduction iron-making process
CN117587226A (en) Method and system for recycling laterite nickel ore leaching tailings
JPH0242884B2 (en)
JPH01275711A (en) Smelt-reduction method
JPH03219005A (en) Smelting reduction iron-making method
JPS62188714A (en) Production of molten iron
JPH01104709A (en) Smelting reduction method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term