JPH07233871A - Hydraulic driving system for vehicle - Google Patents

Hydraulic driving system for vehicle

Info

Publication number
JPH07233871A
JPH07233871A JP6046323A JP4632394A JPH07233871A JP H07233871 A JPH07233871 A JP H07233871A JP 6046323 A JP6046323 A JP 6046323A JP 4632394 A JP4632394 A JP 4632394A JP H07233871 A JPH07233871 A JP H07233871A
Authority
JP
Japan
Prior art keywords
motor
pressure
pump
high pressure
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6046323A
Other languages
Japanese (ja)
Other versions
JP3167526B2 (en
Inventor
Yasuo Kita
康雄 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP04632394A priority Critical patent/JP3167526B2/en
Publication of JPH07233871A publication Critical patent/JPH07233871A/en
Application granted granted Critical
Publication of JP3167526B2 publication Critical patent/JP3167526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/10Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable mechanical accumulator, e.g. flywheel
    • B60K6/105Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable mechanical accumulator, e.g. flywheel the accumulator being a flywheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Gearings (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To economize fuel consumption and suppress the exhaust gas contamination by permitting the free acceleration/deceleration only by using an accelerator and a brake without requiring speed change and carrying out the regenerative brake application and the optimum point operation of an engine. CONSTITUTION:The high pressure port 11 of a variable pump/motor 7 which can continuously vary the displacement volume in both the positive and negative directions is connected with a common high pressure line having a constant pressure, and wheels 6 are accelerated with the output torque in the case where the displacement quantity is negative (motor operation), while the wheels are decelerated with the load torque in the case where the displacement quantity is positive (pump operation). The common high pressure line is kept at a constant pressure by joining a flywheel 3 with the shaft and connecting the high pressure port of a variable pump/motor 1 which is similarly controlled by a pressure compensator 2. Further, in the common high pressure line, the high pressure liquid is supplied by the intermittent operation of a hydraulic pump 5 which is directly connected with an engine 4, and the engine at that time is operated under the optimum condition (combination between the load torque and the revolution speed) in the aspect of efficiency and exhaust gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、乗用車・バス・トラッ
ク等自動車用駆動システムの、省エネルギおよび排出ガ
ス低減のための対策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to measures for saving energy and reducing exhaust gas in drive systems for automobiles such as passenger cars, buses and trucks.

【0002】[0002]

【従来の技術】従来の自動車用駆動システムでは、車体
の運動のエネルギや位置のエネルギを回収し、再利用す
ることができるものがまだ殆ど実用化されていない。電
気自動車では、回生制動が可能とされているが、インバ
ータ素子の耐サージ電圧などの課題があり、また走行距
離や寿命など電気自動車そのものの性能の限界を破るこ
とが困難である。
2. Description of the Related Art Conventional drive systems for automobiles have not been put into practical use yet, which are capable of recovering and reusing the energy of motion of a vehicle body and the energy of position. Although electric vehicles are capable of regenerative braking, they have problems such as surge withstand voltage of inverter elements, and it is difficult to exceed the performance limits of electric vehicles themselves, such as mileage and life.

【0003】発進停止を頻繁に繰り返す路線バスの場合
には特に効果が大きいので、油圧アキュムレータを用い
て回生制動を行う駆動方式が試みられている (例えば
Development of a Braking Energy Regeneration Sys
tem for City Buses, SAE Technical Paper 872265(198
7))。しかし、エネルギ蓄積容量の限界と、制御上の問
題のため、蓄エネルギ効果の利用は発進加速時に限定さ
れている。従って、定常走行時にもエンジンを最適条件
で間欠運転し、エネルギの蓄積・放出を繰り返すことに
より、より一層の効果を期待する様な試みは行われてい
ない。
Since the effect is particularly great in the case of a route bus in which starting and stopping are frequently repeated, a drive system for performing regenerative braking using a hydraulic accumulator has been attempted (for example,
Development of a Braking Energy Regeneration Sys
tem for City Buses, SAE Technical Paper 872265 (198
7)). However, due to the limitation of energy storage capacity and control problems, the use of the energy storage effect is limited during starting acceleration. Therefore, no attempt has been made to expect a further effect by intermittently operating the engine under optimal conditions and repeating energy storage / release even during steady running.

【0004】[0004]

【発明が解決しようとする課題】従来の油圧アキュムレ
ータを用いた車両用液圧駆動システムでは、回生制動は
可能であるが、高圧ガスを使用するため取扱上の危険が
あり、法規上も規制が多い。また、アキュムレータはそ
の重量・体積の大きさに比して蓄積エネルギが小さく、
車両重量の増加によりその効果が減殺される。さらに、
アキュムレータのエネルギ蓄積量を正確に知り難いため
制御上の困難があり、また高圧油の貯蔵・放出に伴う圧
力の変動が大きいので制御が複雑となりその上定格圧力
以下で運転する場合が多くなるので油圧ポンプ・モ−タ
の能力をフルに使用することが出来ない、など多くの問
題点があった。
In the conventional hydraulic drive system for a vehicle using a hydraulic accumulator, regenerative braking is possible, but since high pressure gas is used, there is a danger in handling, and regulations are also legal. Many. In addition, the accumulator has less accumulated energy than its weight and volume,
The effect is diminished by the increase in vehicle weight. further,
It is difficult to accurately control the amount of energy stored in the accumulator, and it is difficult to control.In addition, the pressure fluctuations associated with the storage and release of high-pressure oil are large, so control becomes complicated and moreover, the operation is often performed below the rated pressure. There were many problems such as not being able to use the full capacity of the hydraulic pump / motor.

【0005】本発明は、高圧ガスを使用しないため取扱
上の危険がなく、また、アキュムレータに較べ単位重量
・体積当りの蓄積エネルギが大きく、さらに、そのエネ
ルギ蓄積量を容易に正確に知り得るため制御上有利であ
り、また高圧油の貯蔵・放出に伴う圧力の変動が小さい
ので、制御が簡単で油圧ポンプ・モ−タの能力を常にフ
ルまで利用できるような、車両用液圧駆動システム提供
することを目的としている。
Since the present invention does not use high-pressure gas, there is no danger of handling, the stored energy per unit weight and volume is larger than that of the accumulator, and the amount of stored energy can be easily and accurately known. A hydraulic drive system for a vehicle, which is advantageous in control and has small pressure fluctuations associated with the storage and release of high-pressure oil, which makes control easy and allows the full utilization of the hydraulic pump / motor. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の車両用液圧駆動システムにおいては、油圧
アキュムレータの替わりに、可変ポンプ/モ−タであっ
てその押し除け容積が正負両方向に無段階に制御可能な
ものを、押し除け容積を負の値まで操作できるプレッシ
ャーコンペンセータにより制御されるようにし、その可
変ポンプ/モ−タの入出力軸にフライホィールを結合し
たもの(以下フライホィールユニットと言う)を用いた
ものである。
In order to achieve the above object, in a vehicle hydraulic drive system of the present invention, a variable pump / motor is used instead of a hydraulic accumulator, and its displacement volume is positive or negative. What can be controlled steplessly in both directions is controlled by a pressure compensator that can operate the displacement volume to a negative value, and a flywheel is connected to the input / output shaft of the variable pump / motor (hereinafter It is called a flywheel unit).

【0007】すなわち、前記フライホィールユニットの
可変ポンプ/モ−タの高圧ポートと、原動機で駆動され
る液圧ポンプ(以下原動ユニットと言う)、および、車
輪を駆動あるいは制動する液圧モ−タ/ポンプ(以下駆
動ユニットと言う)の各高圧ポートとを、共に共通の高
圧ラインに接続する。
That is, the high pressure port of the variable pump / motor of the flywheel unit, the hydraulic pump driven by a prime mover (hereinafter referred to as a prime mover), and the hydraulic motor driving or braking the wheels. / Each high pressure port of the pump (hereinafter referred to as a drive unit) is connected to a common high pressure line.

【0008】また、前記フライホィールユニットの可変
ポンプ/モ−タの低圧ポートと、原動ユニット、およ
び、駆動ユニットの各低圧ポートとを、共に共通の(タ
ンクに接続された)低圧ラインに接続する。
The low pressure port of the variable pump / motor of the flywheel unit and the low pressure ports of the drive unit and the drive unit are both connected to a common low pressure line (connected to the tank). .

【0009】また、前記駆動ユニットの可変ポンプ/モ
−タは、その押し除け容積が正負両方向に無段階に制御
可能なものを用い、アクセルペダルの踏み込み角度に比
例してその押し除け容積が正方向に増加し、ブレーキペ
ダルの踏み込み角度に比例してその押し除け容積が負方
向に増加する様に、ドライバーにより遠隔制御される。
Further, the variable pump / motor of the drive unit is a variable pump / motor whose displacement volume can be controlled steplessly in both positive and negative directions, and the displacement volume is positive in proportion to the depression angle of the accelerator pedal. Direction, the remote control is performed by the driver so that the displacement volume increases in the negative direction in proportion to the depression angle of the brake pedal.

【0010】フライホィールユニットの作用に依って、
前記共通の高圧ラインの圧力はほぼ一定に保ちながら、
前記原動ユニットの液圧ポンプの出力エネルギは蓄積・
放出されるので、原動ユニットは連続運転の必要がな
く、最適条件での運転と停止とを繰り返す。その再起動
時には、高圧ラインの圧力を利用して、液圧ポンプを液
圧モ−タとして原動機を起動するのが、バッテリー寿命
の上から、望ましい。
By the action of the flywheel unit,
While keeping the pressure of the common high pressure line almost constant,
The output energy of the hydraulic pump of the prime mover is stored and
Since it is discharged, the driving unit does not need to be continuously operated, and the operation and stop under the optimum conditions are repeated. At the time of restarting, it is desirable from the viewpoint of battery life that the prime mover is started by using the pressure of the high pressure line and using the hydraulic pump as the hydraulic motor.

【0011】また、前記原動ユニットの液圧ポンプが原
動機に、その効率・排ガスその他の観点から観て、最適
の負荷トルクを与える押し除け容積で、かつ、原動機の
効率・排ガスその他の観点から観た、最適の回転速度で
駆動されるように、原動ユニットは制御される。
Further, the hydraulic pump of the prime mover has a displacement volume that gives an optimum load torque to the prime mover from the viewpoints of its efficiency, exhaust gas, and other aspects, and the view of the prime mover's efficiency, exhaust gas, and other aspects. Further, the prime mover unit is controlled so as to be driven at the optimum rotation speed.

【0012】フライホィールユニットの作用に依って、
前記共通の高圧ラインの圧力はほぼ一定に保たれるの
で、原動ユニットの液圧ポンプは、前記最適トルクに対
応する押し除け容積を持った固定容量形ポンプでもよ
い。
Depending on the action of the flywheel unit,
Since the pressure of the common high-pressure line is kept substantially constant, the hydraulic pump of the prime mover may be a fixed displacement pump having a displacement volume corresponding to the optimum torque.

【0013】前記原動ユニットの液圧ポンプとして固定
容量形ポンプを用いた場合、それを原動機を起動する液
圧モ−タとして使用するためには、管路を切り替えるた
めの制御弁が必要となる。原動ユニットの液圧ポンプに
も押し除け容積が正負両方向に無段階に制御可能なもの
を使用すれば、押し除け容積を負の値まで操作すること
によって起動モ−タとなるので、管路を切り替える弁が
不要となる。その上、原動機の温度条件等による最適ト
ルクの変動にも対応できる。したがって、固定容量形と
可変容量形との価格差が大きくない場合は、原動ユニッ
ト用としても駆動ユニットの可変ポンプ/モ−タと同様
なものを使用するのが好ましい。
When a fixed displacement pump is used as the hydraulic pump of the prime mover, a control valve for switching the pipeline is required to use it as a hydraulic motor for starting the prime mover. . If the displacement pump that can control the displacement volume in both positive and negative directions infinitely is used as the hydraulic pump of the drive unit, the displacement can be controlled to a negative value to provide a starting motor. There is no need for a switching valve. In addition, it is possible to cope with fluctuations in the optimum torque due to temperature conditions of the prime mover. Therefore, when the price difference between the fixed displacement type and the variable displacement type is not so large, it is preferable to use the same variable pump / motor as the drive unit for the prime mover unit.

【0014】上記可変ポンプ/モ−タは、常に高圧・高
速で運転を続けるので、軸受寿命の制約が少ないことが
必要であり、かつ、全効率が高く、押し除け容積を減ら
しても効率の低下が少ないことが、エネルギ回収効率の
低下を来さないためには必要であり。そこで、発明者の
前発明にかかる、液圧力で偶力を構成する構造の可変ポ
ンプ/モ−タ(回転形流体エネルギ変換機、特許昭64
ー8190、または、回転型流体エネルギ変換装置、特
開平3ー290062)を用いることが好ましい。
Since the variable pump / motor continuously operates at high pressure and high speed, it is necessary that the bearing life is not limited, and the total efficiency is high, so that even if the displacement volume is reduced, A small decrease is necessary in order not to decrease the energy recovery efficiency. Therefore, according to the inventor's previous invention, a variable pump / motor (rotating fluid energy converter, Japanese Patent Laid-Open No. Sho 64-64) having a structure in which a couple is formed by hydraulic pressure.
-8190, or a rotary fluid energy converter, JP-A-3-290062) is preferably used.

【0015】[作用]上記のように構成された液圧式駆
動システムを備えた車両を運転した時の、フライホィー
ル ユニットの作用を以下に説明する。フライホィール
ユニットは、プレッシャーコンペンセータで制御される
可変ポンプ/モ−タの回転軸にフライホィールを取り付
けたものであるが、従来のコンペンセータ付可変ポンプ
とは異なり、その圧力ー流量特性が流量が負の領域まで
カバーしているので、消費流量の正負に拘らず共通高圧
ラインを一定の圧力範囲(例えば30±2MPa)に保つ働き
をする。
[Operation] The operation of the flywheel unit when the vehicle equipped with the hydraulic drive system configured as described above is driven will be described below. The flywheel unit has a flywheel attached to the rotary shaft of a variable pump / motor controlled by a pressure compensator, but unlike the conventional variable pump with a compensator, its pressure-flow characteristic has a negative flow rate. Since it covers up to the area of (3), it works to keep the common high pressure line within a certain pressure range (for example, 30 ± 2 MPa) regardless of whether the flow rate is positive or negative.

【0016】プレッシャーコンペンセータは、可変ポン
プ/モ−タの高圧ポート圧力を常に設定圧力と比較して
いて、もし共通高圧ラインに接続された原動ユニットか
ら吐出される流量が駆動ユニットで呑込まれる流量より
も多くて、高圧ポートの圧力が設定圧力より少しでも高
くなろうとした時、直ちに可変ポンプ/モ−タの偏心を
負の方向(モ−タ作動の位置)に設定し、その過剰高圧
液を呑込んで共通高圧ラインの圧力上昇を防ぐ。
The pressure compensator constantly compares the high pressure port pressure of the variable pump / motor with the set pressure, and if the flow rate discharged from the driving unit connected to the common high pressure line is swallowed by the drive unit. When the pressure of the high pressure port is about to exceed the set pressure, the eccentricity of the variable pump / motor is immediately set to the negative direction (motor operating position), and the excess high pressure liquid Swallow to prevent pressure rise in common high pressure line.

【0017】この時フライホィールユニットの可変ポン
プ/モ−タは液圧モ−タとなり、その出力トルクにより
フライホィールは加速され、その運動のエネルギとして
余剰高圧液のエネルギは蓄えられる。
At this time, the variable pump / motor of the flywheel unit becomes a hydraulic motor, the output torque accelerates the flywheel, and the energy of the surplus high-pressure liquid is stored as the energy of its movement.

【0018】もし共通高圧ラインに接続された原動ユニ
ットから吐出される流量が駆動ユニットで呑込まれる流
量よりも少くて、高圧ポートの圧力が設定圧力より少し
でも低くなろうとした時、プレッシャーコンペンセータ
は直ちに可変ポンプ/モ−タの偏心を正の方向(ポンプ
作動の位置)に設定し、不足する分の高圧液を吐出して
共通高圧ラインの圧力低下を防ぐ。
If the flow rate discharged from the prime mover unit connected to the common high pressure line is smaller than the flow rate swallowed by the drive unit and the pressure of the high pressure port is about to become lower than the set pressure, the pressure compensator is Immediately, the eccentricity of the variable pump / motor is set in the positive direction (position of pump operation) to discharge the insufficient amount of high-pressure liquid to prevent pressure drop in the common high-pressure line.

【0019】この時フライホィールユニットの可変ポン
プ/モ−タは液圧ポンプとなり、その負荷トルクにより
フライホィールは減速され、その運動のエネルギは高圧
液のエネルギとして放出される。
At this time, the variable pump / motor of the flywheel unit becomes a hydraulic pump, the flywheel is decelerated by the load torque, and the energy of its movement is released as the energy of the high pressure liquid.

【0020】この様にして、共通高圧ラインに入る流量
と共通高圧ラインから出る流量との差が、フライホィー
ルユニットの可変ポンプ/モ−タの最大押し除け容積と
回転速度との積を超えない限り、共通高圧ラインの圧力
はプレッシャーコンペンセータの設定圧力に保たれる。
In this way, the difference between the flow rate entering the common high pressure line and the flow rate exiting the common high pressure line does not exceed the product of the maximum displacement volume of the variable pump / motor of the flywheel unit and the rotational speed. As long as the pressure in the common high pressure line is maintained at the set pressure of the pressure compensator.

【0021】[0021]

【実施例】実施例について図面を参照して説明する。図
1は液圧回路全体を示す。押し除け容積が正負両方向に
無段階に制御可能な可変ポンプ/モ−タ1を、押し除け
容積を負の値まで操作できるプレッシャーコンペンセー
タ2により制御されるようにし、さらに前記可変ポンプ
/モ−タの入出力軸にフライホィール3を結合し、前記
可変ポンプ/モ−タの高圧ポート11と、原動機4で駆
動される液圧ポンプ5の高圧ポート51、および、車輪
6を駆動/制動する液圧モ−タ/ポンプ7の高圧ポート
71とを共に共通の高圧ライン8に接続する。
EXAMPLES Examples will be described with reference to the drawings. FIG. 1 shows the entire hydraulic circuit. A variable pump / motor 1 whose displacement volume can be controlled steplessly in both positive and negative directions is controlled by a pressure compensator 2 which can operate the displacement volume to a negative value. A high speed port 11 of the variable pump / motor, a high pressure port 51 of a hydraulic pump 5 driven by a prime mover 4, and a fluid for driving / braking wheels 6 by connecting a flywheel 3 to the input / output shaft of The high pressure port 71 of the pressure motor / pump 7 is connected to the common high pressure line 8.

【0022】さらに、共通高圧ラインにプレッシャーコ
ンペンセータ2の設定圧力より少し高い圧力に設定され
たリリーフ弁9を接続する。したがって、リリーフ弁
9、原動ユニット100、フライホィールユニット20
0、および駆動ユニット300の4者の高圧ポートが共
通高圧ラインに並列に接続される。また、各々の低圧ポ
ートも共通低圧ラインに並列に接続し、共通低圧ライン
は1つの低圧タンクに接続される。
Further, a relief valve 9 set to a pressure slightly higher than the set pressure of the pressure compensator 2 is connected to the common high pressure line. Therefore, the relief valve 9, the drive unit 100, the flywheel unit 20.
0 and four high voltage ports of the drive unit 300 are connected in parallel to a common high voltage line. Each low pressure port is also connected in parallel to the common low pressure line, and the common low pressure line is connected to one low pressure tank.

【0023】図2は、可変ポンプ/モ−タ1として、液
圧力で偶力を構成する構造の可変ポンプ/モ−タ(回転
形流体エネルギ変換機、特許昭64ー8190、または
回転型流体エネルギ変換装置、特開平3ー29006
2)を用いた場合に、それを駆動するに必要な駆動トル
クを偏心量との関係で表したものである。したがって、
横軸の正方向はポンプ作用域であり、負方向はモ−タ作
用域である。図は圧力一定の場合を示し、駆動トルクは
正負両域にわたって偏心量に比例した直線であり、その
勾配は当然高圧ポートの圧力に比例する。また、図3の
縦軸を回転速度一定の場合の吐出流量に置き換えること
ができ、その場合吐出流量は同様に正負両域にわたって
偏心量に比例した直線となり、その勾配は当然回転速度
に比例する。
FIG. 2 shows, as the variable pump / motor 1, a variable pump / motor (rotating fluid energy converter, Japanese Patent Laid-Open No. 64-8190, or rotating type fluid) having a structure in which a couple is formed by hydraulic pressure. Energy conversion device, JP-A-3-29006
When 2) is used, the drive torque required to drive it is expressed in relation to the eccentricity amount. Therefore,
The positive direction on the horizontal axis is the pump action region, and the negative direction is the motor action region. The figure shows the case where the pressure is constant, the driving torque is a straight line proportional to the amount of eccentricity in both the positive and negative regions, and its gradient is naturally proportional to the pressure of the high pressure port. Further, the vertical axis of FIG. 3 can be replaced with the discharge flow rate when the rotation speed is constant, and in that case, the discharge flow rate becomes a straight line proportional to the eccentric amount in both positive and negative regions, and the gradient is naturally proportional to the rotation speed. .

【0024】図3は、フライホィールユニット200を
示し、それを制御するプレッシャーコンペンセータ2は
サーボスプール21とサーボシリンダ22とで構成され
ることを示す。可変ポンプ/モ−タ1の高圧ポート11
の圧力が、プレッシャーコンペンセータ設定圧力よりも
高くなろうとした時、サーボスプールは2つの弁位置の
中の右側に切り替わり、高圧液をサーボシリンダのシリ
ンダヘッドに導入し、可変ポンプ/モ−タ1の偏心をモ
−タ作用側に動かして共通高圧ライン8から高圧液を呑
込んで圧力上昇を防ぐ。反対に、高圧ポート11の圧力
がプレッシャーコンペンセータ設定圧力よりも低くなろ
うとした時、サーボスプールは2位置の中の左側に切り
替わり、高圧液をシリンダヘッドから排出して偏心をポ
ンプ作用側に動かし、共通高圧ライン8に高圧液を吐出
して圧力降下を防ぐ。
FIG. 3 shows a flywheel unit 200, and shows that the pressure compensator 2 for controlling the flywheel unit 200 comprises a servo spool 21 and a servo cylinder 22. High pressure port 11 of variable pump / motor 1
When the pressure of is trying to become higher than the set pressure of the pressure compensator, the servo spool switches to the right side of the two valve positions, introducing high pressure liquid into the cylinder head of the servo cylinder, and the variable pump / motor 1 The eccentricity is moved to the motor working side to swallow high-pressure liquid from the common high-pressure line 8 to prevent pressure rise. On the contrary, when the pressure of the high pressure port 11 is about to become lower than the pressure compensator set pressure, the servo spool switches to the left side of the two positions to discharge the high pressure liquid from the cylinder head and move the eccentricity to the pump working side, High pressure liquid is discharged to the common high pressure line 8 to prevent pressure drop.

【0025】図4は、可変ポンプ/モ−タ1とプレッシ
ャーコンペンセータ2とを組み合わせた場合の、高圧ポ
ート11の圧力と可変ポンプ/モ−タ1の吐出流量との
関係を示し、横軸より上はポンプ作動の領域を表し、下
はモ−タ作動の領域を表す。プレッシャーコンペンセー
タの働きによって可変ポンプ/モ−タの偏心量が正負両
域にわたって連続的に制御されるので、流量が回転速度
と最大押し除け容積との積を超えない限り、ポンプ作動
・モ−タ作動両域にわたって、高圧ポート圧力はほぼプ
レッシャーコンペンセータの設定圧力に保たれる。
FIG. 4 shows the relationship between the pressure of the high pressure port 11 and the discharge flow rate of the variable pump / motor 1 when the variable pump / motor 1 and the pressure compensator 2 are combined. The upper part represents the region of pump operation and the lower part represents the region of motor operation. Since the eccentric amount of the variable pump / motor is continuously controlled by the function of the pressure compensator over both positive and negative regions, the pump operation / motor is controlled unless the flow rate exceeds the product of the rotation speed and the maximum displacement. The high pressure port pressure is maintained at about the pressure compensator set pressure over both operating regions.

【0026】上記のように構成された液圧式駆動システ
ムを備えた車両を運転した時の各ユニットの作用を、運
転操作順序に従って以下に説明する。
The operation of each unit when the vehicle equipped with the hydraulic drive system configured as described above is driven will be described below in the order of the driving operation.

【0027】先ず、エンジン4の最初の始動はバッテリ
ーと始動電気モ−タにより駆動され、原動ユニット10
0は回転し始める。暖機運転中は原動ユニットの液圧ポ
ンプ5の吐出流量はバイパス弁(図示せず)により低圧
ラインに逃がされる。もし、可変ポンプ/モ−タのを使
用した場合は偏心量をほぼゼロに制御される。
First, the first start of the engine 4 is driven by the battery and the starting electric motor, and the drive unit 10 is driven.
0 begins to rotate. During the warm-up operation, the discharge flow rate of the hydraulic pump 5 of the prime mover is released to the low pressure line by a bypass valve (not shown). If a variable pump / motor is used, the amount of eccentricity is controlled to almost zero.

【0028】その後、電子式制御器(以下ECUとい
う)はバイパス弁を閉じ、原動ユニットの吐出流量はフ
ライホィールユニットの可変ポンプ/モ−タ1に至る
が、プレッシャーコンペンセータ2の作用により、その
設定圧力を超えないように可変ポンプ/モ−タ1は可変
モ−タとなり、原動ユニットの吐出流量を呑込む。しか
しフライホィールユニットの回転速度が低い間は呑込流
量が少ないので、吐出流量の余剰分はリリーフ弁9より
逃げる。リリーフ弁の設定圧力はプレッシャーコンペン
セータの設定圧力より少し高いので、可変モ−タ1は最
大偏心量にセットされ、最大トルクでフライホィール3
を加速する。
After that, the electronic controller (hereinafter referred to as ECU) closes the bypass valve, and the discharge flow rate of the prime mover reaches the variable pump / motor 1 of the flywheel unit, which is set by the action of the pressure compensator 2. The variable pump / motor 1 becomes a variable motor so as not to exceed the pressure, and swallows the discharge flow rate of the driving unit. However, since the swallowing flow rate is small while the rotational speed of the flywheel unit is low, the surplus discharge flow rate escapes from the relief valve 9. Since the set pressure of the relief valve is a little higher than the set pressure of the pressure compensator, the variable motor 1 is set to the maximum eccentric amount and the flywheel 3 at the maximum torque.
To accelerate.

【0029】フライホィールユニット200の回転速度
が上がり、原動ユニット100の吐出流量を全量呑込め
るようになると、共通高圧ライン8はフライホィールユ
ニットの設定圧力になるので、以後、原動機は最適トル
ク(液圧ポンプ5の押し除け容積と設定圧力との積)で
運転され、またその回転速度が燃費・廃ガス等の観点か
ら最適の運転速度に保たれるように、ECUがスロット
ルを制御する。
When the rotation speed of the flywheel unit 200 is increased and the discharge flow rate of the prime mover unit 100 can be swallowed, the common high pressure line 8 reaches the set pressure of the flywheel unit, and hence the prime mover is set to the optimum torque (liquid The ECU controls the throttle so that the pump is operated at a product of the displacement volume of the pressure pump 5 and the set pressure, and the rotation speed is kept at an optimum operation speed from the viewpoint of fuel consumption, waste gas and the like.

【0030】原動ユニットを運転し続ければその供給流
量はフライホィールユニットを加速して運動のエネルギ
として蓄えられるが、アクセルを踏んで駆動ユニットの
可変ポンプ/モ−タ7の偏心をモ−タ作用側に動かして
車を加速すれば、可変モ−タ7が共通高圧ライン8の高
圧液を消費し、その消費流量が原動ユニットの供給流量
より多くなれば、フライホィールユニットの可変ポンプ
/モ−タ1は可変ポンプとなって不足流量を吐出してエ
ネルギを放出して減速する。
If the drive unit is continuously operated, the supply flow rate thereof is stored as kinetic energy by accelerating the flywheel unit, but the eccentricity of the variable pump / motor 7 of the drive unit is stepped on by depressing the accelerator. If the vehicle is accelerated by moving it to the side, the variable motor 7 consumes the high-pressure liquid in the common high-pressure line 8, and if the consumption flow rate exceeds the supply flow rate of the prime mover unit, the variable pump / motor of the flywheel unit will be consumed. The variable speed pump 1 serves as a variable pump, discharges an insufficient flow rate, releases energy, and decelerates.

【0031】以後、ECUが原動ユニットの間欠運転の
デューティサイクルを制御することによって、フライホ
ィールユニットは、原動ユニットの吐出流量を全量呑込
めるような回転速度を下限とし、許容最高速度を上限と
して、常にその間の回転速度に保たれる。
Thereafter, the ECU controls the duty cycle of the intermittent operation of the prime mover, so that the flywheel unit has a lower limit of rotation speed that allows the discharge flow rate of the prime mover to be swallowed in full, and an upper limit of allowable maximum speed. The rotation speed is always kept in the meantime.

【0032】ブレーキを踏んで駆動ユニットの可変ポン
プ/モ−タ7の偏心をポンプ作用側に動かして車を制動
すれば、可変ポンプ7が共通高圧ライン8に高圧液を戻
し、その供給流量によってフライホィールユニットは加
速されてエネルギを蓄える。
When the vehicle is braked by depressing the brake to move the eccentricity of the variable pump / motor 7 of the drive unit to the pump working side, the variable pump 7 returns the high-pressure liquid to the common high-pressure line 8 and, depending on the supply flow rate, The flywheel unit is accelerated to store energy.

【0033】[0033]

【発明の効果】本発明は、以上説明したように構成され
ているので、アキュムレータを用いて回生制動を行う油
圧駆動システムに比して、以下に記載されるような効果
がある。
Since the present invention is configured as described above, it has the following effects as compared with a hydraulic drive system that performs regenerative braking using an accumulator.

【0034】アキュムレータの替わりにフライホィール
ユニットを用いるため、高圧ガスを使用する必要がない
ため取扱上の危険がなく、法規上規制の対象にもなら
ず、衝突・火災など事故の際も安全性が高い。
Since the flywheel unit is used in place of the accumulator, there is no need to use high-pressure gas, so there is no danger of handling, it is not subject to legal regulations, and it is safe even in the event of a collision or fire. Is high.

【0035】アキュムレータに較べてフライホィールユ
ニットはその重量・体積の大きさに比して蓄積エネルギ
量が数倍大きく、従って車両重量の増加によりその効果
が減殺されることが少なく。さらに、エネルギ蓄積量を
正確に知りうるという制御上の利点を生かして原動ユニ
ットの常時間欠運転による原動機の最適な1点のみでの
運転が可能になり、より一層の省エネルギ・排ガス低減
が達成される。
Compared to the accumulator, the flywheel unit has several times more stored energy than its weight and volume, and therefore its effect is less likely to be diminished by an increase in vehicle weight. Furthermore, by taking advantage of the control that the amount of energy accumulated can be accurately known, it is possible to operate the prime mover at only one optimal point due to the intermittent operation of the prime mover, achieving further energy saving and exhaust gas reduction. To be done.

【0036】アキュムレータに較べて、高圧油の貯蔵・
放出に伴う圧力の変動幅が非常に小さいので制御が簡単
化され、また、常に定格圧力で運転できるので油圧ポン
プ・モ−タの能力をフルに使用することが出来、可変ポ
ンプ/モ−タの小形軽量化が図れる。
Compared to accumulators, storage of high pressure oil
Since the fluctuation range of pressure accompanying discharge is very small, control is simplified, and since the pump can be operated at the rated pressure at all times, the full capacity of the hydraulic pump / motor can be used, and the variable pump / motor can be used. Can be made smaller and lighter.

【0037】また、車輪の制動トルクを利用してフライ
ホィールを加速し、その後の発進時にフライホィールで
車輪を加速する省エネルギシステムも検討されてきた
が、従来は、フライホィールのエネルギ蓄積・放出の際
の加速・減速を機械的手段(回転軸で結合)で行う方法
によっていた。この場合、車輪は減速しながらフライホ
ィールを加速し、その後、フライホィールは減速しなが
ら車輪を加速する事になるので、中間変速機に複雑高価
なCVT(無段変速機)と離接クラッチが必要となり、
それらの制御も簡単ではない。
Further, an energy saving system has been studied in which the flywheel is accelerated by utilizing the braking torque of the wheel and the wheel is accelerated by the flywheel at the time of starting the vehicle. Conventionally, energy storage / release of the flywheel has been conventionally performed. The acceleration / deceleration in the case of was carried out by a mechanical means (coupling with a rotating shaft). In this case, the wheel accelerates the flywheel while decelerating, and then the flywheel accelerates the wheel while decelerating. Therefore, the intermediate transmission has a complicated and expensive CVT (continuously variable transmission) and a separation clutch. Required,
Controlling them is not easy either.

【0038】前記のように、フライホィールのエネルギ
蓄積・放出の際の加速・減速を機械的手段(回転軸で結
合)でCVTを介して行う方法に較べて、本発明の方法
は非常に簡単であり、フライホィールユニットのエネル
ギ蓄積放出は、そのプレッシャーコンペンセータに依っ
て自律的に制御されるので、何等別途の複雑な制御を必
要とせず安全確実に行われる。
As described above, the method of the present invention is much simpler than the method of accelerating / decelerating energy storage / release of the flywheel via the CVT by mechanical means (coupled by a rotary shaft). Since the energy storage and release of the flywheel unit is autonomously controlled by the pressure compensator, the flywheel unit can be safely and reliably performed without any additional complicated control.

【図面の簡単な説明】[Brief description of drawings]

【図1】車両駆動システム全体の液圧回路を示す。FIG. 1 shows a hydraulic circuit of an entire vehicle drive system.

【図2】可変ポンプ/モ−タの偏心量とトルクとの関係
を示す。
FIG. 2 shows the relationship between the amount of eccentricity of the variable pump / motor and the torque.

【図3】フライホィールユニットとそのプレッシャーコ
ンペンセータを示す。
FIG. 3 shows a flywheel unit and its pressure compensator.

【図4】フライホィールユニットの高圧ポートの圧力と
流量との関係を示す。
FIG. 4 shows the relationship between the pressure and the flow rate of the high pressure port of the flywheel unit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 可変ポンプ/モ−タであってその押し除
け容積が正負両方向に無段階に制御可能なもの(1)を
押し除け容積を負の値まで操作できるプレッシャーコン
ペンセータ(2)により制御されるようにしさらに前記
可変ポンプ/モ−タの入出力軸にフライホィール(3)
を結合し、前記可変ポンプ/モ−タの高圧ポート(1
1)と、原動機(4)で駆動される液圧ポンプ(5)、
および車輪(6)を駆動/制動する液圧モ−タ/ポンプ
(7)の各高圧ポート(51、71)とを共に共通の高
圧ライン(8)に接続したことを特徴とする車両用液圧
駆動システム
1. A variable pump / motor whose displacement volume can be controlled steplessly in both positive and negative directions (1) is controlled by a pressure compensator (2) capable of operating the displacement volume to a negative value. And a flywheel (3) on the input / output shaft of the variable pump / motor.
The variable pressure pump / motor high pressure port (1
1) and a hydraulic pump (5) driven by a prime mover (4),
And a high-pressure port (51, 71) of a hydraulic motor / pump (7) for driving / braking the wheel (6) are both connected to a common high-pressure line (8). Pressure drive system
【請求項2】 車両の定常走行中にあっても、、原動機
(4)は、その効率・排ガスその他の観点からみた最適
条件で間欠的に運転され、液圧ポンプ(5)を駆動する
ようにされた請求項1記載の車両用液圧駆動システム
2. The motor (4) is intermittently operated under optimum conditions in terms of its efficiency, exhaust gas, and other aspects to drive the hydraulic pump (5) even when the vehicle is running steadily. A hydraulic drive system for a vehicle according to claim 1.
JP04632394A 1994-02-21 1994-02-21 Vehicle hydraulic drive system Expired - Fee Related JP3167526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04632394A JP3167526B2 (en) 1994-02-21 1994-02-21 Vehicle hydraulic drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04632394A JP3167526B2 (en) 1994-02-21 1994-02-21 Vehicle hydraulic drive system

Publications (2)

Publication Number Publication Date
JPH07233871A true JPH07233871A (en) 1995-09-05
JP3167526B2 JP3167526B2 (en) 2001-05-21

Family

ID=12743960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04632394A Expired - Fee Related JP3167526B2 (en) 1994-02-21 1994-02-21 Vehicle hydraulic drive system

Country Status (1)

Country Link
JP (1) JP3167526B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097255A (en) * 1999-10-01 2001-04-10 Japan Science & Technology Corp All terrain vehicle
CN105235492A (en) * 2015-11-13 2016-01-13 台州科技职业学院 Energy-saving type hydraulic transmission device
CN106976394A (en) * 2017-03-27 2017-07-25 吉林大学 A kind of machine liquid energy composite energy recovery system based on flywheel and accumulator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097255A (en) * 1999-10-01 2001-04-10 Japan Science & Technology Corp All terrain vehicle
CN105235492A (en) * 2015-11-13 2016-01-13 台州科技职业学院 Energy-saving type hydraulic transmission device
CN106976394A (en) * 2017-03-27 2017-07-25 吉林大学 A kind of machine liquid energy composite energy recovery system based on flywheel and accumulator
CN106976394B (en) * 2017-03-27 2019-02-19 吉林大学 A kind of machine liquid energy composite energy recovery system based on flywheel and accumulator

Also Published As

Publication number Publication date
JP3167526B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
KR100361041B1 (en) Hybrid power train vehicle and its control method
EP0975480B1 (en) Hybrid propulsion system for road vehicles
US8146691B2 (en) Travel drive system for work vehicle, work vehicle, and travel drive method
JP3679749B2 (en) Hydraulic device
EP2065282B1 (en) Prioritized recapture of energy during deceleration of a dual-hybrid motor vehicle
EP0047644A1 (en) Fuel-efficient energy storage automotive drive system and method of operation thereof
WO2012099255A1 (en) Work vehicle control apparatus and work vehicle
EP0047642A1 (en) Fuel-efficient energy storage automotive drive system and method of operation thereof
US4372414A (en) Fuel-efficient energy storage automotive drive system
JP5560797B2 (en) Work vehicle traveling device
JP2003284203A (en) Vehicle hybrid system
CN107856576A (en) A kind of electro-hydraulic hybrid drive system of vehicle
WO2014141955A1 (en) Hybrid work vehicle
JP3313729B2 (en) Control device and control method for mechanical supercharger of diesel engine
CN108422858A (en) A kind of electric hydaulic multi-power driven vehicle dynamical system
EP0047643A1 (en) Fuel-efficient energy storage automotive drive system
CN213473095U (en) Composite braking energy recovery system
CN1397447A (en) Brake system with combination of feedback brake with hydraulic brake for motor
JP2016175495A (en) Hybrid vehicle and control method therefor
JP3167526B2 (en) Vehicle hydraulic drive system
GB2065836A (en) Engine control systems
JP5604884B2 (en) Work vehicle
AU730265B2 (en) Hybrid propulsion system for road vehicles
JP5642044B2 (en) Hybrid work vehicle and travel control method thereof
JP3517356B2 (en) Hybrid drive system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees