JPH0723265B2 - Ceramic composite, its manufacturing method and its use - Google Patents

Ceramic composite, its manufacturing method and its use

Info

Publication number
JPH0723265B2
JPH0723265B2 JP62086871A JP8687187A JPH0723265B2 JP H0723265 B2 JPH0723265 B2 JP H0723265B2 JP 62086871 A JP62086871 A JP 62086871A JP 8687187 A JP8687187 A JP 8687187A JP H0723265 B2 JPH0723265 B2 JP H0723265B2
Authority
JP
Japan
Prior art keywords
particles
whiskers
conductive
sio
inorganic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62086871A
Other languages
Japanese (ja)
Other versions
JPS63252973A (en
Inventor
義幸 安富
昌久 祖父江
浩介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62086871A priority Critical patent/JPH0723265B2/en
Priority to DE88105644T priority patent/DE3885140T2/en
Priority to EP92113584A priority patent/EP0520520B1/en
Priority to EP88105644A priority patent/EP0286127B1/en
Priority to DE3855544T priority patent/DE3855544T2/en
Publication of JPS63252973A publication Critical patent/JPS63252973A/en
Priority to US07/411,330 priority patent/US5378417A/en
Priority to US07/500,102 priority patent/US5130055A/en
Priority to US07/863,505 priority patent/US5316987A/en
Publication of JPH0723265B2 publication Critical patent/JPH0723265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Motor Or Generator Current Collectors (AREA)
  • Resistance Heating (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミツクス複合体に係り、特に電気抵抗率
の異なる二種以上のセラミツクスから成る電気部品に適
したセラミツクス複合体に関する。
Description: TECHNICAL FIELD The present invention relates to a ceramic composite, and more particularly to a ceramic composite suitable for an electric component composed of two or more kinds of ceramics having different electric resistivities.

〔従来の技術〕[Conventional technology]

従来より発熱体としては金属発熱体やセラミツクス発熱
体が提供されている。金属発熱体にはニクロムやタンタ
ルなどがあるが、これらは耐熱性に乏しく1000℃以上に
なると劣化するとい云う問題がある。
Conventionally, metal heating elements and ceramic heating elements have been provided as heating elements. Metal heating elements include nichrome and tantalum, but they have a problem that they have poor heat resistance and deteriorate at 1000 ° C or higher.

セラミツクス発熱体として実用されているのは、炭化け
い素,安定化ジルコニア,ランタンクロマイト,モリブ
デンシリサイドなどがあるが、これらの材料は比較的電
気抵抗が高く、また抵抗温度係数が負であるために熱暴
走をひき起こし易く、温度制御が難しい。また、機械的
強度,耐熱衝撃性も低いという欠点をもつており、これ
らに代わる新しい導電性セラミツクスが望まれており、
いろいろな方法で検討されている。
Practically used ceramic heating elements include silicon carbide, stabilized zirconia, lanthanum chromite, molybdenum silicide, etc., but these materials have a relatively high electric resistance and a negative temperature coefficient of resistance. Thermal runaway is prone to occur and temperature control is difficult. In addition, it has the disadvantage of low mechanical strength and low thermal shock resistance, and new conductive ceramics to replace them are desired.
It is being studied in various ways.

例えば、特開昭57−41796号に示されているように、SiC
やSi3N4に導電性化合物を混合し、ホツトプレス焼結す
ることにより上記の問題を解決している。しかし、ホツ
トプレス法は、焼結体の緻密化が可能であるが膨大なエ
ネルギを必要とするために製造コストが高いという問題
がある。
For example, as shown in JP-A-57-41796, SiC
The above problems are solved by mixing a conductive compound with Si 3 N 4 and hot pressing and sintering. However, the hot press method has a problem in that the manufacturing cost is high because the sintered body can be densified but enormous energy is required.

また特開昭60−44990号に示されているように導電性セ
ラミツクスの外層を電気絶縁性セラミツクスで包み一体
焼結しているが、ホツトプレス法であるため、先と同様
に膨大なエネルギを必要とし、複雑形状の一体成形、一
体焼結が困難である。また、電気抵抗率が異なるセラミ
ツクスを一体焼結するには、熱膨張係数を制御しなけれ
ばならないが、ホツトプレス法では焼結温度が高いの
で、熱膨張係数の差により焼結体にクラツクが発生し易
かつた。
Also, as shown in JP-A-60-44990, the outer layer of the conductive ceramics is wrapped with the electrically insulating ceramics and sintered together, but since it is a hot press method, enormous energy is required as before. Therefore, it is difficult to integrally mold and sinter a complicated shape. Also, in order to integrally sinter ceramics with different electrical resistivities, the coefficient of thermal expansion must be controlled, but since the sintering temperature is high in the hot press method, cracks occur in the sintered body due to the difference in coefficient of thermal expansion. It was easy to do.

更に、特開昭60−60983号に示されているように、Si3N4
に導電性化合物を混合し、常圧焼結法により導電性セラ
ミツクスを得ているが、焼結助剤を利用するために高温
での軟化や変形が生じる。また焼結時の体積収縮が約40
〜60%あり、変形などの問題がある。焼結助剤を用いず
にSi3N4粉末と導電性化合物を焼結すると密度が向上し
ないために比抵抗が大きいという問題があり、導電性セ
ラミツクスの性能としては不充分である。
Furthermore, as disclosed in JP-A-60-60983, Si 3 N 4
Although a conductive compound is mixed with and a conductive ceramic is obtained by an atmospheric pressure sintering method, softening or deformation occurs at high temperature because a sintering aid is used. The volume shrinkage during sintering is about 40.
~ 60%, and there are problems such as deformation. When Si 3 N 4 powder and a conductive compound are sintered without using a sintering aid, there is a problem that the specific resistance is large because the density is not improved, and the performance of the conductive ceramic is insufficient.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記の従来技術によれば、特に焼結時の成形体の収縮に
ついて配慮されておらず、収縮に伴つて変形が起こり、
特にこうした電気抵抗率の異なる層を2層以上複合した
焼結体を得ることは容易でなかつた。
According to the above-mentioned conventional technology, no particular consideration is given to shrinkage of the molded body during sintering, and deformation occurs with shrinkage,
In particular, it has not been easy to obtain a sintered body in which two or more layers having different electric resistivities are combined.

本発明の第1の目的は、ニアネツトシエイプ(Near net
shape)によつて形成した電気抵抗率が異なる層を2層
以上有する複合セラミツクスを提供することにある。
The first object of the present invention is to use Near net
It is to provide a composite ceramic having two or more layers having different electric resistivities formed by the shape.

本発明の第2の目的は、上記焼結体の焼結時の寸法変化
率が極めて小さい複合セラミツクスを提供することにあ
る。
A second object of the present invention is to provide a composite ceramic having an extremely small dimensional change rate during sintering of the above-mentioned sintered body.

第3の目的としては、前記複合セラミツクスを用いた回
転電気の集電環及び自動車用コンミテータを提供するこ
とにある。
A third object is to provide a rotating electricity collector ring and a commutator for an automobile using the composite ceramics.

更に、その他の目的については、明細書の記載から明ら
かとなろう。
Further, other purposes will be apparent from the description of the specification.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のセラミツクス複合体は、電気抵抗率の異なるセ
ラミツクスを一体成形、一体焼結し、金属Siまたはフエ
ロSiから生成したSi3N4,Si2N2O,SiO2の少なくとも1
種の粒子またはウイスカで結合したものである。
The ceramic composite of the present invention has at least one of Si 3 N 4 , Si 2 N 2 O, and SiO 2 produced from metallic Si or ferro Si by integrally molding ceramics having different electric resistivities and integrally sintering.
Seed particles or whiskers bound together.

本発明におけるセラミツクス複合体は、隣り合うセラミ
ツクスの電気抵抗率が異なり、電気抵抗率を変えるため
の電導性化合物は非酸化物系の導電材であり、IIIa,IV
a,Va,VIa,VIII族の窒化物,炭化物,ホウ化物,ケイ化
物であり、特にTiN,TiC,TiB2,TiSi2,ZrN,ZrC,ZrB2,Zr
Si2,HfN,HfC,TaN,TaC,TaB2,TaSi2,Mo2N,Mo2C,MoB,Cr
2N,Cr3C2,CrB,CrSi2,NbN,NbC,NbSi2,VN,VC,WC,WSi2
主に用いられる。
The ceramic composite in the present invention is different in the electrical resistivity of the adjacent ceramics, the conductive compound for changing the electrical resistivity is a non-oxide conductive material, IIIa, IV
a, Va, VIa, VIII group nitrides, carbides, borides, silicides, especially TiN, TiC, TiB 2 , TiSi 2 , ZrN, ZrC, ZrB 2 , Zr
Si 2 , HfN, HfC, TaN, TaC, TaB 2 , TaSi 2 , Mo 2 N, Mo 2 C, MoB, Cr
2 N, Cr 3 C 2 , CrB, CrSi 2 , NbN, NbC, NbSi 2 , VN, VC, WC, WSi 2 are mainly used.

特にTiN,TiC,ZrN,ZrC,Cr2N,Cr3C2は耐酸化性に優れて
おり好適である。
In particular, TiN, TiC, ZrN, ZrC, Cr 2 N and Cr 3 C 2 are suitable because they have excellent oxidation resistance.

本発明において、電気抵抗率を小さくするための焼結体
中の導電性粒子の含有量は80vol%以下とするのが好ま
しい、なぜなら80vol%より多くなるとセラミツクスの
機械的強度、耐熱衝撃性,耐酸化性などの特性が低下す
るからである。
In the present invention, the content of the conductive particles in the sintered body for reducing the electrical resistivity is preferably 80 vol% or less, because when it is more than 80 vol% mechanical strength of the ceramics, thermal shock resistance, acid resistance This is because the properties such as chemical conversion deteriorate.

本発明において、焼結体の電気抵抗率は、焼結体中の導
電性粒子を5〜80vol%と変化させることにより、任意
に変化させることができる。さらに、電気絶縁性粒子を
焼結体中に含有させることにより、1014Ωcmから10-5Ω
cmの範囲で任意に作製できる。
In the present invention, the electrical resistivity of the sintered body can be arbitrarily changed by changing the conductive particles in the sintered body to 5 to 80 vol%. Further, by containing the electrically insulating particles in the sintered body, from 10 14 Ωcm 10 -5 Ω
It can be produced arbitrarily within the range of cm.

本発明のセラミツクス複合体は、金属SiまたはフエロSi
から生成したSi3N4,Si2N2O,SiO2の少なくとも一種で
導電性粒子または絶縁性粒子を結合したもので、焼結時
の体積変化率が小さく、変形もない。また、電気抵抗率
の異なる層の2層間を金属SiまたはフエロSiから生成し
たSi3N4,Si2N2O,またはSiO2で結合されており、結合
界面は母体と同様に耐熱,耐熱衝撃性に優れている。
The ceramic composite of the present invention is made of metallic Si or ferro Si.
At least one of Si 3 N 4 , Si 2 N 2 O, and SiO 2 produced by combining conductive particles or insulating particles, the volume change rate during sintering is small, and there is no deformation. In addition, the two layers with different electrical resistivities are bonded with Si 3 N 4 , Si 2 N 2 O, or SiO 2 generated from metallic Si or ferro Si, and the bonding interface has the same heat resistance and heat resistance as the base material. Excellent impact resistance.

本発明の焼結体は、その気孔率を5〜40%とするのが好
ましい。気孔率が40%を越えると機械的強度が低下する
と共に抵抗率を小さくするのが困難である。また気孔率
が5%より小さいと金属Si、またはフエロSiが反応する
ための窒化性ガスや酸化性ガスなどの通気抵抗が大きく
なり良好な焼結体を得ることが難しい。なぜなら導電性
化合物や絶縁性化合物と金属SiまたはフエロSiが窒化性
ガスや酸化性ガスなどと反応してSi3N4,SiO2,またはS
i2N2O相に変化させ絶縁性化合物や導電性化合物を結合
するために、上記のガスが成形体中を通過する通気孔が
必要である。
The sintered body of the present invention preferably has a porosity of 5 to 40%. If the porosity exceeds 40%, the mechanical strength decreases and it is difficult to reduce the resistivity. If the porosity is less than 5%, the resistance to ventilation of nitriding gas or oxidizing gas due to the reaction of metallic Si or ferro-Si becomes large, and it is difficult to obtain a good sintered body. Because conductive compound or insulating compound and metallic Si or ferro Si react with nitriding gas or oxidizing gas, Si 3 N 4 , SiO 2 or S
In order to change the i 2 N 2 O phase and bond the insulating compound and the conductive compound, a vent hole through which the above-mentioned gas passes through the molded body is required.

焼結体中に気孔を5〜40%存在させることにより電気抵
抗率の異なるセラミツクスの各層の熱膨張係数の違いに
よる応力を緩和するので焼結体のクラツク発生を防止で
きる。
The presence of pores in the sintered body in an amount of 5 to 40% alleviates the stress due to the difference in the thermal expansion coefficient of each layer of ceramics having different electrical resistivities, so that cracking of the sintered body can be prevented.

また、本発明において、金属SiまたはフエロSiの平均粒
径が5μm以下とするのが好ましい。なぜなら、平均粒
径が5μmよりも大きくなると窒化時間が長くなると共
に残留Siが存在するようになるからである。
Further, in the present invention, it is preferable that the average particle size of the metal Si or the ferro Si is 5 μm or less. This is because if the average grain size is larger than 5 μm, the nitriding time becomes long and residual Si becomes present.

本発明において、成形用バインダとしては例えばポリビ
ニルブチラールやポリエチレンなどの熱可塑性樹脂物
や、シリコンイミド化合物やポリシラン化合物などの有
機Si高分子化合物などが用いられ、その配合量は2〜20
重量部添加し、成形体の相対密度を60%以上とするのが
好ましい。
In the present invention, as the molding binder, for example, a thermoplastic resin material such as polyvinyl butyral or polyethylene, or an organic Si polymer compound such as a silicon imide compound or a polysilane compound is used, and the compounding amount thereof is 2 to 20.
It is preferable to add parts by weight so that the relative density of the molded body is 60% or more.

本発明において、成形体は窒素、アンモニア、酸素(必
要に応じて水素、アルゴン、ヘリウム、一酸化炭素など
のガスを加える)などの窒化性,酸化性,酸窒化性ガス
雰囲気で少なくとも1350℃まで加熱する。
In the present invention, the molded product is at least 1350 ° C. in an atmosphere of nitriding, oxidizing, or oxynitriding gas such as nitrogen, ammonia, or oxygen (adding a gas such as hydrogen, argon, helium, or carbon monoxide if necessary). To heat.

前記金属Si、フエロSi、絶縁性化合物および導電性化合
物は市販のものをそのまま用いることができる。なお、
ミルなどにより枠砕し、丸みを帯びた粒子を使用するの
がより好ましい。
As the metal Si, the ferro Si, the insulating compound and the conductive compound, commercially available products can be used as they are. In addition,
It is more preferable to use rounded particles after frame crushing with a mill or the like.

予めウイスカを原料に混合,分散させた場合は、全ての
ウイスカが粒子と結合されず、塊状のウイスカや単独で
存在するウイスカが焼結体粒子間に残る。これに対し本
発明では粒子間の空隙を成形体中の粒子から生成した多
数の針状のウイスカがほぼ真直ぐに交差することにより
結合し、耐熱衝撃性、高強度に大きく寄与する。
When the whiskers are mixed and dispersed in the raw material in advance, not all of the whiskers are combined with the particles, and the whiskers in the form of lumps or the whiskers that exist alone remain between the sintered particles. On the other hand, in the present invention, a large number of needle-like whiskers formed from the particles in the molded body are bonded to each other by causing the voids between the particles to cross each other almost straightly, thereby greatly contributing to thermal shock resistance and high strength.

本発明によれば、絶縁性化合物および導電性化合物の粒
子及び/又はウイスカ間の空隙を、成形体中のSi粒子か
ら生成した多数の粒子及びウイスカにより3次元的に結
合されており、結合状態でない粒子及びウイスカがほと
んど存在しないので高じん性、高温強度の優れた焼結体
が得られる。
According to the present invention, the voids between the particles of the insulating compound and the conductive compound and / or the whiskers are three-dimensionally bonded by a large number of particles and whiskers generated from the Si particles in the molded body, and the bonded state Since non-existing particles and whiskers are scarcely present, a sintered body having high toughness and high temperature strength can be obtained.

前記絶縁性化合物および導電性化合物の粒子の平均粒径
は、100μm以下とするのが好ましい。なぜなら100μm
より大きくなると焼結体の強度を低下させる。また絶縁
性化合物および導電性化合物の既製のウイスカを用いる
ときは、平均アスペクト比2〜50、長さ0.2〜100μmが
好ましい。アスペクト比が2未満、長さが0.2μm未満
だとウイスカとしての効果がないし、またアスペクト比
が50を超え、長さが100μmを超えると原料の混合が難
しく、分散性が悪くなる。
The average particle size of the particles of the insulating compound and the conductive compound is preferably 100 μm or less. Because 100 μm
If it becomes larger, the strength of the sintered body is reduced. When using ready-made whiskers of an insulating compound and a conductive compound, an average aspect ratio of 2 to 50 and a length of 0.2 to 100 μm are preferable. If the aspect ratio is less than 2 and the length is less than 0.2 μm, there is no effect as a whisker, and if the aspect ratio exceeds 50 and the length exceeds 100 μm, it is difficult to mix the raw materials and the dispersibility deteriorates.

本発明において、焼結体中の生成粒子およびウイスカに
対してウイスカが1〜70vol%(好ましくは10〜30vol
%)含まれる複合セラミツクスとした理由は、上記範囲
外では効果が得られないからである。
In the present invention, the whiskers are 1 to 70 vol% (preferably 10 to 30 vol) with respect to the produced particles and whiskers in the sintered body.
%) The reason why the composite ceramics are included is that the effect cannot be obtained outside the above range.

成形方法は、射出成形、鋳込み成形、ラバープレス成
形、押出し成形、、金型成形など形状と要求特性に応じ
て成形方法を選択する。
As a molding method, a molding method such as injection molding, cast molding, rubber press molding, extrusion molding, or die molding is selected according to the shape and required characteristics.

この成形体から成形助剤等を除去させた後、本発明に従
つて、粒子及びウイスカ生成熱処理を行う。
After removing the molding aid and the like from this molded body, heat treatment for forming particles and whiskers is performed according to the present invention.

本発明において、金属SiまたはフエロSiから生成する粒
子またはウイスカは、Si3N4が最も好ましい。
In the present invention, Si 3 N 4 is most preferable as the particles or whiskers produced from metallic Si or ferroe Si.

本発明において、導電性化合物のうちケイ化物、ホウ化
物は窒化性ガス中において窒素と反応するために、焼結
時間が不適切であると焼結体にクラツクが入りやすいの
で、窒化物,炭化物を用いるのが最が好ましい。
In the present invention, since silicides and borides among the conductive compounds react with nitrogen in a nitriding gas, if the sintering time is inappropriate, cracks are likely to enter the sintered body. Is most preferably used.

本発明において、Si粒子から生成するウイスカ以外に、
原料としてSi3N4,SiCなどのウイスカを混合してもよ
い。但し、多く混合すると不均質になり好ましくない。
また、絶縁性化合物、導電性化合物にウイスカを使用し
ても良い。
In the present invention, in addition to whiskers produced from Si particles,
Whiskers such as Si 3 N 4 and SiC may be mixed as a raw material. However, if a large amount is mixed, it becomes inhomogeneous, which is not preferable.
Further, whiskers may be used as the insulating compound and the conductive compound.

本発明において、焼結体の気孔率を5%より小さくする
ために、焼結した焼結体を再焼結することも可能であ
る。再焼結は、ホツトプレスや熱間静水圧プレスまた焼
結助剤を利用した常圧による二次焼結が可能である。こ
れにより、ウイスカが焼結体中に3次元に存在するため
高靱性のセラミツクス複合体が得られる。但し、熱膨張
係数の差をできる限り小さくしないとクラツクが入る可
能性がある。
In the present invention, in order to reduce the porosity of the sintered body to less than 5%, it is possible to re-sinter the sintered sintered body. The re-sintering can be carried out by hot pressing, hot isostatic pressing, or secondary sintering under normal pressure using a sintering aid. As a result, since the whiskers are three-dimensionally present in the sintered body, a ceramic composite with high toughness can be obtained. However, if the difference in the coefficient of thermal expansion is not made as small as possible, cracking may occur.

また、本発明の焼結体は気孔を有するので、その気孔中
に潤滑剤等を含有させることもできる。
Moreover, since the sintered body of the present invention has pores, a lubricant or the like can be contained in the pores.

〔作用〕[Action]

本発明のセラミツクス複合体は、セラミツクス複合体中
の導電性化合物及び絶縁性化合物を金属Siから生成した
Si3N4,Si2N2OまたはSiO2粒子またはウイスカが強固に
結合するために、焼結時の体積変化率が小さく、耐熱
性、に優れた一体焼結品が得られる。また、気孔を有す
るので耐熱衝撃を吸収できる。
The ceramic composite of the present invention is produced by forming the conductive compound and the insulating compound in the ceramic composite from metallic Si.
Since Si 3 N 4 , Si 2 N 2 O or SiO 2 particles or whiskers are firmly bonded, a volume change rate during sintering is small and an integrally sintered product excellent in heat resistance can be obtained. Further, since it has pores, it can absorb thermal shock.

本発明によれば、焼結による体積変化率が小さく、導電
性化合物、絶縁性化合物の配合量を調整することにより
1014〜10-5オームcmの範囲で任意の抵抗率を持つセラミ
ツクス複合体が容易に得られる。
According to the present invention, the volume change rate due to sintering is small, and by adjusting the compounding amounts of the conductive compound and the insulating compound,
A ceramic composite having an arbitrary resistivity in the range of 10 14 to 10 −5 ohm cm can be easily obtained.

これにより、各種ヒータ、発電機集電材、モータ用ブラ
シ、スタータモータ用コンミテータ、オルタネータ用コ
ンミテータなどに用いることができる。
As a result, it can be used in various heaters, generator current collectors, motor brushes, starter motor commutators, alternator commutators, and the like.

以下に、実施例を示し本発明を更に具体的に説明する。Hereinafter, the present invention will be described more specifically with reference to examples.

〔実施例〕〔Example〕

実施例1 平均粒径0.9μmの金属Si粉末を22.7wt%,平均粒径1.2
μmのTiN粉末を77.3wt%混合した原料100重量部に対し
てポリエチレン系熱可塑性樹脂、ステアリン酸からなる
バインダを9重量部添加し、加圧ニーダを用いて160℃
で12時間混練した。そして、混練物を10Mesh以下に粉砕
したのち、導電体セラミツクスAの原料とした。
Example 1 22.7 wt% of metal Si powder having an average particle size of 0.9 μm and an average particle size of 1.2
9 parts by weight of a binder made of polyethylene-based thermoplastic resin and stearic acid was added to 100 parts by weight of a raw material obtained by mixing 77.3 wt% of TiN powder of μm, and a pressure kneader was used to obtain 160 ° C.
And kneaded for 12 hours. Then, the kneaded product was crushed to 10 Mesh or less and used as a raw material for the conductor ceramics A.

次に、平均粒径0.9μmの金属Si粉末を38wt%,平均粒
径2μmのAl2O3粉末を62wt%混合した原料100重量部に
対して低密度ポリエチレン、合成ワツクス、ステアリン
酸を加えたものからなるバインダを9重量部添加し、加
圧ニーダを用いて160℃で12時間混練した。そして、混
練物を10Mesh以下に粉砕し、絶縁体セラミツクスBの原
料とした。
Next, low density polyethylene, synthetic wax, and stearic acid were added to 100 parts by weight of a raw material in which 38 wt% of metal Si powder having an average particle diameter of 0.9 μm and 62 wt% of Al 2 O 3 powder having an average particle diameter of 2 μm were mixed. 9 parts by weight of a binder made of the above was added and kneaded at 160 ° C. for 12 hours using a pressure kneader. Then, the kneaded material was crushed to 10 Mesh or less, and used as a raw material of the insulator ceramics B.

次に、金型にセラミツクスAおよびBの原料を順に160
℃,1000kg/cm2で充填し、第1図に示すような層状のリ
ングを成形した。そして、成形体中のバインダを3℃/h
で500℃まで加熱して除去したのち酸素濃度10ppm以下の
窒素雰囲気中5℃/minで1100℃まで加熱し、1100℃〜13
50℃まで4℃/hの昇温速度で長時間かけて加熱すること
により、セラミックスAおよびBからなる該成形体中全
体にSi粒子と窒素の反応生成物である窒化珪素のウイス
カ/粒子(=1/9)が生成するとともに、セラミックス
AおよびBの界面も窒化珪素のウイスカ/粒子で結合さ
れる。
Next, the raw materials of ceramics A and B are sequentially placed in a mold 160
It was filled at 1000 ° C. and 1000 kg / cm 2 , and a layered ring as shown in FIG. 1 was formed. And, the binder in the compact is 3 ℃ / h
After removing it by heating up to 500 ℃ at 1100 ℃ ~ 13 ℃ in a nitrogen atmosphere with oxygen concentration of 10ppm or less at 5 ℃ / min.
By heating to 50 ° C. at a heating rate of 4 ° C./h for a long time, silicon nitride whiskers / particles (reaction product of Si particles and nitrogen) are entirely distributed in the formed body of ceramics A and B ( = 1/9) is produced, and the interface between the ceramics A and B is also bonded by whiskers / particles of silicon nitride.

ここで、このウイスカ/粒子の配合比は、1100℃〜1400
℃までの加熱昇温速度を変化させ、昇温の途中に段階的
に保持することにより調整することができる。また、ウ
イスカ/粒子の割合は、焼結体の走査電顕観察、透過電
顕観察から求めることができる。得られた焼結体の特性
を第1表に示す。成形体から焼結体への寸法変化率は±
0.2%と小さく、クラツクも発生しなかつた。セラミツ
クスA部の抵抗率は9×10-4Ωcm,セラミツクスB部の
抵抗率は7×1013Ωcmであつた。導電部と絶縁部との境
界付近の電顕写真を第2図に示す。導電部と絶縁部は強
固に結合していることが判る。これは、金属Siから生成
したSi3N4により結合されている。
Here, the mixing ratio of the whiskers / particles is 1100 ° C to 1400
It can be adjusted by changing the heating rate up to 0 ° C. and holding it stepwise during heating. The ratio of whiskers / particles can be determined by scanning electron microscope observation or transmission electron microscope observation of the sintered body. The characteristics of the obtained sintered body are shown in Table 1. The dimensional change rate from the compact to the sintered body is ±
It was as small as 0.2% and no cracking occurred. The resistivity of the ceramics A part was 9 × 10 −4 Ωcm, and the resistivity of the ceramics B part was 7 × 10 13 Ωcm. An electron micrograph near the boundary between the conductive part and the insulating part is shown in FIG. It can be seen that the conductive part and the insulating part are firmly connected. It is bound by Si 3 N 4 produced from metallic Si.

ここで、導電部の熱膨張係数は5.2×10-6-1、絶縁部
は5.1×10-6-1、ほとんど同じ値を示し、この点から
も耐熱衝撃性が優れていることが分かる。
Here, the coefficient of thermal expansion of the conductive part is 5.2 × 10 -6 ° C -1 , and that of the insulating section is 5.1 × 10 -6 ° C -1 , showing almost the same value. From this point as well, it can be said that the thermal shock resistance is excellent. I understand.

実施例2〜36 実施例1のTiN粒子の代わりに第2表に示す導電性粒子
を添加し、実施例1と同様に成形、焼結した。その結果
を第2表に示す。絶縁部Bの焼結体組成は実施例1と同
様Si3N4:Al2O3=50:50(vol%)であるので第2表への
記載は省略する。
Examples 2 to 36 Conductive particles shown in Table 2 were added in place of the TiN particles of Example 1 and molded and sintered in the same manner as in Example 1. The results are shown in Table 2. The composition of the sintered body of the insulating portion B is Si 3 N 4 : Al 2 O 3 = 50: 50 (vol%) as in Example 1, and therefore the description in Table 2 is omitted.

実施例2〜36は、いずれも成形体から焼結体への寸法変
化率は+0.2%以下と小さく、クラツクも発生もなかつ
た。導電部Aと絶縁部Bとの境界は、実施例1同様に窒
化珪素により強固に結合している。
In each of Examples 2 to 36, the dimensional change rate from the molded body to the sintered body was as small as + 0.2% or less, and cracking did not occur. The boundary between the conductive portion A and the insulating portion B is firmly bonded by silicon nitride as in the first embodiment.

また、導電性化合物と絶縁性化合物を複合混在させるこ
とによつても電気抵抗率を1014Ωcmから10-5Ωcmまで任
意に組合せて一体成形、一体焼結可能である。
Further, by mixing a conductive compound and an insulating compound together, it is possible to integrally form and integrally sinter by arbitrarily combining the electric resistivity from 10 14 Ωcm to 10 -5 Ωcm.

比較例1〜2 比較のために実施例1の金属Si粉末のかわりに平均粒径
0.8μmのSi3N4粉末を使用し、同様にして成形体を得、
ホツトプレスを用いて真空中、150kg/cm2,1800℃で4時
間焼結して焼結体を得た。また、焼結助剤としてY2O3,A
lNを各3vol%添加し、実施例1と同様にして成形し、窒
素雰囲気中、1800℃で4時間、常圧焼結した。得られた
焼結体の特性を第3表に示す。
Comparative Examples 1-2 For comparison, the average particle size was used instead of the metal Si powder of Example 1.
Using 0.8 μm Si 3 N 4 powder, a molded body was obtained in the same manner.
Using a hot press, it was sintered in vacuum at 150 kg / cm 2 , 1800 ° C. for 4 hours to obtain a sintered body. In addition, as a sintering aid, Y 2 O 3 , A
3% by volume of each of 1N was added, and the mixture was molded in the same manner as in Example 1 and sintered under normal pressure at 1800 ° C. for 4 hours in a nitrogen atmosphere. The characteristics of the obtained sintered body are shown in Table 3.

以上より、ホツトプレス品、常圧焼結品とも焼結体にク
ラツクが入り、良好なセラミツクス複合体を得ることが
できなかつた。本発明品がクラツクや変形を起こさない
のは、焼結温度が低く、かつ開気孔を有するため熱膨張
係数の差による応力が緩和されるものと考えられる。
From the above, it was impossible to obtain a good ceramics composite because cracks were included in the sintered body of both the hot pressed product and the normal pressure sintered product. The reason why the product of the present invention does not crack or deform is considered to be that the stress due to the difference in the coefficient of thermal expansion is relaxed because the sintering temperature is low and it has open pores.

実施例37〜43 平均粒径0.9μmの金属Si粉末と平均粒径1.2μmのTiN
粉末を第4表の割合に混合した原料100重量部に対して
ポリエチレン系熱可塑性樹脂、ステアリン酸からなるバ
インダを9重量部添加し、加圧ニーダを用いて160℃で1
2時間混練した。そして、混練物を10Mesh以下に粉砕し
たのち、導電体セラミツクスAの原料とした。次に、平
均粒径0.9μmの金属Si粉末と平均粒径2μmのAl2O3
末を第4表の割合に混合した原料100重量部に対してポ
リエチレン系熱可塑性樹脂、ステアリン酸からなるバイ
ンダを9重量部添加し、加圧ニーダを用いて160℃で12
時間混練した。そして、混練物を10Mesh以下に粉砕し、
絶縁体セラミツクスBの原料とした。
Examples 37 to 43 Metal Si powder having an average particle size of 0.9 μm and TiN having an average particle size of 1.2 μm
9 parts by weight of a binder made of polyethylene-based thermoplastic resin and stearic acid was added to 100 parts by weight of the raw material obtained by mixing the powders in the ratio shown in Table 4, and the mixture was mixed with a pressure kneader at 160 ° C.
Kneaded for 2 hours. Then, the kneaded product was crushed to 10 Mesh or less and used as a raw material for the conductor ceramics A. Next, 100 parts by weight of a raw material obtained by mixing metal Si powder having an average particle size of 0.9 μm and Al 2 O 3 powder having an average particle size of 2 μm in a ratio shown in Table 4 was used as a binder composed of a polyethylene-based thermoplastic resin and stearic acid. Was added at 9 ° C, and the pressure kneader was used for 12 hours at 160 ° C.
Kneaded for hours. Then, the kneaded material is crushed to 10 Mesh or less,
It was used as a raw material for the insulator ceramics B.

次に、金型にセラミツクAおよびBの原料を順に充填
し、第3図に示すような層状のリングを成形した。そし
て、成形体中のバインダを除去したのち窒素雰囲気中5
℃/minで1100℃まで加熱し、1100℃〜1350℃まで3℃/h
の昇温速度で長時間かけて加熱することにより、Si3N4
のウイスカ/粒子=2/9の焼結体を得た。得られた焼結
体の特性を第4表に示す。
Next, the molds were sequentially filled with the raw materials of ceramics A and B to form a layered ring as shown in FIG. Then, after removing the binder in the molded body, it is placed in a nitrogen atmosphere 5
3 ℃ / h from 1100 ℃ to 1350 ℃ by heating to 1100 ℃ at ℃ / min
By heating over a long time in the heating rate, Si 3 N 4
A whisker / particle = 2/9 sintered body was obtained. The characteristics of the obtained sintered body are shown in Table 4.

以上より、本発明は、導電性化合物の配合量を変えるこ
とにより、電気抵抗率の異なる層から成るセラミツクス
を一体成形、一体焼結することができる。
As described above, according to the present invention, by changing the compounding amount of the conductive compound, the ceramics composed of the layers having different electric resistivities can be integrally molded and integrally sintered.

第4図は、TiN含有量と焼結時の体積変化率を、またAl2
O3含有量と焼結時の体積変化率の関係を示す図である。
Figure 4 is a volume change rate during TiN content and sintering, also Al 2
O 3 is a diagram showing the relationship between content and volume change during sintering.

また比較例として、先の比較例2の焼結体組成を実施例
37〜43と同様の焼結体組成にして、比較例2と同様の条
件で成形、焼結し、焼結時の体積変化率を第4図に併せ
て示す。
In addition, as a comparative example, the composition of the sintered body of Comparative Example 2 was used as an example.
The composition of the sintered body is the same as that of 37 to 43, molded and sintered under the same conditions as in Comparative Example 2, and the volume change rate at the time of sintering is also shown in FIG.

第4図から本発明品は、常圧焼結材と比較して寸法変化
率が極めて小さく、クラツクもない優れた焼結体が得ら
れる。
From FIG. 4, the product of the present invention has an extremely small dimensional change rate as compared with the normal pressure sintered material, and an excellent sintered body without cracking can be obtained.

第5図に、曲げ強さと試験温度の関係を示す。FIG. 5 shows the relationship between bending strength and test temperature.

第5図から本発明品は、高温でも強度低下がない。これ
に対し比較例品は、焼結助剤を添加しているためにガラ
ス相が存在し、このガラス相が高温で軟化するために高
温での強度が低下するものと考える。
From FIG. 5, the product of the present invention has no strength reduction even at high temperature. On the other hand, it is considered that the comparative example product has a glass phase because of the addition of the sintering aid, and the glass phase is softened at a high temperature, so that the strength at a high temperature is lowered.

実施例44 実施例1と同様にして、セラミツクスAをフエロSi粉末
(平均粒径2μm)をSi3N4換算で50vol%とZrN粉末
(平均粒径2μm)50vol%、混合した原料100重量部に
対してバインダとしてポリシラン化合物を10重量部添加
した混合粉とし、セラミツクスBは、実施例1と同じ配
合量でバインダとしてポリシラン化合物を10重量部添加
した混合粉とした。これらの粉末を実施例1と同様に成
形したのち、窒化性雰囲気中で最高1450℃まで段階的に
時間をかけて加熱し、焼結体を得た。
Example 44 In the same manner as in Example 1, 100 vol. Parts of the raw material was obtained by mixing the ceramics A with 50 vol% of ferrotic Si powder (average particle size 2 μm) in terms of Si 3 N 4 and ZrN powder (average particle size 2 μm). On the other hand, a mixed powder containing 10 parts by weight of a polysilane compound as a binder was prepared, and Ceramics B was a mixed powder containing 10 parts by weight of the polysilane compound as a binder in the same blending amount as in Example 1. After molding these powders in the same manner as in Example 1, the powder was heated in a nitriding atmosphere to a maximum temperature of 1450 ° C. stepwise over a period of time to obtain a sintered body.

得られたセラミツク複合体の特性は、相対密度93%、抵
抗率4×10-3Ω・cm、曲げ強さ420MPa,焼結時の寸法変
化率+3.8%である。
The characteristics of the obtained ceramic composite are: relative density 93%, resistivity 4 × 10 −3 Ω · cm, bending strength 420 MPa, dimensional change rate during sintering + 3.8%.

実施例45 実施例44と同様に、原料フエロSi粉末の粒径を変えたも
のについて曲げ強さとの関係を調べた。
Example 45 In the same manner as in Example 44, the relationship with the bending strength was investigated for raw FeSi powders having different particle sizes.

第6図にその結果を示す。Si粒径は5μm以下がよい。The results are shown in FIG. The Si particle size is preferably 5 μm or less.

5μmを超えると、焼結体中に未窒化のSiが残り、これ
が加熱によつて蒸発するために強度が低下するものと考
える。
If it exceeds 5 μm, it is considered that unnitrided Si remains in the sintered body, and this is evaporated by heating, so that the strength decreases.

実施例46〜50および比較例3,4 実施例1と同様にして成形体を作成した。そして、窒素
雰囲気中1100℃から1400℃まで昇温速度を変え、段階的
に加熱時間を変えて焼結を行い、Si3N4ウイスカの生成
量を調整した焼結体を得た。得られた焼結体の特性を第
5表に示す。
Examples 46 to 50 and Comparative Examples 3 and 4 Molded bodies were prepared in the same manner as in Example 1. Then, the temperature rising rate was changed from 1100 ° C. to 1400 ° C. in a nitrogen atmosphere, and the heating time was changed stepwise to perform sintering to obtain a sintered body in which the production amount of Si 3 N 4 whiskers was adjusted. The characteristics of the obtained sintered body are shown in Table 5.

以上より、Siより生成したSi3N4相の1〜70vol%Si3N4
ウイスカが存在する本発明品は、耐熱衝撃性に優れてい
ることが判る。
From the above, 1~70vol% Si the Si 3 N 4 phase generated from Si 3 N 4
It can be seen that the product of the present invention in which whiskers are present has excellent thermal shock resistance.

ここで、熱衝撃値は焼結体を1200℃で30分間保持した
後、水中に投入して急冷し、亀裂を発生するまで反復
し、その回数を以下示した。
Here, the thermal shock value was obtained by holding the sintered body at 1200 ° C. for 30 minutes, then pouring it into water, quenching, and repeating until a crack was generated, and the number of times is shown below.

実施例51〜57 実施例1と同様にして成形体を作製した。そして、窒化
性ガス中の酸素分圧を変化させて、金属Siから生成する
相をSi3N4,Si2N2O,SiO2の各量を調整した焼結体を得
た。得られた焼結体の特性を第6図に示す。
Examples 51 to 57 Molded bodies were produced in the same manner as in Example 1. Then, the oxygen partial pressure in the nitriding gas was changed to obtain a sintered body in which the phases produced from metallic Si were adjusted to the respective amounts of Si 3 N 4 , Si 2 N 2 O, and SiO 2 . The characteristics of the obtained sintered body are shown in FIG.

以上より、Siから生成した相がSi3N4よりSi2N2O,SiO2
が多くなると抵抗率,耐熱衝撃性が低下する傾向があ
る。
From the above, the phase generated from Si is more likely to be Si 2 N 2 O, SiO 2 than Si 3 N 4.
If the content of sapphire increases, the resistivity and thermal shock resistance tend to decrease.

実施例58〜61 実施例1のTiNおよびAl2O3粒子のかわりに第7表に示す
原料を添加し、同様に成形、焼結を行つた。その結果を
第7表に示す。
Examples 58 to 61 Instead of the TiN and Al 2 O 3 particles of Example 1, the raw materials shown in Table 7 were added, and molding and sintering were performed in the same manner. The results are shown in Table 7.

本発明品は導電性化合物と絶縁性化合物を複合して組合
せることにより電気抵抗率を1014Ωcmから10-5Ωcmの範
囲で任意に組合せて一体成形,一体焼結可能である。
The product of the present invention can be integrally molded and integrally sintered by combining a conductive compound and an insulating compound in a combined manner to arbitrarily combine the electrical resistivities in the range of 10 14 Ωcm to 10 -5 Ωcm.

実施例62 自動車のオルタネータ用集電材として、実施例1で得ら
れたSi3N4/TiN導電性セラミツクスとSi3N4/Al2O3絶縁
性セラミツクスを第3図に示すように一体成形、一体焼
結した。そして、集電特性を検討した。その結果を第8
表に示す。これより、本発明品は従来の銅/耐熱性樹脂
に較べ、耐熱性、耐摩耗性に優れていることが判る。
Example 62 As a current collector for an alternator for automobiles, the Si 3 N 4 / TiN conductive ceramics obtained in Example 1 and the Si 3 N 4 / Al 2 O 3 insulating ceramics were integrally molded as shown in FIG. , Sintered together. Then, the current collection characteristics were examined. The result is No. 8
Shown in the table. From this, it is understood that the product of the present invention is superior in heat resistance and wear resistance to the conventional copper / heat resistant resin.

実施例63 自動車のスタータモータ用コンミテータとして、実施例
1で得られたSi3N4/TiN導電性セラミツクスとSi3N4/Al
2O3絶縁性セラミツクスを第7図に示すように一体成
形,一体焼結した。そして、集電特性を検討した。その
結果、先の実施例63と同様に本発明品は従来の銅/耐熱
性樹脂に較べ、耐熱性、耐摩耗性に優れており、不燃化
モータの作成が可能であることが確認できた。
Example 63 As a commutator for a starter motor for automobiles, the Si 3 N 4 / TiN conductive ceramics obtained in Example 1 and Si 3 N 4 / Al were obtained.
The 2 O 3 insulating ceramics were integrally molded and sintered as shown in FIG. Then, the current collection characteristics were examined. As a result, it was confirmed that the product of the present invention was superior to the conventional copper / heat resistant resin in heat resistance and wear resistance as in the case of the above-mentioned Example 63, and a non-combustible motor could be produced. .

実施例64 平均粒径0.5μmの金属Si粉末22.7wt%、アスペクト比5
0、長さ50μmのTiNウイスカ77.3wt%混合した原料100
重量部に対し低密度ポリエチレン、合成ワツクスおよび
ステアリン酸から成るバインダ9重量部添加し、加圧ニ
ーダを用いて160℃,12時間混練した。該混練物を10Mesh
以下に粉砕したのち、導電体セラミツクスAの原料とし
た。
Example 64 22.7 wt% metal Si powder having an average particle size of 0.5 μm and an aspect ratio of 5
0, 50μm long TiN whiskers 77.3wt% mixed raw material 100
9 parts by weight of a binder composed of low-density polyethylene, synthetic wax and stearic acid was added to parts by weight, and the mixture was kneaded with a pressure kneader at 160 ° C. for 12 hours. 10Mesh the kneaded mixture
After crushing into the following, it was used as a raw material of the conductor ceramics A.

次いで、平均粒径0.9μmの金属Si38wt%、平均粒径35
μmのAl2O3wt%混合した原料100重量部に対し上記バイ
ンダ9重量部添加し、上記と同様混練したものを粉砕
し、絶縁体セラミツクスBの原料とした。これらA,Bを
用いて実施例1同様にし、複合焼結体を作成した。
Next, metal Si 38wt% with an average particle size of 0.9μm, average particle size of 35
9 parts by weight of the above binder was added to 100 parts by weight of the raw material mixed with Al 2 O 3 wt% of μm, and the mixture was kneaded in the same manner as above and pulverized to obtain a raw material for the insulator ceramics B. Using these A and B, a composite sintered body was prepared in the same manner as in Example 1.

該焼結体の寸法変化率は+0.2%で、A部は、抵抗率7
×10-4Ωcm,気孔率18%,曲げ況度291MPa、熱膨張径数
5.2×10-6であつた。また、B部は、抵抗率5×1013Ωc
m,気孔率20%、曲げ況度250MPa、熱膨張径数5.1×10-6
であつた。
The dimensional change rate of the sintered body is + 0.2%, and the A part has a resistivity of 7
× 10 -4 Ωcm, Porosity 18%, Bending degree 291MPa, Thermal expansion diameter
It was 5.2 × 10 -6 . Also, the B part has a resistivity of 5 × 10 13 Ωc.
m, Porosity 20%, Bending condition 250MPa, Thermal expansion diameter 5.1 × 10 -6
It was.

〔発明の効果〕〔The invention's effect〕

本発明によれば、ニアネツトシエイプによつて成形焼結
された焼結体は、寸法変化率が極めて小さく、導電性部
と絶縁性部とが任意の抵抗率のセラミツクス複合体を容
易に提供することができる。
According to the present invention, the sintered body molded and sintered by the near net shape has a very small dimensional change rate, and the conductive portion and the insulating portion facilitate a ceramic composite having an arbitrary resistivity. Can be provided.

これを用いることにより、セラミツクスヒータ、回転電
機用集電環、モータ用ブラシ、スタータモータ用コンミ
テータ、オルタネータ用コンミテータなどを提供するこ
とができる。
By using this, it is possible to provide a ceramic heater, a collector ring for a rotary electric machine, a brush for a motor, a commutator for a starter motor, a commutator for an alternator, and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図,第3図,第7図は本発明のセラミツクス複合体
の一実施例を示す図、第2図はセラミツクス複合体の導
電性部と絶縁性部の焼結体の結晶粒子の顕微鏡写真図、
第4図はTiN,Al2O3含有量と焼結時の寸法変化率との関
係を示す図、第5図は曲げ強さと温度との関係を示す
図、そして第6図は金属Si粒径と曲げ強さとの関係を示
す図である。 1……導電性部、2……絶縁性部。
FIG. 1, FIG. 3, and FIG. 7 are views showing an embodiment of the ceramic composite of the present invention, and FIG. 2 is a microscope of crystal particles of a sintered body of a conductive composite and an insulating composite of the ceramic composite. Picture,
Fig. 4 shows the relationship between the TiN, Al 2 O 3 content and the dimensional change rate during sintering, Fig. 5 shows the relationship between bending strength and temperature, and Fig. 6 shows metallic Si particles. It is a figure which shows the relationship between a diameter and bending strength. 1 ... Conductive part, 2 ... Insulating part.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01C 7/00 R H01R 39/08 7354−5E H02K 13/00 K 7346−5H H05B 3/14 B 7715−3K (56)参考文献 特開 昭60−228663(JP,A) 特開 昭59−146985(JP,A) 特開 昭61−83685(JP,A) 特開 昭61−146754(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01C 7/00 R H01R 39/08 7354-5E H02K 13/00 K 7346-5H H05B 3/14 B 7715-3K (56) Reference JP 60-228663 (JP, A) JP 59-146985 (JP, A) JP 61-83685 (JP, A) JP 61-146754 (JP, A)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】炭化物、窒化物、酸化物、ホウ化物、ケイ
化物または酸窒化物から選ばれる1種以上から成る無機
化合物の粒子またはウイスカのうちの少なくとも1種
と、Si3N4,Si2N2OまたはSiO2から選ばれる1種以上か
ら成る粒子およびウイスカとを含み、 前記無機化合物は、導電性成分の量が異なる2以上の層
が一体焼結された焼結体であり、 前記2以上の層は、前記Si3N4,Si2N2OまたはSiO2の粒
子及びウイスカによって結合され、 前記焼結体が、気孔率5〜40%の開気孔を有することを
特徴とするセラミックス複合体。
1. At least one kind of particles or whiskers of an inorganic compound consisting of one or more kinds selected from carbides, nitrides, oxides, borides, silicides or oxynitrides, and Si 3 N 4 , Si. 2 N 2 O or SiO 2 and one or more kinds of particles and whiskers, wherein the inorganic compound is a sintered body in which two or more layers having different amounts of conductive components are integrally sintered, The two or more layers are bonded by the particles of Si 3 N 4 , Si 2 N 2 O or SiO 2 and whiskers, and the sintered body has open pores with a porosity of 5 to 40%. Ceramic composites.
【請求項2】前記Si3N4,Si2N2OまたはSiO2の粒子およ
びウイスカの比が容積比で ウイスカ/粒子=(1/99〜70/30)であることを特徴と
する特許請求の範囲第1項記載のセラミックス複合体。
2. A patent characterized in that the ratio of particles of Si 3 N 4 , Si 2 N 2 O or SiO 2 and whiskers is whisker / particle = (1/99 to 70/30) in volume ratio. The ceramic composite according to claim 1.
【請求項3】炭化物、窒化物、酸化物、ホウ化物、ケイ
化物または酸窒化物から選ばれる1種以上から成る無機
化合物の粒子またはウイスカのうちの少なくとも1種
と、Si3N4,Si2N2OまたはSiO2から選ばれる1種以上か
ら成る粒子およびウイスカとを含み、 前記無機化合物は、導電性の層と、導電性粒子を含まな
い絶縁性の層とが2層以上一体焼結された焼結体であ
り、 前記2以上の層は、前記Si3N4,Si2N2OまたはSiO2の粒
子及びウイスカによって結合され、 前記焼結体が、気孔率5〜40%の開気孔を有することを
特徴とするセラミックス複合体。
3. Particles or whiskers of an inorganic compound comprising at least one selected from carbides, nitrides, oxides, borides, silicides or oxynitrides, and Si 3 N 4 , Si. 2 N 2 O or SiO 2 and one or more kinds of particles selected from SiO 2 and whiskers are contained, and the inorganic compound comprises a conductive layer and an insulating layer containing no conductive particles, which are integrally burned in two or more layers. A sintered body that is bonded together, wherein the two or more layers are bonded by the particles of Si 3 N 4 , Si 2 N 2 O or SiO 2 and whiskers, and the sintered body has a porosity of 5 to 40%. A ceramic composite having the following open pores.
【請求項4】前記Si3N4,Si2N2OまたはSiO2の粒子およ
びウイスカの比が容積比で ウイスカ/粒子=(1/99〜70/30)であることを特徴と
する特許請求の範囲第3項記載のセラミックス複合体。
4. A patent characterized in that the ratio of particles of Si 3 N 4 , Si 2 N 2 O or SiO 2 and whiskers is whisker / particle = (1/99 to 70/30) in volume ratio. The ceramic composite according to claim 3.
【請求項5】炭化物、窒化物、酸化物、ホウ化物、ケイ
化物または酸窒化物から選ばれる1種以上から成る、少
なくとも導電性成分を有する無機化合物の粉末及び金属
Si粉末を成形バインダと混合して得られた原料Aと、炭
化物、窒化物、酸化物、ホウ化物、ケイ化物または酸窒
化物から選ばれる1種以上から成る、導電性成分を含ま
ない無機化合物の粉末及び金属Si粉末を成形バインダと
混合して得られた原料Bとを、層状に一体成形し、 該成形体を窒化性または酸化性雰囲気中で焼結すること
を特徴とするセラミックス複合体の製法。
5. Powders and metals of inorganic compounds having at least a conductive component, which are made of one or more selected from carbides, nitrides, oxides, borides, silicides or oxynitrides.
Raw material A obtained by mixing Si powder with a molding binder, and an inorganic compound containing no conductive component, which is composed of one or more kinds selected from carbides, nitrides, oxides, borides, silicides or oxynitrides. And a raw material B obtained by mixing the powder of Si and the metal Si powder with a molding binder are integrally molded in a layered form, and the molded body is sintered in a nitriding or oxidizing atmosphere. Manufacturing method.
【請求項6】回転電機の相数に対応した導電部のそれぞ
れが絶縁材により層状に絶縁されて形成された回転電機
用の集電環において、 A.前記導電部が (1)炭化物、窒化物、酸化物、ホウ化物、ケイ化物ま
たは酸窒化物から選ばれる1種以上、 (2)導電性無機化合物粒子、および (3)Si3N4,Si2N2OまたはSiO2の粒子及びウイスカか
ら成り、 B.前記絶縁材が、 (1)炭化物、窒化物、酸化物、ホウ化物、ケイ化物ま
たは酸窒化物から選ばれる1種以上、 (2)絶縁性無機化合物、および (3)Si3N4,Si2N2OまたはSiO2の粒子及びウイスカか
ら成り、 上記導電部と絶縁材が一体焼結されているセラミックス
複合体より構成されていることを特徴とする回転電機用
の集電環。
6. A current collecting ring for a rotating electric machine, wherein each of the conductive portions corresponding to the number of phases of the rotating electric machine is formed into a layered insulation by an insulating material. A. The conductive portion comprises (1) carbide, nitriding One or more selected from the group consisting of compounds, oxides, borides, silicides or oxynitrides, (2) conductive inorganic compound particles, and (3) Si 3 N 4 , Si 2 N 2 O or SiO 2 particles, and B. The insulating material comprises (1) one or more kinds selected from (1) carbide, nitride, oxide, boride, silicide or oxynitride, (2) insulating inorganic compound, and (3) A rotary electric machine characterized by comprising particles of Si 3 N 4 , Si 2 N 2 O or SiO 2 and whiskers, and being composed of a ceramic composite body in which the conductive portion and the insulating material are integrally sintered. Current collector ring.
【請求項7】表面に導電部と絶縁部とを有する円筒形状
の自動車用コンミテータにおいて、 A.前記導電部が (1)炭化物、窒化物、酸化物、ホウ化物、ケイ化物ま
たは酸窒化物から選ばれる1種以上、 (2)導電性無機化合物粒子、および (3)Si3N4,Si2N2OまたはSiO2の粒子及びウイスカか
ら成り、 B.前記絶縁材が、 (1)炭化物、窒化物、酸化物、ホウ化物、ケイ化物ま
たは酸窒化物から選ばれる1種以上、 (2)絶縁性無機化合物、および (3)Si3N4,Si2N2OまたはSiO2の粒子及びウイスカか
ら成り、 上記導電部と絶縁材が一体焼結されているセラミックス
複合体より構成されていることを特徴とする自動車用コ
ンミテータ。
7. A cylindrical automotive commutator having a conductive portion and an insulating portion on its surface, wherein A. the conductive portion is formed from (1) carbide, nitride, oxide, boride, silicide or oxynitride. One or more selected, (2) conductive inorganic compound particles, and (3) particles of Si 3 N 4 , Si 2 N 2 O or SiO 2 and whiskers, B. the insulating material is (1) carbide , At least one selected from a nitride, an oxide, a boride, a silicide or an oxynitride, (2) an insulating inorganic compound, and (3) particles of Si 3 N 4 , Si 2 N 2 O or SiO 2 . And a whisker, which is composed of a ceramic composite body in which the conductive portion and the insulating material are integrally sintered, and a commutator for an automobile.
JP62086871A 1987-04-10 1987-04-10 Ceramic composite, its manufacturing method and its use Expired - Lifetime JPH0723265B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62086871A JPH0723265B2 (en) 1987-04-10 1987-04-10 Ceramic composite, its manufacturing method and its use
DE88105644T DE3885140T2 (en) 1987-04-10 1988-04-08 Ceramic composite and process for its manufacture.
EP92113584A EP0520520B1 (en) 1987-04-10 1988-04-08 Ceramic composite and process for production thereof
EP88105644A EP0286127B1 (en) 1987-04-10 1988-04-08 Ceramic composite and process for production thereof
DE3855544T DE3855544T2 (en) 1987-04-10 1988-04-08 Ceramic composite and method of making the same
US07/411,330 US5378417A (en) 1987-04-10 1989-09-22 Process for producing ceramic compositions
US07/500,102 US5130055A (en) 1987-04-10 1990-03-26 Ceramic composite and process for the production thereof
US07/863,505 US5316987A (en) 1987-04-10 1992-03-30 Ceramic composite and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62086871A JPH0723265B2 (en) 1987-04-10 1987-04-10 Ceramic composite, its manufacturing method and its use

Publications (2)

Publication Number Publication Date
JPS63252973A JPS63252973A (en) 1988-10-20
JPH0723265B2 true JPH0723265B2 (en) 1995-03-15

Family

ID=13898886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62086871A Expired - Lifetime JPH0723265B2 (en) 1987-04-10 1987-04-10 Ceramic composite, its manufacturing method and its use

Country Status (1)

Country Link
JP (1) JPH0723265B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226047A (en) * 1991-03-18 1993-09-03 Hitachi Ltd Commutator with built-in capacitor and manufacture thereof

Also Published As

Publication number Publication date
JPS63252973A (en) 1988-10-20

Similar Documents

Publication Publication Date Title
JPH054948B2 (en)
JP4444512B2 (en) Manufacturing method of sheath type heater
JP2949586B2 (en) Conductive material and manufacturing method thereof
KR100705991B1 (en) Sintered stick-shaped heater
US11339097B2 (en) Refractory metal silicide nanoparticle ceramics
JP3681780B2 (en) Porous conductive silicon carbide sintered body, its production method and use
EP0331160B1 (en) Functional ceramic shaped article and process for producing the same
US5403674A (en) Conductive material and process for preparing the same
JPS6156187B2 (en)
KR20190113946A (en) SiC sintered body and heater and manufacturing method of SiC sintered body
JPH0723265B2 (en) Ceramic composite, its manufacturing method and its use
JPH11214124A (en) Ceramic heater
JP2771239B2 (en) Rotating electric machine
CN1055368C (en) Electrothermal lanthanum chromate body and its mfg. method
JP3340643B2 (en) Composite PTC material
JPH0826827A (en) Electrically conductive reactional silicon carbide sintered compact, its production and use
JPH09213462A (en) Silicon carbide heating element
JPH08217568A (en) Production of porous electrically conductive silicon carbide sintered body
JP2684427B2 (en) Composite ceramic structure
JP2849702B2 (en) Method for producing highly conductive carbon-based composite material
JPH0380156A (en) Electrically conductive ceramic and its manufacture
JP2745062B2 (en) Conductive composite ceramics
JPH08245264A (en) Silicon nitride-titanium nitride composite ceramics and its production
JPH05345673A (en) Electrically conductive silicon carbide composite ceramic
JPH0227307B2 (en)