JPH07231579A - Mobile power supply - Google Patents

Mobile power supply

Info

Publication number
JPH07231579A
JPH07231579A JP1795394A JP1795394A JPH07231579A JP H07231579 A JPH07231579 A JP H07231579A JP 1795394 A JP1795394 A JP 1795394A JP 1795394 A JP1795394 A JP 1795394A JP H07231579 A JPH07231579 A JP H07231579A
Authority
JP
Japan
Prior art keywords
power
power supply
vehicle
power source
inverter device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1795394A
Other languages
Japanese (ja)
Inventor
Tadashi Shibuya
忠士 渋谷
Keiichi Tanaka
敬一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1795394A priority Critical patent/JPH07231579A/en
Publication of JPH07231579A publication Critical patent/JPH07231579A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Cable Installation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

PURPOSE:To obtain a mobile power supply in which the power supply facility is downsized while eliminating environmental contamination and noise. CONSTITUTION:A DC power supply body 11 (DC generator, battery, etc.,) is provided commonly for running a mobile power supply and feeding power. DC output is fed through an inverter 12 to a drive motor 17 in order to run a mobile power supply 16 while at the same time, uninterruptible switching power supply to a system load 15 being disconnected at the time of power interruption work, emergency power supply at the time of system power interruption, emergency power supply to an independent load, etc., are effected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一時的に負荷に対して
電力供給を行うことができる電源車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply vehicle capable of temporarily supplying electric power to a load.

【0002】[0002]

【従来の技術】従来の電源車は、通常の貨物自動車に移
動電源設備を搭載して目的地まで運搬し目的地に到着
後、移動電源設備のディーゼルエンジンやガスタービン
機関を作動させ交流発電機を駆動して該交流発電機の発
電電力を負荷に供給するものである。
2. Description of the Related Art A conventional power supply vehicle is an ordinary freight vehicle equipped with mobile power supply equipment, transported to a destination, and after arriving at the destination, operates a diesel engine or a gas turbine engine of the mobile power supply equipment to generate an alternator. Is driven to supply the electric power generated by the AC generator to the load.

【0003】[0003]

【発明が解決しようとする課題】従って、従来の電源車
においては、自車を走行させるための電源車走行用エン
ジン設備と負荷に電力を供給するための電力供給用移動
電源設備(原動機−発電装置)とが別々に搭載されるた
め電源車が大型化するという問題がある。
Therefore, in the conventional power source vehicle, the power source vehicle running engine facility for driving the own vehicle and the power source mobile power source facility for supplying power to the load (motor-generator). (Equipment) is mounted separately, so there is a problem that the power supply vehicle becomes large.

【0004】また、電源車走行用設備及び電力供給用移
動電源設備はいずれも軽油等を燃料としているエンジン
を用いるため排気ガスによる大気汚染や周辺に騒音を撒
き散らすなどの問題があった。
Further, since both the power supply vehicle running equipment and the mobile power supply equipment for supplying electric power use an engine that uses light oil or the like as a fuel, there are problems such as atmospheric pollution due to exhaust gas and noise scattered around.

【0005】本発明は以上の点に鑑みてなされたもので
あり、電源車に搭載する設備の小型化、あるいは小型と
併せて大気汚染および騒音の防止を図ることができる電
気駆動式の電源車を提供することを目的とする。
The present invention has been made in view of the above points, and is an electric drive type power supply vehicle capable of downsizing the equipment installed in the power supply vehicle or preventing air pollution and noise in combination with the size reduction. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段と作用】本電源車は、電源
車走行用電源と電力供給用電源とを共通の直流電源体
(例えば、原動機と該原動機により駆動される直流発電
機の組み合わせ体,原動機と該原動機により駆動される
交流発電機と該発電機出力を整流する整流装置の組み合
わせ体,蓄電池など)とし、その直流電源体の直流電力
をインバータ装置により交流電力に変換して電源車走行
用の駆動用電動機を駆動させ目的地まで走行させ、目的
地において前記インバータ装置の交流出力電力を外部負
荷に供給するものである。
SUMMARY OF THE INVENTION The present power supply vehicle has a DC power supply unit having a common power supply for driving the power supply car and a power supply for supplying electric power (for example, a combination of a prime mover and a DC generator driven by the prime mover). , A combination of a prime mover, an AC generator driven by the prime mover, and a rectifying device that rectifies the output of the generator, a storage battery, and the like, and the DC power of the DC power source is converted into AC power by an inverter device, and a power supply vehicle A driving electric motor for traveling is driven to travel to a destination, and the AC output power of the inverter device is supplied to an external load at the destination.

【0007】また、前記直流電源体として蓄電池を用
い、該蓄電池の直流電力をインバータ装置により交流電
力に変換して電源車走行用の駆動用電動機と外部負荷へ
の供給電力とすると共に、前記インバータ装置を順変換
動作させ系統電源からの交流電力を直流電力に変換して
前記蓄電池を充電制御するものである。
Further, a storage battery is used as the DC power source, and the DC power of the storage battery is converted into AC power by an inverter device to supply power to a driving electric motor for driving a power source vehicle and an external load. The device performs a forward conversion operation to convert AC power from a system power supply into DC power to control charging of the storage battery.

【0008】[0008]

【実施例】図1は、本発明の一実施例を示すものであっ
て、配電系統の停電工事区間の改修工事に際し、工事区
間以降の系統負荷15に対して、一時的に電力供給が可
能な移動電源設備を搭載した電源車16を用いて配電系
統電源の無停電切替・切戻しを実施し分離した系統負荷
15の無停電救済を図る場合の実施について説明するた
めのものである。
[Embodiment] FIG. 1 shows an embodiment of the present invention, in which power can be temporarily supplied to a system load 15 after a work section during repair work in a power outage work section of a distribution system. This is for explaining the implementation in the case of performing uninterruptible switching / returning of the power distribution system power supply by using the power supply vehicle 16 equipped with such a mobile power supply facility to achieve uninterruptible relief of the separated system load 15.

【0009】図1において、17は電源車16を目的地
まで走行させるために車輪27を駆動する駆動用電動
機、11は原動機11Eにより駆動される直流発電機で
あって、原動機と共に直流電源体を構成し、前記駆動用
電動機17の駆動電源と外部負荷である系統負荷15へ
の電力供給電源として共用する。12は、前記直流発電
機11の直流出力を入力して交流電力に変換する逆変換
機能を有するインバータ装置である。なおインバータ装
置12は、GTOサイリスタやトランジスタのような自
己消弧素子を使用して構成される。13は、前記インバ
ータ装置12の交流側を、前記駆動用電動機17側とマ
ッチングトランス14を介して接続される系統側とに切
り換え接続する電力切換器、22はインバータ装置12
の出力である交流電力を駆動用電動機17へ供給するモ
ードと外部負荷である系統負荷へ供給するモードとに切
り換える制御モード切換器である。
In FIG. 1, reference numeral 17 denotes a driving electric motor for driving wheels 27 to drive the power source vehicle 16 to a destination, and 11 denotes a direct current generator driven by a prime mover 11E. It is configured to be used both as a drive power source for the drive motor 17 and as a power supply power source for the system load 15 which is an external load. Reference numeral 12 is an inverter device having a reverse conversion function of inputting the DC output of the DC generator 11 and converting it to AC power. The inverter device 12 is configured using a self-turn-off device such as a GTO thyristor or a transistor. Reference numeral 13 is a power switcher for switching and connecting the AC side of the inverter device 12 to the drive motor 17 side and the system side connected via the matching transformer 14, and 22 is the inverter device 12
Is a control mode switching device that switches between a mode for supplying the AC electric power, which is the output, to the drive motor 17 and a mode for supplying the AC electric power to the system load, which is an external load.

【0010】また、18は、前記駆動用電動機17の速
度信号,直流発電機11の直流出力電圧信号(DC/D
C変換器21を介して検出)およびインバータ装置12
の交流出力電流信号(変流器20を介して検出)をそれ
ぞれ入力し、前記制御モード切換器22を介してインバ
ータ装置12を制御して前記駆動用電動機17の速度を
制御する電源車制御部である。
Reference numeral 18 denotes a speed signal of the drive motor 17 and a DC output voltage signal (DC / D) of the DC generator 11.
(Detected via C converter 21) and inverter device 12
AC output current signals (detected via the current transformer 20) are input to control the inverter device 12 via the control mode switch 22 to control the speed of the driving electric motor 17. Is.

【0011】また19は、前記インバータ装置12の交
流出力電流信号(変流器20を介して検出),インバー
タ装置12の交流出力電圧信号(変成器23を介して検
出)、および停電工事区間の配電線に設けたクランプ式
電圧・電流検出体24で検出する系統電圧・電流信号を
入力し、前記制御モード切換器22を介して、インバー
タ装置12を制御して、系統電源29との同期並列運転
を行い系統負荷15へ電力を供給するための連系運転制
御、および系統より分離後の系統負荷15に対し設定し
た系統と同等の電圧,周波数の交流電力を供給する単独
運転制御を行う発電制御部である。
Reference numeral 19 denotes an AC output current signal of the inverter device 12 (detected via the current transformer 20), an AC output voltage signal of the inverter device 12 (detected via the transformer 23), and a power failure construction section. The system voltage / current signal detected by the clamp type voltage / current detector 24 provided on the distribution line is input, the inverter device 12 is controlled via the control mode switcher 22, and the system is synchronized in parallel with the system power supply 29. Power generation that performs interconnected operation control for operating and supplying power to the system load 15, and islanding control for supplying AC power having the same voltage and frequency as the system set for the system load 15 after separation from the system It is a control unit.

【0012】次に、この実施例の動作について述べる。
配電系統の停電工事区間の停電工事に当たり電源車16
を当該工事区間まで走行させるために、先づ電力切換器
13を駆動用電動機17側に切り換えると共に、制御モ
ード切換器22を電源車制御部18側に切り換える。
Next, the operation of this embodiment will be described.
Power supply car for power outage work in the power outage section of the distribution system 16
In order to drive the vehicle to the construction section, the electric power switching device 13 is first switched to the driving electric motor 17 side, and the control mode switching device 22 is switched to the power source vehicle control unit 18 side.

【0013】この準備の完了後、原動機11Eを始動し
直流発電機11を駆動し、その直流出力をインバータ装
置12に供給する。インバータ装置12は、電源車制御
部18の駆動用電動機制御信号に依って逆変換制御さ
れ、前記直流発電機11の直流出力を前記駆動用電動機
17へ供給する交流電力に変換する。従って、駆動用電
動機17は、前記駆動用電動機制御信号によって制御さ
れる前記インバータ装置12の出力交流電圧の周波数に
応じた速度で回転し、車輪27を駆動して電源車16を
停電工事区間(目的地)まで走行させる。
After completion of this preparation, the prime mover 11E is started to drive the DC generator 11, and its DC output is supplied to the inverter device 12. The inverter device 12 is subjected to reverse conversion control according to the drive motor control signal of the power supply vehicle controller 18, and converts the DC output of the DC generator 11 into AC power to be supplied to the drive motor 17. Therefore, the driving electric motor 17 rotates at a speed according to the frequency of the output AC voltage of the inverter device 12 controlled by the driving electric motor control signal, drives the wheels 27, and causes the power supply vehicle 16 to have a power failure construction section ( Drive to the destination.

【0014】停電工事区間に到達したならば前記駆動用
電動機制御信号によりインバータ装置12の交流出力を
零として電源車16を停止させる。その後、電源車16
の電力切換器13を系統側に切り換えると共に、制御モ
ード切換部22を電源車制御部18側から発電制御部1
9側へ切り換える。次いで、電源車16のマッチングト
ランス14の2次側から停電工事区間下流側の区分開閉
器26の系統負荷15側に活線接続ケーブル28を活線
接続すると共に、停電工事区間電源側にクランプ式電圧
・電流検出体24を系統配電線上に仮取り付けして発電
制御部19に接続する。
When the power-off work section is reached, the AC output of the inverter device 12 is set to zero by the drive motor control signal, and the power supply vehicle 16 is stopped. After that, power supply car 16
The electric power switch 13 is switched to the system side, and the control mode switching unit 22 is moved from the power source vehicle control unit 18 side to the power generation control unit 1
Switch to 9 side. Next, a live line connection cable 28 is hot-connected from the secondary side of the matching transformer 14 of the power supply car 16 to the system load 15 side of the partition switch 26 on the downstream side of the power failure work section, and a clamp type is connected to the power supply side of the power failure work section. The voltage / current detector 24 is temporarily mounted on the system distribution line and connected to the power generation control unit 19.

【0015】発電制御部19は、前記クランプ式電圧・
電流検出体24により検出した系統電圧,電流を入力
し、検出電圧有りを条件として連系運転制御モードとな
る。
The power generation control unit 19 uses the clamp type voltage
The system voltage and current detected by the current detector 24 are input, and the system enters the interconnected operation control mode on condition that the detected voltage exists.

【0016】先づ検出電圧・電流によって系統負荷15
への電力供給量を計測し、電源車16の許容出力電力量
内であることを確認する。同時に、前記検出電圧より系
統の電圧,相回転,周波数,位相を検出し、それらがイ
ンバータ装置12の交流出力の電圧,相回転,周波数,
位相と一致するように、インバータ装置12を逆変換制
御するための連系運転制御信号を制御モード切換器22
を介してインバータ装置12へ送出し、電源車16の出
力と系統電源29とを同期化して並列運転に入る。
First, the system load 15 is detected by the detected voltage and current.
The amount of power supplied to the power supply car 16 is measured, and it is confirmed that it is within the allowable output power amount of the power supply car 16. At the same time, the system voltage, phase rotation, frequency, and phase are detected from the detected voltage, and these are detected as the AC output voltage, phase rotation, and frequency of the inverter device 12.
The control mode switch 22 outputs the interconnection operation control signal for controlling the reverse conversion of the inverter device 12 so that the phase matches the phase.
To the inverter device 12, and the output of the power supply vehicle 16 and the system power supply 29 are synchronized to start parallel operation.

【0017】次いで、同じく連系運転制御信号により、
徐々にインバータ装置12の出力電流の増加をはかり、
系統電源29から電源車16への負荷移行を行う。前記
クランプ式電圧・電流検出体24の検出電流が零とな
り、負荷移行が完了した後に、前記区分開閉器26を開
放し、系統負荷15を系統より分離し、電源車16から
のみ系統電源と同等の電力を供給する。以上のようにし
て、系統負荷15への無停電切り換えが終了すると、停
電工事区間の電源側区分開閉器25を開放し、停電工事
区間内の工事を実施する。
Next, similarly, by the interconnection operation control signal,
Gradually increase the output current of the inverter device 12,
The load is transferred from the system power supply 29 to the power supply car 16. After the detection current of the clamp type voltage / current detector 24 becomes zero and the load transfer is completed, the section switch 26 is opened, the system load 15 is separated from the system, and only the power supply car 16 is equivalent to the system power supply. Supply power. As described above, when the uninterruptible switching to the system load 15 is completed, the power supply side section switch 25 in the power outage construction section is opened and the construction in the power outage construction section is carried out.

【0018】しかし、前記区分開閉器25を開放した時
に、前記クランプ式電圧・電流検出体24の検出電圧が
無くなるので、発電制御部19は、これを検知して連系
運転制御モードから単独運転制御モードに移行し、予め
設定してある系統電源と同等の電圧・周波数に基づいて
定電圧・定周波運転を行う。
However, when the section switch 25 is opened, the voltage detected by the clamp type voltage / current detector 24 disappears, so the power generation controller 19 detects this and operates independently from the interconnection operation control mode. The control mode is entered, and the constant voltage / constant frequency operation is performed based on the voltage / frequency equivalent to the preset system power supply.

【0019】停電工事の完了後は、まず区分開閉器25
を投入することにより停電工事区間を再充電すると、発
電制御部19は、クランプ式電圧・電流検出体24で検
出された電圧を検知し、単独運転制御モードより連系運
転制御モードに切り換わり、インバータ装置12の出力
の電圧,相回転,周波数,位相が前記検出体24の検出
電圧の電圧,相回転,周波数,位相と一致するよう連系
運転制御信号を制御モード切換器22を介してインバー
タ装置12へ送りその出力調整を行う。斯して、インバ
ータ装置12の出力が系統電源29と同期化し並列運転
に入った後、区分開閉器26を投入する。更に、連系運
転制御信号を調整して徐々にインバータ装置12の出力
電流の減少を図り、電源車16から系統電源29への負
荷移行を行う。そして、電源車16の出力電流(変流器
20を介して検出)が零となると、系統負荷15は系統
電源29からのみ電力供給を受けることとなる。以上の
ようにして無停電切り戻し(復電)は完了し、活線接続
ケーブル28およびクランプ式電圧・電流検出体24を
取りはずして工事作業は終了する。
After the completion of the power outage work, first the section switch 25
When the blackout construction section is recharged by turning on, the power generation control unit 19 detects the voltage detected by the clamp type voltage / current detector 24, and switches from the isolated operation control mode to the interconnection operation control mode. The interconnection operation control signal is output through the control mode switch 22 so that the voltage, phase rotation, frequency and phase of the output of the inverter device 12 match the voltage, phase rotation, frequency and phase of the detection voltage of the detection body 24. It is sent to the device 12 and its output is adjusted. Thus, after the output of the inverter device 12 is synchronized with the system power supply 29 and the parallel operation is started, the division switch 26 is turned on. Further, the interconnection operation control signal is adjusted to gradually reduce the output current of the inverter device 12, and the load is transferred from the power supply vehicle 16 to the system power supply 29. When the output current of the power supply car 16 (detected via the current transformer 20) becomes zero, the system load 15 receives power only from the system power supply 29. As described above, the uninterruptible switching back (power recovery) is completed, the live line connection cable 28 and the clamp type voltage / current detector 24 are removed, and the construction work is completed.

【0020】斯る後、電源車16における電力切換器1
3と制御モード切換器22を、それぞれ駆動用電動機1
7側と電源車制御部18側に切り換え、駆動用電動機制
御信号によりインバータ装置12を制御して電源車16
を走行させて所要の場所へ移動する。
After that, the power switch 1 in the power supply car 16
3 and the control mode switch 22 are respectively connected to the driving electric motor 1
7 side and the power source vehicle control unit 18 side, and the power source vehicle 16 is controlled by controlling the inverter device 12 by the drive motor control signal.
To move to the required place.

【0021】以上の実施例は、図1からも明らかなよう
に配電系統の停電工事区間の改修工事に際し、工事区間
以降の系統負荷に対して無停電で系統電源と同等の電力
供給を行う場合のものであるが、図1における系統電源
29が停電して系統負荷15に緊急に給電を行う場合や
系統電源29とは連系しない単独負荷(例えば個別の需
要設備など)に緊急に給電を行う場合にも適用できるも
のである。即ち、それらに適用するに当たっては、発電
制御部19の単独運転制御信号によって、配電系統と同
等の電圧・周波数のみならず、負荷が所望する電圧・周
波数の交流電力を、定電圧・定周波数(CVCF)にて
供給することができる。
As is apparent from FIG. 1, the above-described embodiment is a case in which the power supply equivalent to the system power supply is supplied uninterrupted to the system load after the work section during the repair work of the power outage work section of the distribution system. However, when the system power supply 29 in FIG. 1 has a power outage to supply power to the system load 15 in an emergency, a power supply to a single load (for example, individual demand equipment) that is not connected to the system power supply 29 is provided urgently. It is also applicable when performing. That is, in applying to them, not only the voltage / frequency equivalent to that of the power distribution system but also the AC power having the voltage / frequency desired by the load is controlled by the constant operation / constant frequency (constant voltage / constant frequency CVCF).

【0022】実施例では、直流電源体として、原動機と
該原動機で駆動される直流発電機の組み合わせ体を使用
する場合を説明したが、原動機と該原動機で駆動される
交流発電機と整流装置との組み合わせ体、あるいは蓄電
池を使用することも勿論可能である。
In the embodiment, the case where the combination of the prime mover and the DC generator driven by the prime mover is used as the DC power source has been described. However, the prime mover, the AC generator driven by the prime mover and the rectifying device are used. It is of course possible to use a combination of the above or a storage battery.

【0023】図2は、本発明の他の実施例を示すもので
あって、上記実施例と同様に、配電系統の停電工事区間
の改修工事に際し、工事区間以降の系統負荷15に対し
て、一時的に電力供給が可能な移動電源設備を搭載した
電源車16を用いて配電系統の無停電切替・切り戻しを
実施し、分離した系統負荷15の無停電救済を図る場合
の実施について説明するためのものである。
FIG. 2 shows another embodiment of the present invention, in the same manner as the above-mentioned embodiment, at the time of the repair work of the power outage construction section of the distribution system, for the system load 15 after the construction section, A description will be given of a case where uninterruptible switching and switching back of the power distribution system is performed using the power supply vehicle 16 equipped with a mobile power supply facility that can temporarily supply power, and an uninterruptible rescue of the separated system load 15 is achieved. It is for.

【0024】図2において、図1と同一の記号は同一ま
たは同等のものを表すものである。11′は、電源車駆
動用電動機17の駆動用電源と外部負荷である系統負荷
15への電力供給電源とを共通のものとする直流電源体
であって、無ガス放出,無騒音の蓄電池である。
In FIG. 2, the same symbols as those in FIG. 1 represent the same or equivalent parts. Reference numeral 11 'denotes a DC power source body that shares the drive power source of the power source vehicle drive motor 17 and the power source power source for the system load 15, which is an external load, with a gas-free, noise-free storage battery. is there.

【0025】12′は、前記蓄電池11′の出力を直流
側に入力し交流電力に変換する逆変換機能と、系統電力
を交流側に入力し直流電力に変換し前記蓄電池11′を
充電する順変換機能とを併せもつインバータ装置であ
る。
Reference numeral 12 'is a reverse conversion function for inputting the output of the storage battery 11' to the DC side and converting it to AC power, and a sequence for inputting the system power to the AC side to convert it to DC power and charging the storage battery 11 '. It is an inverter device that also has a conversion function.

【0026】19′は、前述した実施例の発電制御部1
9のもつ連系運転制御,単独運転制御モードの他に前記
インバータ装置12′を順変換制御して前記蓄電池1
1′を充電するための充電制御モードをもつ発電制御部
である。
Reference numeral 19 'denotes the power generation control unit 1 of the above-mentioned embodiment.
In addition to the interconnected operation control and the isolated operation control mode of 9, the inverter device 12 'is forward-converted to control the storage battery 1
The power generation control unit has a charge control mode for charging 1 '.

【0027】次に実施側の動作について説明する。配電
系統の停電工事区間まで電源車16を走行させるため
に、電力切換器13を駆動用電動機17側に切り換える
と共に制御モード切換器22を電源車制御部18側へ切
り換える。
Next, the operation on the implementation side will be described. In order to drive the power supply vehicle 16 to the power failure construction section of the power distribution system, the power switch 13 is switched to the drive motor 17 side and the control mode switch 22 is switched to the power vehicle control section 18 side.

【0028】この準備の完了後、インバータ装置12′
を電源車制御部18の駆動用電動機制御信号により逆変
換制御し、所要の周波数の交流電力を駆動用電動機17
へ供給し電源車16を停電工事区間まで走行させる。
After completion of this preparation, the inverter device 12 '
Is reverse-converted by a drive motor control signal of the power source vehicle control unit 18, and AC power of a required frequency is supplied to the drive motor 17
Power supply vehicle 16 and drive it to the power outage construction section.

【0029】停電工事区間に到達したならば、インバー
タ装置12′の交流出力を零として電源車16を停止さ
せた後、電源車16の電力切換器13を系統側に切り換
えると共に、制御モード切換器22を電源車制御部18
側から発電制御部19′側へ切り換える。同時に、系統
の区分開閉器26の上流側と下流側へ、移動電源車16
からの電圧・電流検出量変成器24の仮取付けと活線接
続ケーブル28の接続を行う。
When the power outage construction section is reached, the AC output of the inverter device 12 'is set to zero and the power supply car 16 is stopped, and then the power switch 13 of the power supply car 16 is switched to the system side and the control mode switch is also operated. 22 is a power supply vehicle control unit 18
Side to the power generation control unit 19 'side. At the same time, the mobile power supply vehicle 16 is connected to the upstream side and the downstream side of the division switch 26 of the system.
The voltage / current detection amount transformer 24 is temporarily attached and the live line connection cable 28 is connected.

【0030】ここで、発電制御部19′は、蓄電池1
1′の充電状態をDC/DC変換器21を介した蓄電池
電圧にて監視し、充電を必要とする充電状態と判定すれ
ば充電制御モードとなり、充電制御信号を制御モード切
換器22を介してインバータ装置12′へ送り、活線接
続ケーブル28,マッチングトランス14,電力変換器
13を介して入力した系統電力を順変換制御して蓄電池
11′を充電することもできる。この際の充電制御は、
蓄電池11′の電圧(DC/DC変換器21を介して検
出)と、インバータ装置12′の入力電流(変流器20
を介して検出)に基づく充電制御信号により適切に行
う。
Here, the power generation control unit 19 'controls the storage battery 1
The charge state of 1'is monitored by the storage battery voltage via the DC / DC converter 21, and if it is determined that the charge state requires charging, the charge control mode is set, and the charge control signal is sent via the control mode switch 22. It is also possible to charge the storage battery 11 'by performing forward conversion control on the system power that is sent to the inverter device 12' and input via the live line connection cable 28, the matching transformer 14, and the power converter 13. The charge control at this time is
The voltage of the storage battery 11 '(detected via the DC / DC converter 21) and the input current of the inverter device 12' (current transformer 20)
The charging control signal based on (detection via) is performed appropriately.

【0031】なお、蓄電池11′の充電制御は系統負荷
15への供給電力に見合った充電状態であれば行う必要
がないことは言うまでもない。
Needless to say, it is not necessary to control the charging of the storage battery 11 'as long as it is in a charging state commensurate with the power supplied to the system load 15.

【0032】また、駐車保管中に、マッチングトランス
14の1次側から低圧充電電源を供給することによりイ
ンバータ装置12′を介して蓄電池11′を充電するこ
とができる機能も備えている。
Further, it also has a function of charging the storage battery 11 'through the inverter device 12' by supplying a low-voltage charging power source from the primary side of the matching transformer 14 during parking and storage.

【0033】蓄電池11′の充電動作が完了した後、発
電制御部19′は前記クランプ式電圧・電流検出体24
により検出した系統電圧・電流を入力し、検出電圧有り
を条件として連系制御モードとなる。先づ、検出電圧・
電流によって系統負荷15への電力供給量を計測し、電
源車16の許容出力電力量内であることを確認する。同
時に、前記検出電圧より系統の電圧,相回転,周波数,
位相を検出し、それらがインバータ装置12′の交流出
力の電圧,相回転,周波数,位相と一致するように、イ
ンバータ装置12′を逆変換制御するための連系運転制
御制御信号を制御モード切換器22を介してインバータ
装置12′へ送出し、電源車16の出力と系統電源29
とを同期化して並列運転に入る。
After the charging operation of the storage battery 11 'is completed, the power generation controller 19' controls the clamp type voltage / current detector 24.
The system voltage / current detected by is input, and the system enters the interconnection control mode on condition that the detected voltage exists. First, the detection voltage
The amount of electric power supplied to the system load 15 is measured by the electric current, and it is confirmed that it is within the allowable output electric power amount of the power supply vehicle 16. At the same time, the system voltage, phase rotation, frequency,
The phase is detected, and the interconnection operation control control signal for inverse conversion control of the inverter device 12 'is switched so as to match the voltage, the phase rotation, the frequency, and the phase of the AC output of the inverter device 12'. Output to the inverter device 12 ′ via the power supply unit 22 and output from the power supply vehicle 16 and the system power supply 29
Synchronize with and start parallel operation.

【0034】次いで、同じく連系運転制御信号により徐
々にインバータ装置12′の出力電流の増加をはかり、
系統電源29から電源車16への負荷移行を行う。前記
クランプ式電圧・電流検出体24の検出電流が零とな
り、負荷移行が完了した後に、前記区分開閉器26を開
放し、系統負荷15を系統より分離し、電源車16から
のみ系統電源と同等の電力を供給する。以上のようにし
て、系統負荷15への無停電切り換えが終了すると、停
電工事区間の電源側区分開閉器25を開放し、停電工事
区間内の工事を実施する。
Then, similarly, the output current of the inverter device 12 'is gradually increased by the interconnection operation control signal,
The load is transferred from the system power supply 29 to the power supply car 16. After the detection current of the clamp type voltage / current detector 24 becomes zero and the load transfer is completed, the section switch 26 is opened, the system load 15 is separated from the system, and only the power supply car 16 is equivalent to the system power supply. Supply power. As described above, when the uninterruptible switching to the system load 15 is completed, the power supply side section switch 25 in the power outage construction section is opened and the construction in the power outage construction section is carried out.

【0035】前記区分開閉器25を開放した時、前記ク
ランプ式電圧・電流検出体24の検出電圧が無くなるの
で、発電制御部19′はこれを検知して連系運転制御モ
ードから単独運転制御モードに移行し、予め設定してあ
る系統電源と同等の電圧・周波数に基づいて定電圧・定
周波運転を行う。
When the section switch 25 is opened, the voltage detected by the clamp type voltage / current detector 24 disappears, so the power generation controller 19 'detects this and switches from the interconnected operation control mode to the isolated operation control mode. Then, the constant voltage / constant frequency operation is performed based on the voltage / frequency equivalent to the preset system power supply.

【0036】停電工事完了後は、まず区分開閉器25を
投入することにより停電工事区間を充電すると、発電制
御部19′は、クランプ式電圧・電流検出体24で検出
された電圧を検知し、単独運転制御モードより連系運転
制御モードに切り換わり、インバータ装置12′の出力
の電圧,相回転,周波数,位相が前記検出体24の検出
電圧の電圧,相回転,周波数,位相と一致するよう連系
運転制御信号を制御モード切換器22を介してインバー
タ装置12′へ送りその出力調整を行う。斯して、イン
バータ装置12′の出力が系統電源29と同期化し並列
運転に入る。
After the completion of the power outage work, firstly charging the section switch 25 to charge the power outage work section, the power generation control section 19 'detects the voltage detected by the clamp type voltage / current detector 24, The isolated operation control mode is switched to the interconnection operation control mode so that the voltage, phase rotation, frequency and phase of the output of the inverter device 12 'match the voltage, phase rotation, frequency and phase of the detection voltage of the detection body 24. The interconnection operation control signal is sent to the inverter device 12 'through the control mode switch 22 to adjust its output. Thus, the output of the inverter device 12 'is synchronized with the system power supply 29 and the parallel operation is started.

【0037】更に、連系運転制御信号を調整して徐々に
インバータ装置12′の出力電流の減少を図り、電源車
16から系統電源29への負荷移行を行う。電源車16
の出力電流(変流器20を介して検出)が零となると、
系統負荷15は系統電源29からのみ電力供給を受ける
こととなる。以上のように無停電切り戻し(復電)は完
了し、活線接続ケーブル28およびクランプ式電圧・電
流検出体24を取りはずして工事作業は終了する。
Further, the interconnection operation control signal is adjusted to gradually reduce the output current of the inverter device 12 ', and the load is transferred from the power source vehicle 16 to the system power source 29. Power supply car 16
When the output current of (detected via the current transformer 20) becomes zero,
The system load 15 receives power only from the system power supply 29. As described above, the uninterruptible switching back (power recovery) is completed, the live line connection cable 28 and the clamp type voltage / current detector 24 are removed, and the construction work is completed.

【0038】斯る後、電源車16における電力切換器1
3と制御モード切換器22を、それぞれ駆動用電動機1
7側と電源車制御部18側に切り換え、駆動用電動機制
御信号によりインバータ装置12′を制御して電源車1
6を走行させて所要の場所へ移動する。
After that, the power switch 1 in the power supply car 16
3 and the control mode switch 22 are respectively connected to the driving electric motor 1
7 side and the power source vehicle control section 18 side, and the inverter unit 12 'is controlled by the drive motor control signal to control the power source vehicle 1.
Run 6 and move to the required location.

【0039】以上の実施例は、図2からも明らかなよう
に、先の実施例と同様、配電系統の停電工事区間の改修
工事に際し、工事区間以降の系統負荷に対して無停電で
系統電源と同等の電力供給を行う場合のものであるが、
図2における系統電源29が停電して系統負荷15に緊
急に給電を行う場合や系統電源29とは連系しない単独
負荷(例えば、個別の需要設備など)に緊急に給電を行
う場合にも適用できるものである。即ち、それらに適用
する場合には、発電制御部19′の単独運転制御信号に
よって配電系統と同等の電圧・周波数のみならず、負荷
が所望する電圧・周波数の交流電力を、定電圧・定周波
数(CVCF)にて供給することができる。
As is apparent from FIG. 2, the above embodiment is similar to the previous embodiment, in the repair work of the power outage construction section of the distribution system, the system load is uninterrupted against the system load after the construction section. It is for supplying power equivalent to
It is also applied to the case where the system power supply 29 in FIG. 2 causes a power failure to supply power to the system load 15 urgently, and the case where power is supplied urgently to a single load (for example, individual demand equipment) that is not connected to the system power supply 29. It is possible. That is, when applied to them, not only the voltage / frequency equivalent to that of the power distribution system but also the AC power of the voltage / frequency desired by the load is controlled by the constant voltage / constant frequency by the islanding control signal of the power generation controller 19 ' (CVCF).

【0040】[0040]

【発明の効果】以上のとおりであるから、本発明によれ
ば、電源車走行用の電源設備と電力供給用の電源設備と
を一体化し、共通の電源設備としたから、電源車に搭載
する電源設備が小型化され電源車自体が小型化される。
As described above, according to the present invention, the power source equipment for running the power source vehicle and the power source equipment for supplying the electric power are integrated into a common power source equipment, which is mounted on the power source vehicle. The power supply equipment is downsized and the power supply vehicle itself is downsized.

【0041】また、連系運転制御機能と単独運転制御機
能を有しているので、系統負荷に対して無停電救済を施
すことができるばかりでなく、単独負荷が所望する周波
数の交流電力を、しかも定電圧・定周波数(CVCF)
で供給することができる。
Further, since it has the interconnection operation control function and the islanding operation control function, not only can uninterrupted relief be applied to the system load, but also the AC power of the frequency desired by the island load can be supplied. Moreover, constant voltage and constant frequency (CVCF)
Can be supplied at.

【0042】更に、電源設備として蓄電池を用いれば小
型化と共に大気汚染の防止、騒音の防止も図れ、蓄電池
は搭載したまま他の充電設備を必要とせずにどこでも充
電することもできるので使い勝手にも優れている。
Furthermore, if a storage battery is used as the power supply facility, it is possible to reduce the size and prevent air pollution and noise, and the storage battery can be charged anywhere without needing any other charging facility, which is convenient for use. Are better.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略構成図。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す概略構成図。FIG. 2 is a schematic configuration diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11:直流発電機 11E:原動機 12:インバータ装置(逆変換) 13:電力切換器 16:電源車 17:駆動用電動機 18:電源車制御部 19:発電制御部 20:変流器 21:DC/DC変換器 22:制御モード切換器 23:変成器 24:クランプ式電圧・電流検出体 11′:蓄電池 12′:インバータ装置(順変換・逆変換) 19′:発電制御部(充電制御を含む) 11: DC generator 11E: Motor 12: Inverter device (reverse conversion) 13: Electric power switcher 16: Power supply vehicle 17: Driving motor 18: Power supply vehicle control unit 19: Power generation control unit 20: Current transformer 21: DC / DC converter 22: Control mode switcher 23: Transformer 24: Clamp type voltage / current detector 11 ': Storage battery 12': Inverter device (forward conversion / reverse conversion) 19 ': Power generation control unit (including charging control)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電源車走行用電源と電力供給用電源とし
て共用する直流電源体と、電源車走行用の駆動用電動機
と、前記直流電源体の直流電力を交流電力に逆変換する
インバータ装置と、 前記インバータ装置の出力交流電力を前記駆動用電動機
と外部負荷に切り換え供給する電力切換器とを備えるこ
とを特徴とした電源車。
1. A direct-current power source that is shared as a power source for driving a power source vehicle and a power source, a drive motor for driving a power source vehicle, and an inverter device that reversely converts the direct current power of the direct current power source into alternating current power. A power supply vehicle comprising: an AC power output from the inverter device; and a power switching device for switching and supplying the driving electric motor and an external load.
【請求項2】 前記インバータ装置による電力供給制御
は、前記駆動用電動機に対する電源車制御信号と、 前記外部負荷である系統負荷に電力供給するための連系
運転制御信号あるいは外部負荷である単独負荷に電力供
給するための単独運動制御信号との切換制御により行う
ことを特徴とした請求項1記載の電源車。
2. The power supply control by the inverter device includes a power source vehicle control signal for the driving electric motor, an interconnection operation control signal for supplying power to a system load that is the external load, or an independent load that is an external load. The power supply vehicle according to claim 1, wherein the power supply vehicle is controlled by switching with a single motion control signal for supplying electric power to the vehicle.
【請求項3】 電源車走行用電源と電力供給用電源とし
て共用する蓄電池と、電源車走行用の駆動用電動機と、
前記蓄電池の直流電力を交流電力に変換する逆変換機能
および系統電源からの交流電力を直流電力に変換して前
記蓄電池を充電する順変換機能とを有するインバータ装
置と、前記インバータ装置の交流側を前記駆動用電動機
側と外部負荷側とに切り換え接続し電力の受供給を行う
電力切換器とを備えることを特徴とした電源車。
3. A storage battery shared as a power source for driving a power source vehicle and a power source for supplying power, and a drive motor for driving a power source vehicle,
An inverter device having a reverse conversion function for converting DC power of the storage battery into AC power and a forward conversion function for converting AC power from a system power supply into DC power to charge the storage battery, and an AC side of the inverter device. A power supply vehicle comprising: a power switching device that switches and connects the driving electric motor side and an external load side to receive and supply electric power.
【請求項4】 前記インバータ装置による電力受供給制
御は、前記駆動用電動機に対する電源車制御信号と、 前記外部負荷である系統負荷に電力供給するための連系
運転制御信号あるいは外部負荷である単独負荷に電力供
給するための単独運転制御信号および前記蓄電池電圧を
検出して該蓄電池の充電状態に応じて充電制御を行う充
電制御信号との切換制御により行うことを特徴とした請
求項3記載の電源車。
4. The power supply / reception control by the inverter device is a power source vehicle control signal for the driving electric motor, an interconnection operation control signal for supplying power to the system load that is the external load, or an external load alone. 4. The switching control between an isolated operation control signal for supplying electric power to a load and a charge control signal for detecting the storage battery voltage and performing charge control according to the state of charge of the storage battery. Power car.
JP1795394A 1994-02-15 1994-02-15 Mobile power supply Pending JPH07231579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1795394A JPH07231579A (en) 1994-02-15 1994-02-15 Mobile power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1795394A JPH07231579A (en) 1994-02-15 1994-02-15 Mobile power supply

Publications (1)

Publication Number Publication Date
JPH07231579A true JPH07231579A (en) 1995-08-29

Family

ID=11958134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1795394A Pending JPH07231579A (en) 1994-02-15 1994-02-15 Mobile power supply

Country Status (1)

Country Link
JP (1) JPH07231579A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077522A (en) * 2001-09-04 2003-03-14 Hitachi Ltd Movable power storage secondary battery system and its utilizing method
JP2003250230A (en) * 2002-02-22 2003-09-05 Toshiba Eng Co Ltd Coupling device for mobile power supply
JP2012505629A (en) * 2008-10-07 2012-03-01 プレミアム パワー コーポレイション System and method for transferring energy
CN105545470A (en) * 2015-12-22 2016-05-04 赵立增 High-reliability power generation unit for emergency power supply

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077522A (en) * 2001-09-04 2003-03-14 Hitachi Ltd Movable power storage secondary battery system and its utilizing method
JP2003250230A (en) * 2002-02-22 2003-09-05 Toshiba Eng Co Ltd Coupling device for mobile power supply
JP2012505629A (en) * 2008-10-07 2012-03-01 プレミアム パワー コーポレイション System and method for transferring energy
US8791589B2 (en) 2008-10-07 2014-07-29 Premium Power Corporation System and method for transporting energy
CN105545470A (en) * 2015-12-22 2016-05-04 赵立增 High-reliability power generation unit for emergency power supply

Similar Documents

Publication Publication Date Title
EP0536876B1 (en) Electric power system for marine vehicles
US7687929B2 (en) Electric power generation system with multiple inverters
CN101186184B (en) Driving and controlling device for railway vehicle
JP2008543674A (en) Power generation system suitable for hybrid vehicles
JPH05207664A (en) Electric automobile
WO2020019540A1 (en) Bidirectional high-frequency auxiliary conversion system
JPH06292304A (en) Power converter for electric vehicle driving system
CN109131380B (en) Main and auxiliary transmission system of diesel locomotive and diesel locomotive
JPH09103002A (en) Electric vehicle
JPH07231579A (en) Mobile power supply
JPH06233538A (en) Controller of ac electric car
JP2000358305A (en) Power device for hybrid electric vehicle
JP2000152408A (en) Electric vehicle
GB1599691A (en) Battery propelled vehicles
JP7094381B2 (en) How to charge a railroad vehicle drive system and a power storage device in a railroad vehicle
JP3580097B2 (en) Elevator control device
JPH07252040A (en) Power converting device of elevator
JP2004336833A (en) Controller of electric power transformer for rolling stock
IT202000002566A1 (en) ELECTRIC DRIVE VEHICLE INCLUDING AN ENERGY MANAGEMENT SYSTEM, AND METHOD OF ENERGY MANAGEMENT IN SUCH ELECTRIC DRIVE VEHICLE
KR20160133629A (en) Hybrid generation system
JPH06261414A (en) Generator and generating method for solar car drive system
JPH033474B2 (en)
JP3259332B2 (en) Portable engine with built-in battery power generator
RU2744068C1 (en) Diesel locomotive power supply system
JP3309526B2 (en) Electric vehicle charging device