JPH07231127A - Installation of electrode to porous piezoelectric material - Google Patents

Installation of electrode to porous piezoelectric material

Info

Publication number
JPH07231127A
JPH07231127A JP4522494A JP4522494A JPH07231127A JP H07231127 A JPH07231127 A JP H07231127A JP 4522494 A JP4522494 A JP 4522494A JP 4522494 A JP4522494 A JP 4522494A JP H07231127 A JPH07231127 A JP H07231127A
Authority
JP
Japan
Prior art keywords
porous
piezoelectric
electrode
pore diameter
porous piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4522494A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Ina
克芳 伊奈
Seiji Omura
大村  誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP4522494A priority Critical patent/JPH07231127A/en
Publication of JPH07231127A publication Critical patent/JPH07231127A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To make a porous piezoelectric material element having high percentage of void and high pore diameter develop its sufficient performance and reduce generation of accident due to disconnection by installing metal foils of the particular thickness as the electrodes to a porous ceramic material having piezoelectric characteristic. CONSTITUTION:A metal foil in the thickness of 0.5mm or less is installed as an electrode to a porous ceramic material having piezoelectric characteristics with porosity of 50 to 85% and pore diameter of 0.01mm or more. For example, polystyrene sphere classified into the diameter of 3.5mm and spray particles of lead titanate zirconate are dry mixed in the volume ratio of 7:3, and are then press-molded with the molding dies of 50X50X10mm to obtain a porous piezoelectric precursor. Thereafter, it is baked within an electric furnace for two hours at 1200 deg.C to obtain spherical porous piezoelectric material with the void of 61% and pore diameter of 3.1mm. Then, a copper foil in the thickness of 0.01 to 0.1mm is attached thereto with a bonding agent having electric conductivity and it is then polarized at 2kV/mm for an hour within fluorocarbon solution of 120 deg.C to produce porous piezoelectric element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医療用診断装置や魚群
探知機或いはソナー等に用いる多孔質圧電体素子の電極
設置法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode installation method for a porous piezoelectric element used in a medical diagnostic device, a fish finder, a sonar or the like.

【0002】[0002]

【従来の技術】従来より、生体や水を対象とした医療用
診断装置や魚群探知機或いはソナー等の圧電性セラミッ
クス素子材料として、チタン酸ジルコン酸鉛系セラミッ
クスをはじめとする種々の圧電性セラミックス材料が使
用されている。しかし、これらの材料は音響インピーダ
ンスが約30×106kg/m2S であり、生体や水の音響イ
ンピーダンス(約1.5×106kg/m2S )に比べると著
しく高いため、水中を伝わる音波が素子界面で反射し、
送受信に支障をきたすという問題がある。そのため、圧
電性セラミックスを多孔質化することにより音響インピ
ーダンスを低減させ、生体や水との整合性をとることが
行われている。
2. Description of the Related Art Conventionally, various piezoelectric ceramics such as lead zirconate titanate-based ceramics have been used as piezoelectric ceramics element materials for medical diagnostic devices for fish and water, fish finder, sonar, etc. Material is used. However, these materials have an acoustic impedance of about 30 × 10 6 kg / m 2 S, which is significantly higher than the acoustic impedance of living organisms and water (about 1.5 × 10 6 kg / m 2 S). The sound wave that propagates through is reflected at the element interface,
There is a problem that it hinders transmission and reception. Therefore, by making the piezoelectric ceramic porous, the acoustic impedance is reduced and the compatibility with the living body and water is taken.

【0003】多孔質圧電体から電気信号を取り出す電極
として通常、金、銀、白金等のペーストを塗布してい
る。しかしながら、多孔質体表面が凹凸であるため電極
の設置が不完全であったりする。その結果、正確な圧電
性能を十分引き出せなかったり、断線などによる不良が
多発する。特に高空隙率、高気孔径の材料ではこのよう
な電極設置不良による劣化の現象が著しい。従って、多
孔質圧電体素子に電極を設置する方法の確立が望まれて
いる。
As an electrode for extracting an electric signal from the porous piezoelectric material, a paste of gold, silver, platinum or the like is usually applied. However, since the surface of the porous body is uneven, the electrodes may not be installed completely. As a result, accurate piezoelectric performance cannot be sufficiently obtained, and defects such as disconnection frequently occur. In particular, in the case of a material having a high porosity and a high pore diameter, the phenomenon of deterioration due to such electrode installation failure is remarkable. Therefore, it is desired to establish a method of installing electrodes on the porous piezoelectric element.

【0004】[0004]

【発明が解決しようとする問題点】本発明者は上記の問
題に鑑み、鋭意研究を続けた結果本発明を完成したもの
であって、その目的とするところは、高空隙率、高気孔
径を有する多孔質圧電体素子に対して、その性能を十分
に引き出し、断線などにによる事故の発生を著しく低減
させる電極の設置方法を提供することにある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In view of the above problems, the present inventor has completed the present invention as a result of continuing diligent research. The object of the present invention is to obtain a high porosity and a high pore diameter. It is an object of the present invention to provide an electrode installation method for a porous piezoelectric element having the above-mentioned, which can sufficiently bring out its performance and remarkably reduce the occurrence of an accident due to a disconnection or the like.

【0005】[0005]

【問題点を解決するための手段】上述の目的は、空隙率
50〜85%、気孔径0.01mm以上の圧電性を有す
る多孔質セラミックス体に厚さ0.5mm以下の金属箔
を電極として設置することを特徴とする多孔質圧電体素
子の電極設置法により達成される。
The above object is to provide a porous ceramic body having a piezoelectricity with a porosity of 50 to 85% and a pore diameter of 0.01 mm or more, and a metal foil with a thickness of 0.5 mm or less as an electrode. It is achieved by an electrode installation method for a porous piezoelectric element, which is characterized by installation.

【0006】本発明において重要なことは、電極として
金属箔を使用することにより多孔質圧電体と電極を強固
に接触させ、設置したことにある。
What is important in the present invention is that a metal foil is used as an electrode so that the porous piezoelectric body and the electrode are firmly contacted with each other.

【0007】本発明の金属箔の厚さは0.5mm以下で
ある。金属箔が厚くなるに従い金属箔自身の弾性的性質
が素子に加わり、その結果、音響インピーダンスは増加
する。金属箔を薄く設置することに関して性能面からは
なんら制限はないが、金属の腐食、作業時あるいは使用
時の破損などが発生し易くなるため極端に薄くするのは
避けるのが好ましい。従って、金属箔の厚さは、好まし
くは0.01〜0.1mmの範囲内である。
The metal foil of the present invention has a thickness of 0.5 mm or less. As the metal foil becomes thicker, elastic properties of the metal foil itself are added to the element, and as a result, the acoustic impedance increases. Although there is no limitation in terms of performance regarding the thin installation of the metal foil, it is preferable to avoid making it extremely thin because corrosion of the metal and damage during work or use are likely to occur. Therefore, the thickness of the metal foil is preferably within the range of 0.01 to 0.1 mm.

【0008】本発明において使用される金属箔の電極と
しては、金、銀、白金、パラジウム等の貴金属、アルミ
ニウム、銅等の卑金属、或いはそれらの合金のいずれを
使用してもよい。これらの内経済的な観点からアルミニ
ウム箔若しくは銅箔を使用するのが好ましい。
As the electrode of the metal foil used in the present invention, any of noble metals such as gold, silver, platinum and palladium, base metals such as aluminum and copper, and alloys thereof may be used. Among these, it is preferable to use an aluminum foil or a copper foil from the economical viewpoint.

【0009】金属箔電極は、多孔質圧電体の電極設置部
表面に装着する。装着方法としては種々の方法が考えら
れるが、導電性の接着剤を使用したり、或いは金属粉末
のペーストを媒体として焼き付ける等の種々の方法が考
えられるが、接着する多孔質圧電体の表面が凹凸面によ
り形成されていること,並びに800℃程度の高温に曝
される点を考慮すると導電性接着剤を使用するのが好ま
しい。導電性接着剤としては、分極時に80℃以上で処
理するため、耐熱温度がその温度以上であるのが好まし
い。具体的には、二液硬化タイプのエポキシ系若しくは
シリコン系の接着剤が好ましい。
The metal foil electrode is mounted on the surface of the electrode mounting portion of the porous piezoelectric body. Although various methods can be considered as the mounting method, various methods such as using a conductive adhesive or baking with a paste of a metal powder as a medium can be considered. It is preferable to use a conductive adhesive in consideration of the fact that it is formed by an uneven surface and that it is exposed to a high temperature of about 800 ° C. Since the conductive adhesive is treated at a temperature of 80 ° C. or higher during polarization, it is preferable that the heat resistant temperature is equal to or higher than that temperature. Specifically, a two-component curing type epoxy-based or silicone-based adhesive is preferable.

【0010】金属箔電極は、多孔質圧電体にしっかり貼
り付けられるよう、表面を荒らした状態で使用するのが
好ましい。表面の荒らし方は、例えば、サンドペーパー
若しくはエッチング等により容易に実施できる。これら
の中で、サンドペーパーによる方法は、簡便且つその後
の廃棄処理、有害ガスの発生などの問題がないため本発
明に対し有効である。
The metal foil electrode is preferably used with its surface roughened so that it can be firmly attached to the porous piezoelectric body. The surface can be easily roughened by, for example, sandpaper or etching. Among these, the method using sandpaper is effective for the present invention because it is simple and does not have problems such as subsequent disposal and generation of harmful gas.

【0011】本発明の多孔質圧電体の空隙率は、50〜
85%である。空隙率が50%未満の場合、音響インピ
ーダンスの低減が不十分であり、又、その表面の凹凸が
本発明の電極を設置しなければならないほど激しくな
い。一方、空隙率が85%を越えた場合、機械的強度は
低下し、実用に耐えない。
The porosity of the porous piezoelectric material of the present invention is 50 to 50.
85%. When the porosity is less than 50%, the acoustic impedance is not sufficiently reduced, and the surface irregularities are not so severe that the electrode of the present invention must be installed. On the other hand, when the porosity exceeds 85%, the mechanical strength decreases and it cannot be put to practical use.

【0012】本発明の多孔質圧電体の気孔径は、0.0
1mm以上である。気孔径が0.01mm未満の場合、
表面の凹凸が本発明の電極を設置しなければならないほ
ど激しくない。又、製造上気孔径0.01mm未満且つ
空隙率50%以上の多孔質体の製造は困難である。気孔
径の上限については、圧電性能を損なわない範囲内であ
ればなんら制限はない。
The pore diameter of the porous piezoelectric material of the present invention is 0.0
It is 1 mm or more. If the pore size is less than 0.01 mm,
The surface irregularities are not so severe that the electrodes of the invention have to be installed. Moreover, it is difficult to manufacture a porous body having a pore diameter of less than 0.01 mm and a porosity of 50% or more. The upper limit of the pore diameter is not limited as long as it does not impair the piezoelectric performance.

【0013】本発明の電極設置法に最も有効な気孔形状
は、球状気孔である。球状気孔の多孔体は、強度低下を
最も低く抑えることができる。又、空隙率50%以上の
球状気孔の多孔体の断面は、不連続状態にあり、ペース
ト塗布などの通常の電極設置法では満足に電極内導通が
得られない。
The most effective pore shape for the electrode installation method of the present invention is a spherical pore. The porous body having spherical pores can suppress the decrease in strength to the minimum. Further, the cross-section of the porous body having spherical pores having a porosity of 50% or more is in a discontinuous state, and a normal electrode installation method such as paste coating cannot satisfactorily achieve conduction within the electrode.

【0014】本発明の圧電性セラミックス材料として
は、チタン酸鉛、ジルコン酸鉛、チタン酸ジルコン酸
鉛、マグネシウムニオブ酸鉛、チタン酸バリウム、ニオ
ブ酸コバルト、ニオブ酸リチウム、タンタル酸リチウム
等が挙げられる。
Examples of the piezoelectric ceramic material of the present invention include lead titanate, lead zirconate, lead zirconate titanate, lead magnesium niobate, barium titanate, cobalt niobate, lithium niobate, and lithium tantalate. To be

【0015】本発明の素子の多孔質圧電体の製造の一例
を示す。多孔質圧電体は、少なくとも圧電性セラミック
ス粉体及び気孔形成用の球状樹脂ビーズを用意し、それ
らを混合後(必要ならばバインダー、分散剤なども混合
し)、乾式プレス法、湿式プレス法、スラリー注型法、
射出成形法等の通常のセラミックスの成形法により前駆
体を成形し、次いで、樹脂ビーズを焼成とともに焼却除
去し(脱脂)、次いで本焼成することにより作製でき
る。この際焼却除去されたビーズの部分が空隙となる。
An example of production of the porous piezoelectric material of the device of the present invention will be described. For the porous piezoelectric material, at least piezoelectric ceramic powder and spherical resin beads for forming pores are prepared, and after mixing them (a binder, a dispersant, etc. are also mixed if necessary), a dry pressing method, a wet pressing method, Slurry casting method,
It can be produced by molding a precursor by a usual ceramics molding method such as an injection molding method, then burning and removing the resin beads with burning (defatting), and then performing the main burning. At this time, the incinerated and removed bead portion becomes a void.

【0016】気孔形成用の球状樹脂ビーズは、通常市販
されている如何なる樹脂を使用しても構わない。具体的
には、ポリスチレン、ポリエチレン、ポリプロピレン、
アクリル等が挙げられる。又、気孔径を大きくするため
これらを発泡させたビーズを使用することもできる。
As the spherical resin beads for forming pores, any commercially available resin may be used. Specifically, polystyrene, polyethylene, polypropylene,
Acrylic etc. are mentioned. Also, in order to increase the pore diameter, beads obtained by expanding these may be used.

【0017】多孔質圧電体の脱脂及び焼成は常法により
実施される。脱脂工程は比較的穏やかな昇温速度で50
0〜600℃迄昇温する事により、気孔形成用の樹脂ビ
ーズ(及びバインダ−等の有機物)を除去する。この
際、新鮮な空気を炉内に流し、これを促進することも出
来る。焼成において、鉛等の高温にて蒸発を伴う圧電性
セラミックスを使用する場合、これを補うため密閉した
容器中で、或いは、蒸発物質を発生する粉体中に埋め、
所定の温度(通常1200〜1350℃)にて焼成す
る。
Degreasing and firing of the porous piezoelectric material are carried out by a conventional method. The degreasing process is performed at a relatively moderate heating rate of 50
By raising the temperature to 0 to 600 ° C., the resin beads for forming pores (and organic substances such as binder) are removed. At this time, it is possible to flow fresh air into the furnace to promote it. When using piezoelectric ceramics that evaporate at high temperatures such as lead during firing, fill them in a sealed container to compensate for this, or in powder that generates evaporative substances,
Baking is performed at a predetermined temperature (normally 1200 to 1350 ° C.).

【0018】次いで得られた圧電性セラミックス多孔体
に本発明の電極を設置する。そして分極処理を施す。分
極は、絶縁性の液体中、温度80℃以上、1〜3kV/
mmの印加電圧で実施されるが、分極に先立ち空隙内を
完全に絶縁性の液体で置換した後行うのが好ましい。
又、空隙内の絶縁性の液体が分極後容易に除去されるよ
うフロン系の液体を使用するのが好ましい。
Next, the electrode of the present invention is placed on the obtained piezoelectric ceramics porous body. Then, polarization processing is performed. Polarization is performed in an insulating liquid at a temperature of 80 ° C or higher at 1 to 3 kV /
It is carried out with an applied voltage of mm, but it is preferably carried out after completely replacing the inside of the void with an insulating liquid prior to polarization.
Further, it is preferable to use a freon-based liquid so that the insulating liquid in the void can be easily removed after polarization.

【0019】以下実施例を挙げて本発明を具体的に説明
する。
The present invention will be specifically described with reference to the following examples.

【実施例】【Example】

実施例1 先ず、多孔質圧電体を作製する。直径3.5mmに分級
したポリスチレン球とチタン酸ジルコン酸鉛(PE-650,
富士チタン(株)製、以下PZTと表記する)のスプレ
ー顆粒を、体積比7:3で乾式混合し、次いで50×5
0×10mmの成型金型でプレス成型し、多孔質圧電体
前駆体を得た。次いで1200℃で2時間電気炉中で焼
成し、空隙率61%、気孔径3.1mmの球状気孔多孔
質圧電体を作製した。尚、空隙率及び気孔径の測定は以
下の方法に従って実施した。
Example 1 First, a porous piezoelectric body is manufactured. Polystyrene spheres classified to a diameter of 3.5 mm and lead zirconate titanate (PE-650,
Fuji Titanium Co., Ltd., hereinafter referred to as PZT) spray granules were dry mixed at a volume ratio of 7: 3, and then 50 × 5.
The porous piezoelectric precursor was obtained by press molding with a 0 × 10 mm molding die. Then, it was fired at 1200 ° C. for 2 hours in an electric furnace to prepare a spherical porous porous piezoelectric material having a porosity of 61% and a pore diameter of 3.1 mm. The porosity and pore diameter were measured according to the following methods.

【0020】〔空隙率〕 空隙率=(1−ρ/ρt )×100(%) ρ:焼結体のかさ密度(kg/m3 ) ρt :用いたセラミックスの理論密度(kg/m3 ) 〔気孔径〕光学顕微鏡にて観察した。[Porosity] Porosity = (1-ρ / ρt) × 100 (%) ρ: Bulk density of the sintered body (kg / m 3 ) ρt: Theoretical density of the ceramic used (kg / m 3 ) [Porosity] It was observed with an optical microscope.

【0021】次いで、表1に示す厚さの銅箔(サンドペ
ーパーで接着面を荒らした)を電気伝導性を有する接着
剤(ドータイト、D-723S、藤倉化成(株)製)で貼り付
け、次いで、120℃のフロン系液体(フロリナート、
FC-40 、住友スリーエム(株)製)中で2kV/mmで
1時間分極処理を行い多孔質圧電体素子を作製した。
尚、分極に先立ち空隙部にフロン系の液体が完全に浸透
するようフロン系液体内に作製した素子を入れ減圧化で
処理し、又、分極終了後完全にフロン系液体が蒸発する
よう減圧化で10時間放置した。更に比較のため金属箔
を貼らず、銀ペーストのみの電極を設置した素子につい
ても作製した。
Then, a copper foil having a thickness shown in Table 1 (having its adhesive surface roughened with sandpaper) was attached with an electrically conductive adhesive (Dotite, D-723S, manufactured by Fujikura Kasei Co., Ltd.), Next, CFC-based liquid (Fluorinert,
Polarization treatment was performed in FC-40, manufactured by Sumitomo 3M Limited, at 2 kV / mm for 1 hour to produce a porous piezoelectric element.
Prior to polarization, the element made in the CFC liquid was placed so that the CFC liquid could completely permeate the voids, and the pressure was reduced, and after the polarization was completed, the CFC liquid was completely evaporated. Left for 10 hours. Further, for comparison, a device was also prepared in which a metal foil was not attached and an electrode containing only silver paste was installed.

【0022】得られた素子の共振及び***振周波数を測
定し、以下の式に基づき、電気機械結合係数及び音響イ
ンピーダンスを測定した。結果を表1に示す。 〔電気機械結合係数(k33)〕 k332 =( π/2) ×(fr/fa) ×tan(π/2×Δf/fa) 〔音響インピーダンス〕 音響インピーダンス=2×l×fr ×ρ fr:共振周波数(Hz) fa:***振周波数(Hz) Δf:fa−fr l:振動の伝搬方向の長さ(m) ρ:焼結体のかさ密度(kg/m3
The resonance and anti-resonance frequencies of the obtained device were measured, and the electromechanical coupling coefficient and the acoustic impedance were measured based on the following equations. The results are shown in Table 1. [Electromechanical coupling coefficient (k33)] k33 2 = (π / 2) × (fr / fa) × tan (π / 2 × Δf / fa) [Acoustic impedance] Acoustic impedance = 2 × 1 × fr × ρ fr: Resonance frequency (Hz) fa: Anti-resonance frequency (Hz) Δf: fa-fr l: Length in vibration propagation direction (m) ρ: Bulk density of sintered body (kg / m 3 )

【表1】 ※印は比較例 No1は、金属箔により音響インピーダンスが増加し
た。。No6は、電極接触不良により電気機械結合係数
が低下した。表1の結果より、金属箔の厚さは、0.5
mm以下であり、好ましくは0.01〜0.1mmの範
囲内である。
[Table 1] * Indicates comparative example. In No. 1, the acoustic impedance increased due to the metal foil. . In No. 6, the electromechanical coupling coefficient decreased due to poor electrode contact. From the results of Table 1, the thickness of the metal foil is 0.5
mm or less, preferably 0.01 to 0.1 mm.

【0023】実施例2 表2に示すように粒径3mmのポリスチレン球と水、水
溶性エポキシ系樹脂及びPZT粉末を含むスラリーを混
合し、型枠内で樹脂を硬化させ、次いで乾燥、焼成を経
てPZT多孔質体を得た。次いで、厚さ0.1mmの銅
箔を実施例1と同様に貼り付け多孔質圧電体を作製し
た。その空隙率、気孔径、電気機械結合係数及び音響イ
ンピーダンスを測定した。結果を表2に示す。
Example 2 As shown in Table 2, polystyrene spheres having a particle diameter of 3 mm and a slurry containing water, a water-soluble epoxy resin and PZT powder were mixed, the resin was cured in a mold, and then dried and baked. After that, a PZT porous body was obtained. Then, a copper foil having a thickness of 0.1 mm was attached in the same manner as in Example 1 to produce a porous piezoelectric body. The porosity, pore diameter, electromechanical coupling coefficient and acoustic impedance were measured. The results are shown in Table 2.

【表2】 ※印は比較例 表2の結果より、空隙率の適正範囲は、50〜85%で
あることが判る。
[Table 2] From the results shown in Table 2, it is understood that the appropriate range of the porosity is 50 to 85%.

【0024】比較例1 粒径0.01mmのアクリル樹脂ビーズを気孔形成剤と
して空隙率50%の多孔質圧電体(PZT)の作製を試
みたが、脱脂時に亀裂が発生し、満足いく焼成体が得ら
れなかった。尚、顕微鏡観察により気孔径は、0.00
8mmであった。又、空隙率を40%の多孔質圧電体の
作製を試みたところ、焼成体はできたものの金属箔の電
極を設置してもしなくてもその圧電性能にほとんど変化
はなかった。
Comparative Example 1 An attempt was made to prepare a porous piezoelectric material (PZT) having a porosity of 50% using acrylic resin beads having a particle diameter of 0.01 mm as a pore-forming agent, but cracks occurred during degreasing, and a satisfactory fired material was obtained. Was not obtained. The microscopic observation revealed that the pore size was 0.00
It was 8 mm. Further, when an attempt was made to produce a porous piezoelectric body having a porosity of 40%, there was little change in the piezoelectric performance of the fired body even though the electrode of the metal foil was installed or not.

【0025】実施例3 表3に示すように設置する金属箔の種類を変化させる以
外は実施例1のNo3と同様に多孔質圧電体を作製し、
その電気機械結合係数及び音響インピーダンスを測定し
た。結果を表3に示す。
Example 3 A porous piezoelectric material was prepared in the same manner as in No. 3 of Example 1 except that the type of metal foil to be installed was changed as shown in Table 3.
The electromechanical coupling coefficient and acoustic impedance were measured. The results are shown in Table 3.

【表3】 [Table 3]

【0026】[0026]

【発明の効果】本発明により、高空隙率、高気孔径を有
する多孔質圧電体素子に対して、その性能を十分に引き
出し、断線などにによる事故の発生を著しく低減させる
電極の設置方法を提供することができた。
According to the present invention, a method for installing an electrode is provided for a porous piezoelectric element having a high porosity and a high pore diameter so that the performance of the porous piezoelectric element is sufficiently brought out and the occurrence of accidents due to disconnection or the like is significantly reduced. Could be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 38/06 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C04B 38/06 B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 空隙率50〜85%、気孔径0.01m
m以上の圧電性を有する多孔質セラミックス体に厚さ
0.5mm以下の金属箔を電極として設置することを特
徴とする多孔質圧電体素子の電極設置法。
1. A porosity of 50 to 85% and a pore diameter of 0.01 m.
An electrode installation method for a porous piezoelectric element, wherein a metal foil having a thickness of 0.5 mm or less is installed as an electrode on a porous ceramic body having a piezoelectricity of m or more.
JP4522494A 1994-02-17 1994-02-17 Installation of electrode to porous piezoelectric material Pending JPH07231127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4522494A JPH07231127A (en) 1994-02-17 1994-02-17 Installation of electrode to porous piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4522494A JPH07231127A (en) 1994-02-17 1994-02-17 Installation of electrode to porous piezoelectric material

Publications (1)

Publication Number Publication Date
JPH07231127A true JPH07231127A (en) 1995-08-29

Family

ID=12713304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4522494A Pending JPH07231127A (en) 1994-02-17 1994-02-17 Installation of electrode to porous piezoelectric material

Country Status (1)

Country Link
JP (1) JPH07231127A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005062396A1 (en) * 2003-12-24 2005-07-07 Kyocera Corporation Multilayered piezoelectric element
JP2006231113A (en) * 2005-02-22 2006-09-07 Meidensha Corp Photocatalyst and its manufacturing method
JP2010155772A (en) * 2008-12-01 2010-07-15 Ngk Insulators Ltd New dielectric nanopore material and method for producing the same
CN112236877A (en) * 2018-07-17 2021-01-15 永井清 Porous piezoelectric material molded body, method for producing same, and probe using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005062396A1 (en) * 2003-12-24 2005-07-07 Kyocera Corporation Multilayered piezoelectric element
JP2005191049A (en) * 2003-12-24 2005-07-14 Kyocera Corp Laminated piezoelectric element, manufacturing method thereof, and ejector
US7656077B2 (en) 2003-12-24 2010-02-02 Kyocera Corporation Laminated piezoelectric device
JP4593912B2 (en) * 2003-12-24 2010-12-08 京セラ株式会社 Multilayer piezoelectric element, manufacturing method thereof, and injection apparatus
JP2006231113A (en) * 2005-02-22 2006-09-07 Meidensha Corp Photocatalyst and its manufacturing method
JP2010155772A (en) * 2008-12-01 2010-07-15 Ngk Insulators Ltd New dielectric nanopore material and method for producing the same
CN112236877A (en) * 2018-07-17 2021-01-15 永井清 Porous piezoelectric material molded body, method for producing same, and probe using same
EP3817077A4 (en) * 2018-07-17 2022-07-06 Kiyoshi Nagai Porous piezoelectric material molded body, method of manufacturing same, and probe using said molded body

Similar Documents

Publication Publication Date Title
JP3849976B2 (en) COMPOSITE PIEZOELECTRIC, ULTRASONIC PROBE FOR ULTRASONIC DIAGNOSTIC DEVICE, ULTRASONIC DIAGNOSTIC DEVICE, AND METHOD FOR PRODUCING COMPOSITE PIEZOELECTRIC
JP3856380B2 (en) Composite piezoelectric vibrator and manufacturing method thereof
TW200532956A (en) Piezoelectric ceramic composition
US2892107A (en) Cellular ceramic electromechanical transducers
JP4338091B2 (en) Resonator
EP0361757A2 (en) A matching member
JPH07231127A (en) Installation of electrode to porous piezoelectric material
JPH07297461A (en) Piezoelectric ceramics-polymer composite material and its manufacture
US3052949A (en) Method of producing cellular ceramic electromechanical transducers, transducer materials and elements
JP4940389B2 (en) Lead-free piezoelectric ceramic composite and piezoelectric element using the same
JP2748961B2 (en) Method for producing surface-modified alumina ceramics
JP2010042969A (en) Manufacturing method of piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element
JP2005119945A (en) Piezoelectric ceramic composition
JPWO2005030673A1 (en) Piezoelectric ceramic composition, piezoelectric element
JP2005119944A (en) Method of manufacturing piezoelectric ceramic composition
TW200831438A (en) Piezoelectric ceramic composition and resonator
JP4359915B2 (en) Piezoelectric ceramic vibrator and piezoelectric resonator
JP2010141015A (en) Semi-spherical shell type composite piezoelectric element, and methods of manufacturing the same and using the same
JPH04149078A (en) Piezoelectric vibrator ultrasonic wave transmitter-receiver and production of piezoelectric material for the transmitter-receiver
JPH08126090A (en) Forming method for waterproof protective film in manufacture of underwater ultrasonic receiving element
JP2007001841A (en) Piezoelectric ceramic composition
Fielding et al. Characterization of PZT hollow-sphere transducers
JP4927419B2 (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP2002068864A (en) Plasma resistant member and method of manufacturing for the same
JPH0290579A (en) Manufacture of porous piezoelectric ceramic material