JPH07229892A - Collection and solidification of sample for emission spectral analysis of hypereutectic al-si alloy - Google Patents

Collection and solidification of sample for emission spectral analysis of hypereutectic al-si alloy

Info

Publication number
JPH07229892A
JPH07229892A JP6019189A JP1918994A JPH07229892A JP H07229892 A JPH07229892 A JP H07229892A JP 6019189 A JP6019189 A JP 6019189A JP 1918994 A JP1918994 A JP 1918994A JP H07229892 A JPH07229892 A JP H07229892A
Authority
JP
Japan
Prior art keywords
alloy
hypereutectic
sample
mold
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6019189A
Other languages
Japanese (ja)
Inventor
Susumu Nawata
進 名和田
Eikichi Sagisaka
栄吉 鷺坂
Nobushiro Seo
伸城 瀬尾
Hiroshi Horikawa
宏 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkei Techno Research Co Ltd, Nippon Light Metal Co Ltd filed Critical Nikkei Techno Research Co Ltd
Priority to JP6019189A priority Critical patent/JPH07229892A/en
Publication of JPH07229892A publication Critical patent/JPH07229892A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To suppress the effect due to the segregation of a primary crystal Si by injecting a molten hypereutectic Al-Si alloy wherein a P/Ca wt. ratio is set to a specific ratio on the basis of an alloy compsn. calculation value and the contents of P and Ca are set to specific values into a heat insulating casting mold to unidiretionally solidify the same and collecting a sample to be analyzed from the formed cast ingot. CONSTITUTION:When about 40-130ppm of P and about 6-120ppm of Ca are added to a molten hypereutectic Al-Si alloy under such a condition that a P/Ca wt. ratio is about 0.6-6, a cast ingot wherein a fine primary crystal Si is uniformly crystallized, is obtained. By combining a unidirectional solidification method in addition to the prescription of the contents of P and Ca, the particle size of the primary crystal Si becomes about 20mum or less. Therefore, an analytical value due to emission spectral analysis is reduced in irregularity and a value near a chemical analytical value can be calculated. Since the sample collected from this cast ingot does not generate segregation causing the error of spectral analysis, it can be used in the measurement of the contents of alloy elements as a highly reliable sample.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高精度で過共晶Al−
Si合金を分析することに適した発光分光分析用試料の
採取方法及び装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to highly eutectic Al--
The present invention relates to a method and an apparatus for collecting a sample for emission spectroscopic analysis suitable for analyzing a Si alloy.

【0002】[0002]

【従来の技術】合金組成を迅速に分析するため、被分析
試料に含まれている各元素のスペクトル強度比からその
含有量を求める発光分光分析が各種元素の分析に使用さ
れている。発光分光分析では、標準試料に含まれている
各元素の含有量とその元素のスペクトル強度比との関係
を予め求めた検量線を作成しておき、その検量線に被分
析試料のスペクトル強度比を内挿する。そして、このス
ペクトル強度比に対応する元素の含有量を割り出す。発
光分光分析の精度は、予め作成していた検量線の正確さ
に大きく影響される。そのため、高精度の分析結果を得
る上では、元素含有量がすでに知られており且つ均一な
組成をもつ標準試料が必要となる。発光分光分析に使用
される標準試料は、合金溶湯を金型に鋳込んで得られた
鋳物や、水冷式半連続鋳造法で得られた小径の鋳造棒か
ら、たとえば直径40〜60mm及び厚み20〜50m
mのディスクに切り出される。この試料を化学分析して
標準値を求め、標準値とする。
2. Description of the Related Art In order to analyze an alloy composition rapidly, an emission spectroscopic analysis is used for the analysis of various elements, in which the content of each element contained in a sample to be analyzed is determined from the spectral intensity ratio. In the emission spectroscopic analysis, a calibration curve was created in advance to determine the relationship between the content of each element contained in the standard sample and the spectral intensity ratio of that element, and the spectral intensity ratio of the sample to be analyzed was created on the calibration curve. To interpolate. Then, the content of the element corresponding to this spectral intensity ratio is calculated. The accuracy of the emission spectroscopic analysis is greatly affected by the accuracy of the calibration curve prepared in advance. Therefore, in order to obtain highly accurate analysis results, a standard sample whose element content is already known and which has a uniform composition is required. The standard sample used for the emission spectroscopic analysis is, for example, a casting obtained by casting a molten alloy in a mold or a small diameter casting rod obtained by a water-cooled semi-continuous casting method, for example, a diameter of 40 to 60 mm and a thickness of 20. ~ 50m
It is cut into m discs. This sample is chemically analyzed to obtain a standard value, which is used as the standard value.

【0003】[0003]

【発明が解決しようとする課題】標準試料は、分析しよ
うとする各種合金ごとに用意される。しかし、偏析傾向
が大きな過共晶Al−Si合金では、正確な検量線を作
成するために必要な標準試料の採取が困難である。たと
えば、過共晶Al−Si合金を小径の鋳造棒に鋳込んだ
ものでは、共晶量以上のSiを含んでいることから、初
晶Siが偏析し易く、晶出物のサイズも不揃いになって
いる。そのため、切り出された試料ごとでSi含有量に
大きなバラツキが生じ、検量線の正確さが低下する。そ
の結果、化学分析で得られる実際のSi分析値と発光分
光分析値との間にバラツキが大きくなり、操業時に組成
をコントロールすることが困難になっていた。本発明者
等は、偏析による影響を抑制するため、急冷凝固した粉
末を成形することによって作製された標準試料を特願平
1−128436号で提案した。急冷凝固した粉末から
作製された成形体は、偏析が非常に少なく、正確な検量
線を得る上で好適な標準試料となる。そのため、分析装
置によって生じる日々のドリフト強度の変動等の外乱要
因を取り込んだ補正も正確に行うことができる。
A standard sample is prepared for each alloy to be analyzed. However, in a hypereutectic Al-Si alloy having a large segregation tendency, it is difficult to collect a standard sample necessary for creating an accurate calibration curve. For example, in the case where a hypereutectic Al-Si alloy is cast into a small-diameter casting rod, since it contains more than the eutectic amount of Si, the primary crystal Si tends to segregate, and the sizes of crystallized products are not uniform. Has become. Therefore, a large variation occurs in the Si content among the cut out samples, and the accuracy of the calibration curve decreases. As a result, there is a large variation between the actual Si analysis value and the emission spectroscopic analysis value obtained by chemical analysis, making it difficult to control the composition during operation. The present inventors proposed in Japanese Patent Application No. 1-128436 a standard sample produced by molding a rapidly solidified powder in order to suppress the influence of segregation. The molded body produced from the rapidly solidified powder has very little segregation and is a suitable standard sample for obtaining an accurate calibration curve. Therefore, it is possible to accurately perform a correction that takes in a disturbance factor such as daily drift strength variation caused by the analyzer.

【0004】しかし、急冷凝固した粉末から得られた標
準試料を使用した検量線であっても、被分析試料が現場
において従来通り金型で鋳造されることから、被分析試
料中の著しい偏析が防止できない。そのため、より高精
度の分析結果を得る場合、依然として偏析に起因した問
題が残っている。しかし、迅速な分析が要求される鋳造
現場では、金型に鋳造する以外に適当な方法がない。そ
のため、高精度の分析が要求される場合、高価で且つ時
間のかかる化学分析に頼らざるを得ない現状である。本
発明は、このような問題を解消すべく案出されたもので
あり、過共晶Al−Si合金溶湯のP含有量,Ca含有
量及びP/Ca重量比を規制すると共に、鋳型内部にお
ける冷却・凝固条件を制御することにより、初晶Siの
偏析に起因した影響を極めて低く抑えた過共晶Al−S
i合金の発光分光分析用試料を得ることを目的とする。
However, even with a calibration curve using a standard sample obtained from rapidly solidified powder, the sample to be analyzed is cast in the mold in the conventional manner on the spot, so that significant segregation in the sample to be analyzed occurs. It cannot be prevented. Therefore, when obtaining a more accurate analysis result, the problem due to segregation still remains. However, in a casting site where quick analysis is required, there is no suitable method other than casting in a mold. Therefore, when high-precision analysis is required, it is the current situation that it is necessary to rely on expensive and time-consuming chemical analysis. The present invention has been devised to solve such a problem, and regulates the P content, Ca content and P / Ca weight ratio of a hypereutectic Al-Si alloy molten metal, and Hypereutectic Al-S with extremely low effects due to segregation of primary Si by controlling cooling and solidification conditions
The purpose is to obtain a sample for emission spectroscopic analysis of an i alloy.

【0005】[0005]

【課題を解決するための手段】本発明の発光分光分析用
試料採取方法は、その目的を達成するため、合金組成計
算値でP/Ca重量比が0.6〜6の条件下でP含有量
及びCa含有量をそれぞれ40〜130ppm及び6〜
120ppmに調整した過共晶Al−Si合金溶湯を断
熱性鋳型に注入し、前記合金溶湯を一方向凝固させて鋳
塊とし、該鋳塊から発光分光分析用試料を採取すること
を特徴とする。過共晶Al−Si合金溶湯は、断熱性鋳
型に注入される直前で必要に応じP及び/又はCaを添
加し、合金組成計算値でP/Ca重量比:0.6〜6,
P含有量:40〜130ppm及びCa含有量:6〜1
20ppmに調整される。断熱性鋳型に注入された過共
晶Al−Si合金溶湯は、鋳型下部から供給される冷却
水で冷却することによって一方向凝固させる。なお、合
金組成計算値とは、溶解原料やルツボで添加される母合
金の組成から計算される値をいう。
In order to achieve the object, the sampling method for emission spectroscopic analysis of the present invention contains P under the condition that the P / Ca weight ratio is 0.6 to 6 in terms of the calculated alloy composition. And Ca content of 40-130 ppm and 6-
A hypereutectic Al-Si alloy melt adjusted to 120 ppm is poured into an adiabatic mold, the alloy melt is unidirectionally solidified into an ingot, and a sample for emission spectroscopy analysis is collected from the ingot. . The hypereutectic Al-Si alloy melt is added with P and / or Ca as needed just before being poured into a heat insulating mold, and a P / Ca weight ratio in alloy composition calculation values: 0.6 to 6,
P content: 40-130 ppm and Ca content: 6-1
Adjusted to 20 ppm. The hypereutectic Al-Si alloy melt poured into the heat insulating mold is cooled in the cooling water supplied from the lower part of the mold to be unidirectionally solidified. The alloy composition calculated value means a value calculated from the composition of the melting raw material and the mother alloy added by the crucible.

【0006】分析用試料が採取される鋳塊を鋳造する一
方向凝固装置は、過共晶Al−Si合金溶湯がP含有
量,Ca含有量及びP/Ca重量比に関する条件を満足
する場合には、溶解炉から断熱性鋳型に合金溶湯を直接
注入する。他方、P含有量,Ca含有量及びP/Ca重
量比に関する条件を満足しない合金溶湯では、一旦ルツ
ボに取り、ルツボ内でP及び/又はCaの添加によって
P含有量,Ca含有量及びP/Ca重量比に関する条件
を満足させる。この一方向凝固装置は、過共晶Al−S
i合金溶湯を必要に応じて保持するルツボと、該ルツボ
から流下した前記過共晶Al−Si合金溶湯が注入され
る断熱性鋳型と、該断熱性鋳型の下部外周に装着された
金属体と、ベースプレートを介し前記金属体に対向して
離脱可能に配置されるチル板と、該チル板の下面に冷却
水が直接噴射されるように配置したノズルとを備え、鋳
型キャビティの一部としてツバ状空間部が前記金属体と
前記ベースプレートとの間に形成されるように、前記ベ
ースプレートに対向する前記金属体の面に凹部が形成さ
れている。
A unidirectional solidification apparatus for casting an ingot from which an analytical sample is taken is provided when the hypereutectic Al-Si alloy molten metal satisfies the conditions concerning P content, Ca content and P / Ca weight ratio. Injects molten alloy directly from a melting furnace into a heat insulating mold. On the other hand, in an alloy melt that does not satisfy the conditions regarding the P content, the Ca content and the P / Ca weight ratio, the P content, the Ca content and the P / P content are set by adding P and / or Ca in the crucible once. Satisfy the conditions regarding the Ca weight ratio. This unidirectional solidification apparatus is a hypereutectic Al-S
A crucible for holding an i alloy melt as needed, a heat insulating mold into which the hypereutectic Al-Si alloy melt flowed down from the crucible is injected, and a metal body mounted on the outer periphery of the lower part of the heat insulating mold. A chill plate disposed so as to be detachable so as to face the metal body via a base plate, and a nozzle arranged so that cooling water is directly jetted to the lower surface of the chill plate, and as a part of the mold cavity A recess is formed on the surface of the metal body facing the base plate so that a space is formed between the metal body and the base plate.

【0007】[0007]

【作用】過共晶Al−Si合金から金型鋳造で分析用試
料を作製するとき、Si濃度にもよるが30〜60μm
の巨大な初晶Siが晶出する。また、金型と鋳塊との間
に形成されるエアギャップによって、冷却速度が鋳型内
の部分によって不均一になり、著しい偏析が生じる。そ
の結果、金型鋳造で得られた鋳塊から採取された試料を
発光分光分析すると、分析値が大きくばらつくことにな
る。鋳塊に直接冷却水を噴射させて冷却速度を上昇させ
るDC鋳造によるとき、不均一なエアギャップの生成を
抑制できる。そのため、DC鋳造は、初晶Siのサイズ
を小さくし、偏析を軽減する上で有効な鋳造法である。
しかし、発光分光分析用試料を採取するためにDC鋳造
機を用意することは、スペース面や経済面等から考える
とき実用的な解決策ではない。
When a sample for analysis is prepared from a hypereutectic Al-Si alloy by die casting, it depends on the Si concentration but is 30 to 60 μm.
A huge primary crystal Si crystallizes out. Further, due to the air gap formed between the mold and the ingot, the cooling rate becomes non-uniform depending on the part inside the mold, and significant segregation occurs. As a result, when the sample collected from the ingot obtained by the die casting is analyzed by emission spectroscopy, the analysis value greatly varies. When performing DC casting in which cooling water is directly sprayed on the ingot to increase the cooling rate, it is possible to suppress the generation of a non-uniform air gap. Therefore, DC casting is an effective casting method for reducing the size of primary crystal Si and reducing segregation.
However, preparing a DC casting machine to collect a sample for emission spectroscopic analysis is not a practical solution in terms of space and economy.

【0008】ところで、本発明者等は、過共晶Al−S
i合金溶湯にP/Ca重量比=0.6〜6の条件下で4
0〜130ppmのP及び6〜120ppmのCaを含
有させたとき、初晶Siが微細で均一に晶出した鋳塊が
得られることを見い出し、特願平4−244259号と
して出願した。本発明は、このP及びCaが初晶Siに
与える影響に着目し、P及びCaの含有量規制と一方向
凝固法とを組み合わせたものであり、正確なSiの分析
値が得られる発光分光分析用試料が手軽に作製される。
一方向凝固法は、コンパクト且つ安価な設備でDC鋳造
と同様に鋳塊に直接冷却水を噴射させることができ、エ
アギャップの形成がなく、DC鋳造に近い冷却速度が得
られる。鋳塊は、より微細で均質に初晶Siが分散した
組織となる。本発明で規定する範囲でP及びCaを含有
する過共晶Al−Si合金溶湯を一方向凝固させると、
初晶Siの粒径が20μm以下になる。そのため、発光
分光分析による分析値は、バラツキが少なく、化学分析
値に近い値になる。
By the way, the present inventors have found that the hypereutectic Al--S
4 in the molten i alloy under the condition of P / Ca weight ratio = 0.6 to 6
It was found that when P of 0 to 130 ppm and Ca of 6 to 120 ppm were contained, an ingot in which primary crystal Si was finely and uniformly crystallized was obtained, and the application was filed as Japanese Patent Application No. 4-244259. The present invention focuses on the effect of P and Ca on primary crystal Si, and combines the content control of P and Ca and the directional solidification method to obtain an accurate Si analysis value. A sample for analysis is easily prepared.
In the unidirectional solidification method, cooling water can be directly injected into the ingot with a compact and inexpensive facility as in DC casting, an air gap is not formed, and a cooling rate close to that of DC casting can be obtained. The ingot has a structure in which primary crystal Si is more finely and uniformly dispersed. When the hypereutectic Al-Si alloy melt containing P and Ca in the range specified in the present invention is unidirectionally solidified,
The grain size of primary crystal Si becomes 20 μm or less. Therefore, the analysis value by the emission spectroscopic analysis has little variation and is close to the chemical analysis value.

【0009】そこで、溶解炉で溶製された過共晶Al−
Si合金溶湯の合金組成計算値がP含有量:40〜13
0ppm,Ca含有量:6〜120ppm及びP/Ca
重量比:0.6〜6であるとき、溶湯をそのまま柄杓で
汲み出し、断熱性鋳型に流し込んで一方向凝固させ、発
光分光分析用試料となる鋳塊を得る。他方、溶解炉で溶
製された過共晶Al−Si合金溶湯が合金組成計算値と
してP含有量,Ca含有量及び/又はP/Ca重量比に
関する条件を満足していないとき、溶解炉からルツボに
溶湯を一旦移し取る。そして、ルツボ内の溶湯にP及び
/又はCaを添加し、合金組成計算値としてP含有量:
40〜130ppm,Ca含有量:6〜120ppm及
びP/Ca重量比:0.6〜6に調整した後、断熱性鋳
型に注入し一方向凝固させる。ここで、Ca,P等が規
定量より多い場合、たとえばルツボ内の溶湯を塩素ガス
で処理し、Ca,P等を飛ばして規制値に入れる。塩素
ガス処理時間とCa,P等の含有量を予め把握しておく
と、処理時間の選定により必要なCa含有量,P含有量
及びP/Ca重量比が得られる。
Therefore, the hypereutectic Al-- melted in the melting furnace
The calculated alloy composition of the molten Si alloy is P content: 40 to 13
0 ppm, Ca content: 6 to 120 ppm and P / Ca
When the weight ratio is from 0.6 to 6, the molten metal is pumped out as it is with a ladle, poured into a heat insulating mold and unidirectionally solidified to obtain an ingot as a sample for emission spectroscopic analysis. On the other hand, when the hypereutectic Al-Si alloy molten metal melted in the melting furnace does not satisfy the conditions regarding P content, Ca content and / or P / Ca weight ratio as calculated alloy composition, Transfer the molten metal to a crucible once. Then, P and / or Ca are added to the molten metal in the crucible, and the P content as an alloy composition calculated value:
After adjusting to 40 to 130 ppm, Ca content: 6 to 120 ppm and P / Ca weight ratio: 0.6 to 6, the mixture is poured into a heat insulating mold and unidirectionally solidified. Here, when Ca, P, etc. are more than the specified amount, for example, the molten metal in the crucible is treated with chlorine gas, and Ca, P, etc. are skipped and set to the regulated values. If the chlorine gas treatment time and the contents of Ca, P, etc. are known in advance, the required Ca content, P content, and P / Ca weight ratio can be obtained by selecting the treatment time.

【0010】Caの添加 一方向凝固装置のルツボ内で過共晶Al−Si合金にC
aを添加する場合、合金組成目標の計算値で添加する。
Caは、Caを含有するAl−Ca系等の母合金,化合
物,混合物等として塊状,棒状,線状,粉末状,顆粒
状,溶融状等の形態で添加される。Pの添加 一方向凝固装置のルツボ内で過共晶Al−Si合金にP
を添加する場合、合金組成目標の計算値で添加する。P
は、P含有母合金,化合物,混合物等を塊状,棒状,線
状,粉末状,顆粒状,溶融状等の形態で添加される。P/Ca重量比 P/Ca重量比は、微細化効果に大きな影響をもつ因子
である。P/Caを重量比で0.6〜6の範囲に維持す
ることにより、初晶Siの微細化に有効なCa−P化合
物が生成されるものと推察される。すなわち、生成した
Ca−P化合物が微細な核として合金中に均一分散し、
この核を起点として初晶Siが晶出する。その結果、微
細な鋳造組織が得られる。P/Ca重量比が0.6未満
では、初晶Siの結晶核として働く作用をもたないCa
濃度の高いCa−Pが形成され、長時間溶湯保持等によ
ってCa−P化合物中のCaが減少すると好ましい状態
になり、結晶核としての作用を呈するものと考えられ
る。逆に、P/Ca重量比が6を超えると、Caが不足
し、形成されるCa−P化合物の個数が不足する。この
P/Ca重量比も、合金組成目標の計算値でコントロー
ルされる。
Addition of Ca In the crucible of the unidirectional solidification apparatus, C is added to the hypereutectic Al-Si alloy.
When a is added, it is added at the calculated value of the alloy composition target.
Ca is added in the form of lumps, rods, wires, powders, granules, melts, etc. as a Ca-containing Al-Ca-based mother alloy, compound, mixture and the like. Addition of P Add P to the hypereutectic Al-Si alloy in the crucible of the unidirectional solidification apparatus.
When adding, the calculated value of the alloy composition target is added. P
Is a P-containing mother alloy, compound, mixture, etc. added in the form of a lump, rod, wire, powder, granule, melt or the like. P / Ca weight ratio The P / Ca weight ratio is a factor that has a great influence on the refinement effect. It is presumed that by maintaining P / Ca in the range of 0.6 to 6 by weight, a Ca-P compound effective for refining primary crystal Si is produced. That is, the generated Ca-P compound is uniformly dispersed in the alloy as fine nuclei,
Primary crystal Si crystallizes from this nucleus. As a result, a fine cast structure can be obtained. When the P / Ca weight ratio is less than 0.6, Ca does not function as a crystal nucleus of primary Si.
It is considered that when a high concentration of Ca-P is formed and Ca in the Ca-P compound is reduced by holding the molten metal for a long period of time or the like, it becomes a preferable state and exhibits an action as a crystal nucleus. On the contrary, when the P / Ca weight ratio exceeds 6, Ca is insufficient and the number of formed Ca-P compounds is insufficient. This P / Ca weight ratio is also controlled by the calculated value of the alloy composition target.

【0011】Si含有量 初晶Siは、Si含有量が13重量%以上の過共晶Al
−Si合金において晶出する。したがって、Ca及びP
により初晶Siが微細化する現象は、Si含有量が13
以上の過共晶Al−Si合金にみられ、Si含有量が1
3重量%未満の組成ではP及びCaによる微細化作用は
発揮されない。また、Si含有量が21重量%を超える
と、適正量のP及びCaが含有されていても、初晶Si
が十分に微細化されない。そのため、一方向凝固で得ら
れる発光分光分析用試料としては、13〜21重量%の
Siを含むものが好適である。鋳造温度 溶湯を断熱性鋳型に注入する鋳造温度は、高い冷却速度
による微細化効果が得られる範囲で、可能な限り高くす
ることが好ましい。具体的には、Si含有量等の過共晶
Al−Si合金の成分及び含有量にもよるが、少なくと
もAl−Si二元系状態図の液相線+(70〜170)
℃の温度範囲に鋳造温度を設定する。Ca及びPの微細
化作用を有効に発揮させる上で、Siが十分に溶解する
ように過共晶Al−Si合金溶湯を液相線+70℃以上
の温度で鋳造することが好ましい。溶湯温度が液相線+
70℃より低いと、初晶Siを微細化させるP及びCa
の作用が低下する。したがって、溶製された合金溶湯の
温度が液相線+70℃より低い場合、均一な一方向凝固
を行わせる上から、採取した合金溶湯を加熱する必要が
ある。
Si content primary crystal Si is a hypereutectic Al having a Si content of 13% by weight or more.
Crystallizes in the -Si alloy. Therefore, Ca and P
The phenomenon that the primary crystal Si is refined by the above is that the Si content is 13
In the above hypereutectic Al-Si alloy, the Si content is 1
If the composition is less than 3% by weight, the refining effect of P and Ca is not exhibited. Further, when the Si content exceeds 21% by weight, even if proper amounts of P and Ca are contained, the primary crystal Si
Is not sufficiently miniaturized. Therefore, a sample containing 13 to 21% by weight of Si is suitable as the emission spectroscopic analysis sample obtained by directional solidification. Casting temperature The casting temperature at which the molten metal is poured into the heat insulating mold is preferably as high as possible within a range in which the refining effect can be obtained by the high cooling rate. Specifically, depending on the composition and content of the hypereutectic Al-Si alloy such as the Si content, at least the liquidus line + (70 to 170) of the Al-Si binary system phase diagram.
Set the casting temperature in the temperature range of ° C. In order to effectively exert the refining effect of Ca and P, it is preferable to cast the hypereutectic Al—Si alloy molten metal at a temperature of liquidus + 70 ° C. or higher so that Si is sufficiently dissolved. Molten metal temperature is liquidus +
If the temperature is lower than 70 ° C, P and Ca that refine the primary crystal Si
Action is reduced. Therefore, when the temperature of the molten alloy melt is lower than the liquidus + 70 ° C., it is necessary to heat the sampled alloy melt in order to perform uniform unidirectional solidification.

【0012】使用する鋳造装置 本発明に従った鋳造装置は、たとえば図1に示すよう
に、過共晶Al−Si合金溶湯を収容するルツボ10の
下方に一方向凝固装置20を配置し、下方から鋳型キャ
ビティ40に注湯された溶湯を冷却する冷却機構30を
備えている。ルツボ10は、ストッパー11で閉塞可能
な給湯口12が底部に設けられ、電気炉15内に配置さ
れる。ルツボ10に収容される過共晶Al−Si合金溶
湯は、ルツボ10を取り囲んだヒータ13で所定温度に
加熱保持され、注湯直前に適量のP及び/又はCaが必
要に応じて添加される。また、場合によってはP含有量
及びCa含有量を低減するため、塩素処理される。給湯
口12は、電気炉15の開口部14に臨んでいる。図示
した一方向凝固装置20は、断熱性鋳型21の下部外周
に金属体22を装着している。断熱性鋳型21は、ケイ
酸カルシウム系等の耐火断熱材で作製され、たとえば内
径及び高さが30〜60mmで肉厚6〜20mmの円筒
形状に成形される。円筒形状に代え、正方形,多角形等
の断面形状をもつ断熱性鋳型を使用することも可能であ
る。金属体22の下端内面に、凹部23が形成されてい
る。凹部23は、金属体22の下端面をベースプレート
24に接触させたとき、鋳型キャビティ40の一部とな
るツバ状空間部41を形成する。
Casting Apparatus Used According to the casting apparatus according to the present invention, as shown in FIG. 1, for example, a unidirectional solidification apparatus 20 is arranged below a crucible 10 containing a hypereutectic Al-Si alloy melt, A cooling mechanism 30 for cooling the molten metal poured into the mold cavity 40 is provided. The crucible 10 is provided with a hot water supply port 12 that can be closed by a stopper 11 at the bottom and is arranged in an electric furnace 15. The hypereutectic Al-Si alloy molten metal housed in the crucible 10 is heated and held at a predetermined temperature by a heater 13 surrounding the crucible 10, and an appropriate amount of P and / or Ca is added just before pouring as needed. . Also, in some cases, chlorine treatment is performed in order to reduce the P content and the Ca content. The hot water supply port 12 faces the opening 14 of the electric furnace 15. In the illustrated unidirectional solidification apparatus 20, a metal body 22 is attached to the outer periphery of the lower portion of a heat insulating mold 21. The heat insulating mold 21 is made of a fireproof heat insulating material such as calcium silicate, and is formed into a cylindrical shape having an inner diameter and a height of 30 to 60 mm and a wall thickness of 6 to 20 mm. Instead of the cylindrical shape, it is also possible to use a heat insulating mold having a cross-sectional shape such as a square or a polygon. A recess 23 is formed on the inner surface of the lower end of the metal body 22. The recess 23 forms a brim-shaped space 41 that becomes a part of the mold cavity 40 when the lower end surface of the metal body 22 is brought into contact with the base plate 24.

【0013】凹部23は、図示するように外側に向かっ
て薄くなる傾斜断面形状の他に、等厚で断熱性鋳型21
と同心円状に広がったものでもよい。凹部23のサイズ
は、断熱性鋳型21の外径より大きい限り半径方向に沿
った長さに関する制約はなく、一方向凝固時にツバ状空
間部41に入った鋳塊に厚み5mm以下のツバ状突起が
形成されるように定めることが好ましい。ツバ状突起の
厚みが5mmを超えると、凹部23に送り込まれた合金
溶湯の保有熱による影響が大きく現れ、鋳型キャビティ
40内にある溶湯の一方向凝固・冷却が乱される。金属
体22に接触するベースプレート24は、板厚が10m
m程度の金属平板の中央に開口部25が形成されてい
る。開口部25は、断熱性鋳型21の内径とほぼ同じ3
0〜60mmの直径を持つ。これによって、直径30〜
60mmの円筒状鋳塊の途中に、凹部23に対応したツ
バ状突起をもった発光分光分析用試料となる鋳塊が形成
される。
The concave portion 23 has a uniform thickness in addition to the inclined cross-sectional shape which becomes thinner toward the outside as shown in the figure, and the heat insulating mold 21 has the same thickness.
It may be a concentric circle. The size of the concave portion 23 is not limited as to the length along the radial direction as long as it is larger than the outer diameter of the heat insulating mold 21, and the ingot that has entered the brim-shaped space portion 41 at the time of unidirectional solidification has a brim-shaped protrusion having a thickness of 5 mm or less. Is preferably formed so that When the thickness of the brim-shaped projection exceeds 5 mm, the heat of the molten alloy sent to the recess 23 has a large effect, and the unidirectional solidification / cooling of the molten metal in the mold cavity 40 is disturbed. The base plate 24 contacting the metal body 22 has a plate thickness of 10 m.
An opening 25 is formed in the center of a metal flat plate of about m. The opening 25 has the same diameter as the inner diameter of the heat insulating mold 21.
It has a diameter of 0 to 60 mm. With this, the diameter 30
In the middle of the cylindrical ingot of 60 mm, an ingot serving as a sample for emission spectroscopic analysis having a brim-shaped protrusion corresponding to the recess 23 is formed.

【0014】鋳型キャビティ40は、内径30〜60m
m及び高さ30〜60mmの高さを持つことが好まし
い。内径が30mmより小さいと、横方向からの冷却の
影響を強く受け、分析位置に応じて分析結果にバラツキ
を生じさせる原因になり易い。高さが30mmより小さ
いキャビティでは、上部からの冷却の影響を強く受け、
分析位置に応じて分析結果にバラツキを生じさせる原因
になり易い。逆に60mmを超える内径又は高さは、装
置が大きくなることから好ましくない。ベースプレート
24の下面にチル板31をセットすると、開口部25が
閉塞される。チル板31は、ベースプレート24に対し
矢印方向にスライドでき、水源(図示せず)に接続され
たノズル32から冷却水33が噴射される。
The mold cavity 40 has an inner diameter of 30 to 60 m.
It is preferable to have a height of m and a height of 30 to 60 mm. If the inner diameter is smaller than 30 mm, it is strongly influenced by the cooling from the lateral direction, and this tends to cause variations in the analysis result depending on the analysis position. In a cavity with a height of less than 30 mm, it is strongly affected by cooling from the top,
This tends to cause variations in the analysis result depending on the analysis position. On the contrary, an inner diameter or height exceeding 60 mm is not preferable because the device becomes large. When the chill plate 31 is set on the lower surface of the base plate 24, the opening 25 is closed. The chill plate 31 can slide in the direction of the arrow with respect to the base plate 24, and the cooling water 33 is jetted from a nozzle 32 connected to a water source (not shown).

【0015】冷却条件 鋳型キャビティ40に注入された過共晶Al−Si合金
溶湯は、チル板31に接触している側から冷却・凝固す
る。チル板31での冷却により合金溶湯にシェルが形成
された後、チル板31をベースプレート24に沿って移
動させて開口部25を解放し、シェルに冷却水33を直
接噴射させる。これにより、合金溶湯は、上方に向かっ
てシェル部から一方向凝固を開始する。鋳型キャビティ
40にある合金溶湯が完全に凝固した後、断熱性鋳型2
1及び金属体22と共に鋳塊をベースプレート24から
外し、次いで鋳塊から断熱性鋳型21及び金属体22を
外す。シェルに直接吹き付ける冷却水33の噴射量は、
一方向凝固を促進させる上で多いほど好ましく、たとえ
ば5リットル/分以上の流量が採用される。
Cooling Conditions The hypereutectic Al—Si alloy melt injected into the mold cavity 40 is cooled and solidified from the side in contact with the chill plate 31. After the shell is formed in the molten alloy by cooling with the chill plate 31, the chill plate 31 is moved along the base plate 24 to open the opening 25, and the cooling water 33 is sprayed directly to the shell. As a result, the molten alloy starts unidirectionally solidifying upward from the shell portion. After the molten alloy in the mold cavity 40 is completely solidified, the heat insulating mold 2
The ingot with 1 and the metal body 22 is removed from the base plate 24, and then the heat insulating mold 21 and the metal body 22 are removed from the ingot. The injection amount of the cooling water 33 sprayed directly on the shell is
A larger amount is more preferable for promoting unidirectional solidification, and for example, a flow rate of 5 liter / min or more is adopted.

【0016】鋳型キャビティ40への注湯からチル板3
1を引き抜くまでの時間は、通常0.5〜1.5分に設
定される。この時間が0.5分より短いと、十分なシェ
ルが成長せず、冷却水33を直接噴射したときに湯漏れ
の原因となる。逆に1.5分を超える時間では、シェル
が過度に厚く成長し、不均一凝固の原因であるエアギャ
ップがシェルとチル板31との間に生じる。シェルに直
接噴射された冷却水33は、凝固時にツバ状突起で遮ら
れ、ツバ状突起より上方の断熱性鋳型21の外周面に達
することはない。そのため、チル板31を取り外した後
の冷却過程でも、外周面から溶湯が冷却されることな
く、下面側からの一方向凝固が継続する。このようにし
て過共晶Al−Si合金溶湯を一方向凝固・冷却させる
ため、得られた鋳塊は、初晶Siが微細に且つ均一に分
布した組織を持っている。鋳塊から採取される発光分光
分析用試料は、作製の容易性を考慮すると円形断面を持
つものが好適であるが、正方形,多角形等の断面を持つ
試料を作製することも可能である。
Chill plate 3 from pouring into mold cavity 40
The time until 1 is pulled out is usually set to 0.5 to 1.5 minutes. If this time is shorter than 0.5 minutes, a sufficient shell does not grow and causes leakage of molten metal when the cooling water 33 is directly injected. On the other hand, when the time exceeds 1.5 minutes, the shell grows excessively thick, and an air gap that causes uneven solidification occurs between the shell and the chill plate 31. The cooling water 33 sprayed directly on the shell is blocked by the brim-shaped projections during solidification, and does not reach the outer peripheral surface of the heat insulating mold 21 above the brim-shaped projections. Therefore, even in the cooling process after removing the chill plate 31, the unidirectional solidification from the lower surface side is continued without cooling the molten metal from the outer peripheral surface. Since the hypereutectic Al-Si alloy melt is unidirectionally solidified and cooled in this way, the obtained ingot has a structure in which primary crystal Si is finely and uniformly distributed. The sample for emission spectroscopic analysis collected from the ingot is preferably one having a circular cross section in consideration of easiness of production, but it is also possible to prepare a sample having a cross section such as a square or a polygon.

【0017】溶解炉で溶製される溶湯のP含有量,Ca
含有量及びP/Ca重量比共に所定の合金組成計算値を
満足するとき、溶解炉から鋳型キャビティ40に溶湯を
柄杓等で直接注湯し、一方向凝固させる。P含有量,C
a含有量又はP/Ca重量比が所定の合金組成計算値を
満足していない溶湯は、一旦ルツボ10に移し取り、ル
ツボ10内で合金組成計算値でP含有量,Ca含有量及
びP/Ca重量比を調整する。調整後の溶湯は、ストッ
パー11を外すことによりルツボ10から鋳型キャビテ
ィ40に注湯される。断熱性鋳型21は、一方向凝固装
置20にセットした後、適宜の予熱装置(図示せず)に
より周面からの加熱で予熱しても良い。ここで使用され
る予熱装置は、注湯時には断熱性鋳型21から取り外さ
れる。
P content of the molten metal produced in the melting furnace, Ca
When both the content and the P / Ca weight ratio satisfy the predetermined calculated values of the alloy composition, the molten metal is poured directly from the melting furnace into the mold cavity 40 with a ladle or the like to be unidirectionally solidified. P content, C
The molten metal whose a content or P / Ca weight ratio does not satisfy the predetermined alloy composition calculated value is once transferred to the crucible 10, and the P content, Ca content and P / Adjust the Ca weight ratio. The adjusted molten metal is poured from the crucible 10 into the mold cavity 40 by removing the stopper 11. The heat insulating mold 21 may be set in the unidirectional solidification device 20 and then preheated by heating from the peripheral surface by an appropriate preheating device (not shown). The preheating device used here is removed from the heat insulating mold 21 during pouring.

【0018】分析位置 分析面42は、チル板31の表面と平行に、チル板31
の表面から2〜10mmの距離に設定することが好まし
い。この位置では、成分が均質で且つ初晶Siが微細に
晶出した組織であることから、発光分光分析用試料とし
て安定した分析値を示す。チル板31の表面からの距離
が2mm未満の分析面42では、チル板31で凝固した
シェルの不均質部分を含む分析結果が得られ、分析精度
を低下させる。逆に10mmより離れた位置を分析面4
2とすると、初晶Siが粗く不均一に分布した組織が分
析対象とされるので、偏析による影響を受け易く分析精
度が低下する。分析面42は、機械的な面削によって作
成される。得られた分析用試料を用いて発光分光分析す
ると、Si含有量が正確に測定される。また、Si以外
の他の合金元素についても、金型鋳造による鋳塊やP,
Ca含有量を適正に含まない合金溶湯から作成された試
料に比較して、分析値のバラツキ(標準偏差)が小さい
傾向を示す。この点から、本発明に従って採取された過
共晶Al−Si合金の分析用試料は、Si以外の元素を
分析する上でも有効である。
The analysis position analysis plane 42 is parallel to the surface of the chill plate 31 and is parallel to the chill plate 31.
It is preferable to set the distance to 2 to 10 mm from the surface. At this position, since the components are homogeneous and the primary crystal Si is finely crystallized, a stable analysis value is shown as a sample for emission spectroscopic analysis. On the analysis surface 42 whose distance from the surface of the chill plate 31 is less than 2 mm, an analysis result including an inhomogeneous portion of the shell solidified by the chill plate 31 is obtained, which lowers the analysis accuracy. On the contrary, the position away from 10 mm is the analysis surface 4
When it is set to 2, a structure in which primary crystal Si is coarsely and non-uniformly distributed is targeted for analysis, so that it is easily affected by segregation and the analysis accuracy decreases. The analysis surface 42 is created by mechanical chamfering. When the emission spectroscopic analysis is performed using the obtained analytical sample, the Si content is accurately measured. Also, for alloy elements other than Si, ingots, P,
Compared with a sample prepared from an alloy melt that does not properly contain Ca content, the variation (standard deviation) in the analysis value tends to be small. From this point, the analysis sample of the hypereutectic Al—Si alloy collected according to the present invention is also effective in analyzing elements other than Si.

【0019】[0019]

【実施例】【Example】

実施例1:次に掲げるように、種々に調製したSi:1
7重量%,Cu:4.5重量%及びMg:0.5重量%
のA390合金を異なる鋳造条件で鋳造し、分析用試料
を採取した。Pを70ppm含有するA390合金を溶
解炉で溶解し、柄杓で汲み出した後、鋳造温度780℃
で直径55mm及び高さ10mmの鋳鉄製金型に鋳造し
た。また、Ca濃度25ppmを目標としてAl−5%
Ca母合金を残りの溶湯に添加し、同じ金型に鋳造し
た。Pを100ppm含むA390合金50kgを78
0℃で保持炉に溶解し、保持炉から採取した溶湯の一部
を同じサイズの鋳鉄製金型に鋳造した。同じ溶湯の一部
を、一方向凝固装置20(図1)の断熱性鋳型21に直
接注湯し、30秒後にチル板31を引き抜き、直径50
mm及び高さ50mmの鋳塊を得た。
Example 1: Variously prepared Si: 1 as follows:
7% by weight, Cu: 4.5% by weight and Mg: 0.5% by weight
No. A390 alloy was cast under different casting conditions and samples for analysis were taken. A390 alloy containing 70 ppm of P was melted in a melting furnace and pumped out with a ladle, and then the casting temperature was 780 ° C.
Was cast into a cast iron mold having a diameter of 55 mm and a height of 10 mm. Also, targeting a Ca concentration of 25 ppm, Al-5%
The Ca mother alloy was added to the rest of the molten metal and cast in the same mold. A390 alloy 50kg containing P 100ppm 78
It was melted in a holding furnace at 0 ° C., and a part of the molten metal sampled from the holding furnace was cast in a cast iron mold of the same size. A part of the same molten metal is directly poured into the heat insulating mold 21 of the unidirectional solidification device 20 (FIG. 1), the chill plate 31 is pulled out after 30 seconds, and the diameter 50
An ingot having a size of 50 mm and a height of 50 mm was obtained.

【0020】また、保持炉から2kgの溶湯をルツボ1
0に採取し、Caを50ppm目標でルツボ10に添加
した後、電気炉15のヒータ13で加熱した。溶湯温度
が780℃に達した時点でストッパー11を外し、同じ
条件下で断熱性鋳型20に注湯し、直径50mm及び高
さ50mmの鋳塊を得た。各鋳塊の底部を3mm面削し
た後、面削面を発光分光分析した。一部の鋳塊につい
て、底面から20mm面削した試料を作製した。発光分
光分析に際しては、粉末材の標準試料で求めた検量線を
用い、且つドリフト強度補正用にも粉末材の標準試料を
使用した。表1には、合金組成計算値として合金溶湯の
P及びCa含有量,P/Ca重量比,鋳造方法及び分析
位置を示す。表2には、発光分光分析で求められたSi
の分析結果を示す。
In addition, 2 kg of molten metal was fed from the holding furnace to the crucible 1.
Samples were collected at 0, Ca was added to the crucible 10 with a target of 50 ppm, and then heated by the heater 13 of the electric furnace 15. When the molten metal temperature reached 780 ° C., the stopper 11 was removed, and the molten heat was poured into the heat insulating mold 20 under the same conditions to obtain an ingot having a diameter of 50 mm and a height of 50 mm. After chamfering the bottom of each ingot by 3 mm, the chamfered surface was subjected to emission spectroscopic analysis. For some of the ingots, samples were prepared by chamfering 20 mm from the bottom surface. In the emission spectroscopic analysis, the calibration curve obtained with the standard sample of the powder material was used, and the standard sample of the powder material was also used for drift strength correction. Table 1 shows the P and Ca contents of the molten alloy, the P / Ca weight ratio, the casting method and the analysis position as calculated alloy composition values. Table 2 shows Si obtained by optical emission spectroscopy.
The analysis result of is shown.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】金型鋳造した試験番号1〜3では、適正量
のP及びCaが含まれているか否かに拘らず、表2に示
すように標準偏差sが大きくなった。すなわち、繰返し
測定ごとにバラツキが大きく、測定結果の信頼性が低い
ことが示されている。Pのみが含まれている試験番号
4,5では、一方向凝固によっても分析結果にバラツキ
(標準偏差)が大きくなっている。適正量のP及びCa
が含まれている合金溶湯を一方向凝固させた試験番号
6,7では、分析値のバラツキ(標準偏差)が小さく、
信頼性の高い分析結果が得られていることが判る。同じ
合金溶湯を一方向凝固させた場合でも、鋳塊の底部から
20mmの位置を分析した試験番号8,9では、バラツ
キ(標準偏差)が若干大きくなっている。
In Test Nos. 1 to 3 in which the die casting was performed, the standard deviation s became large as shown in Table 2 regardless of whether or not proper amounts of P and Ca were contained. That is, it is shown that there is a large variation between repeated measurements and the reliability of the measurement results is low. In Test Nos. 4 and 5 containing only P, the variability (standard deviation) in the analysis result is large even by unidirectional solidification. Appropriate amount of P and Ca
In the test numbers 6 and 7 in which the molten alloy containing unidirectionally solidified, the variation (standard deviation) in the analysis value was small,
It can be seen that highly reliable analysis results are obtained. Even when the same molten alloy was unidirectionally solidified, in the test numbers 8 and 9 in which the position 20 mm from the bottom of the ingot was analyzed, the variation (standard deviation) was slightly large.

【0024】発光分光分析した部分の組織を光学顕微鏡
で観察すると、金型鋳造した試験番号1〜3では初晶S
iが約20μmと比較的粗く、分布も不均一であった。
これに対し、P/Ca重量比が制御されていない合金溶
湯を一方向凝固で直接水冷した試験番号4,5では、初
晶Siが10μm程度まで微細になっているものの、そ
の分布が不均一であった。P及びCaが適正に含まれて
いる合金溶湯を一方向凝固した試験番号6,7では、初
晶Siが10μm以下と更に微細になると共に、分布も
非常に均一であった。しかし、同じ一方向凝固した鋳塊
であっても、鋳塊の底面から20mmの位置で分析した
試験番号8,9では、初晶Siが約25μmと粗くなっ
ており、且つ分布も不均一になっていた。
When the structure of the portion subjected to the emission spectroscopic analysis is observed by an optical microscope, in the die-casting Test Nos. 1 to 3, the primary crystal S
i was about 20 μm, which was relatively rough, and the distribution was non-uniform.
On the other hand, in Test Nos. 4 and 5 in which the alloy melt whose P / Ca weight ratio was not controlled was directly water-cooled by unidirectional solidification, although the primary crystal Si was fine to about 10 μm, its distribution was not uniform. Met. In Test Nos. 6 and 7 in which the molten alloy containing P and Ca properly contained was unidirectionally solidified, the primary crystal Si became finer to 10 μm or less, and the distribution was very uniform. However, even in the case of the same unidirectionally solidified ingot, in the test numbers 8 and 9 analyzed at a position 20 mm from the bottom surface of the ingot, the primary crystal Si was coarse at about 25 μm and the distribution was uneven. Was becoming.

【0025】鋳塊の高さ方向に関して初晶Siの粒径を
調査したところ、初晶Siは、底面から10mmを超え
たところで急激に粗くなり、分布も不均一化した。ま
た、底面から2mmまではチル板31で冷却されたシェ
ル層が生成しており、この部分での初晶Siは不均一に
分布していた。したがって、この部分を面削除去し、分
析面42を出すことが必要である。以上のことから、P
及びCaを適正に含有させた過共晶Al−Si合金溶湯
を一方向凝固させ、得られた鋳塊の底面から2〜10m
mまでの高さに分析位置をとるとき、極めて信頼性の高
い発光分光分析結果が得られることが判った。
When the grain size of the primary crystal Si was investigated in the height direction of the ingot, the primary crystal Si was suddenly roughened beyond 10 mm from the bottom surface, and the distribution was also nonuniform. Further, a shell layer cooled by the chill plate 31 was formed up to 2 mm from the bottom surface, and the primary crystal Si in this portion was unevenly distributed. Therefore, it is necessary to remove the surface of this portion and expose the analysis surface 42. From the above, P
2 to 10 m from the bottom surface of the ingot obtained by unidirectionally solidifying the hypereutectic Al-Si alloy melt containing Ca and Ca properly.
It has been found that when the analysis position is set at a height up to m, extremely reliable emission spectroscopic analysis results can be obtained.

【0026】実施例2:Si:19重量%,Cu:1.
7重量%及びMg:1.5重量%を含むAC9B合金
を、次のように調製すると共に、異なる条件下で鋳造し
た。Pを70ppm含有させたAC9B合金溶湯をルツ
ボ10に用意し、その一部を800℃で直径55mm及
び高さ10mmの鋳鉄製金型に鋳造した。Ca濃度40
ppmを目標としてAl−5%Ca母合金を残りの溶湯
に添加し、同じ鋳鉄製金型に鋳造した。Pを含有しない
AC9B合金50kgを保持炉で780℃に溶解し、保
持炉から電気炉15内にセットしたルツボ10に採取し
た。合金溶湯を800℃まで加熱した後、一部を直径5
5mm及び高さ10mmの鋳鉄製金型に鋳造した。ま
た、一部を一方向凝固装置20(図1)の断熱性鋳型2
1に注湯し、30秒後にチル板31を引き抜き、直径5
0mm及び高さ50mmの鋳塊を得た。
Example 2: Si: 19% by weight, Cu: 1.
An AC9B alloy containing 7 wt% and Mg: 1.5 wt% was prepared as follows and cast under different conditions. An AC9B alloy molten metal containing 70 ppm of P was prepared in a crucible 10 and a part of the molten alloy was cast at 800 ° C. in a cast iron mold having a diameter of 55 mm and a height of 10 mm. Ca concentration 40
Al-5% Ca mother alloy was added to the rest of the molten metal, aiming at ppm, and cast in the same cast iron mold. 50 kg of P9-free AC9B alloy was melted at 780 ° C. in a holding furnace, and the crucible 10 set in the electric furnace 15 was sampled from the holding furnace. After heating the alloy melt to 800 ° C, part of it has a diameter of 5
It was cast in a cast iron mold of 5 mm and a height of 10 mm. In addition, a part of the heat insulating mold 2 of the unidirectional solidification device 20 (FIG. 1) is used.
Pour in 1 and pull out the chill plate 31 after 30 seconds,
An ingot of 0 mm and a height of 50 mm was obtained.

【0027】別に保持炉から2kgの合金溶湯を断熱性
鋳型21の直上に設置した電気炉内のルツボ10に採取
し、800℃に加熱した後、Ca濃度50ppm及びP
濃度50ppmを目標としてAl−5%Ca母合金及び
Al−19%Cu−1.4%P母合金を添加した。次い
で、同じ条件下で一方向凝固装置20の断熱性鋳型21
に注湯し、直径50mm及び高さ50mmの鋳塊を得
た。各鋳塊の底部を3mm面削した後、面削面を発光分
光分析した。一部の鋳塊については、底部から20mm
面削して、発光分光分析に供した。表3には、AC9B
合金溶湯の合金組成計算値としてのP及びCa含有量,
P/Ca重量比,鋳造方法及び分析位置を示す。表4に
は、発光分光分析で求められたSiの分析結果を示す。
Separately, 2 kg of molten alloy was taken from the holding furnace into a crucible 10 in an electric furnace installed directly above the heat insulating mold 21, heated to 800 ° C., and then Ca concentration of 50 ppm and P.
Al-5% Ca master alloy and Al-19% Cu-1.4% P master alloy were added aiming at a concentration of 50 ppm. Then, under the same conditions, the heat-insulating mold 21 of the unidirectional solidification apparatus 20.
It was poured into and the ingot was obtained with a diameter of 50 mm and a height of 50 mm. After chamfering the bottom of each ingot by 3 mm, the chamfered surface was subjected to emission spectroscopic analysis. 20 mm from the bottom for some ingots
The surface was cut and subjected to emission spectroscopic analysis. Table 3 shows AC9B
P and Ca contents as calculated alloy composition values of molten alloy,
The P / Ca weight ratio, casting method and analysis position are shown. Table 4 shows the analysis results of Si obtained by the emission spectroscopic analysis.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】金型鋳造した試験番号10〜12では、C
a及びPが適正に含まれているか否かに拘らず、標準偏
差sが大きくなっていた。すなわち、繰返し測定ごとに
バラツキ(標準偏差)が大きく、測定結果に信頼性が低
い。Pのみを適正量で含む合金溶湯を一方向凝固させた
試験番号13,14では、標準偏差sが大きくなってい
た。適性量のP及びCaを含む合金溶湯を一方向凝固さ
せた試験番号15,16では、標準偏差sが小さく、高
信頼性の分析結果が得られた。しかし、適性量のP及び
Caを含む合金溶湯を一方向凝固させた場合でも、鋳塊
底部から20mmの位置を分析した試験番号17,18
では、標準偏差が若干大きくなっており、分析結果の信
頼性が低下していた。
In the test numbers 10 to 12 in which the die casting was performed, C was used.
The standard deviation s was large regardless of whether or not a and P were properly included. That is, the variation (standard deviation) is large in each repeated measurement, and the reliability of the measurement result is low. In test numbers 13 and 14 in which the molten alloy containing P in an appropriate amount was unidirectionally solidified, the standard deviation s was large. In Test Nos. 15 and 16 in which the alloy melt containing appropriate amounts of P and Ca was unidirectionally solidified, the standard deviation s was small, and highly reliable analysis results were obtained. However, even when the molten alloy containing an appropriate amount of P and Ca was unidirectionally solidified, the test numbers 17 and 18 at the position 20 mm from the bottom of the ingot were analyzed.
, The standard deviation was slightly larger, and the reliability of the analysis results was lower.

【0031】発光分光分析した部分の組織を光学顕微鏡
で観察すると、金型鋳造した試験番号10〜12では初
晶Siが約30μmと比較的粗く、分布も不均一であっ
た。これに対し、P/Ca重量比が制御されていない合
金溶湯を一方向凝固で直接水冷した試験番号13,14
では、初晶Siが30μm程度まで微細になっているも
のの、その分布が不均一であった。P及びCaが適正に
含まれている合金溶湯を一方向凝固した試験番号15,
16では、初晶Siが15μm以下と非常に微細化され
ていると共に、その分布も非常に均一であった。しか
し、同じ一方向凝固した鋳塊であっても、鋳塊の底面か
ら20mmの位置で分析した試験番号17,18では、
初晶Siが約27μmと粗くなっており、且つ分布も不
均一になっていた。また、底面から2mmまではチル板
31で冷却されたシェル層が生成しており、この部分で
の初晶Siは不均一に分布していた。したがって、この
部分を面削除去し、分析面42を出すことが必要であ
る。
When the structure of the portion subjected to the emission spectroscopic analysis was observed with an optical microscope, in the die cast test Nos. 10 to 12, the primary crystal Si was relatively coarse, about 30 μm, and the distribution was nonuniform. On the other hand, test Nos. 13 and 14 obtained by directly water-cooling an alloy melt whose P / Ca weight ratio was not controlled by unidirectional solidification
Then, although the primary crystal Si was fine to about 30 μm, its distribution was non-uniform. Test number 15 obtained by unidirectionally solidifying the molten alloy containing P and Ca properly,
In No. 16, the primary crystal Si was very fine with 15 μm or less, and the distribution was also very uniform. However, even with the same unidirectionally solidified ingot, in test numbers 17 and 18 analyzed at a position 20 mm from the bottom surface of the ingot,
The primary crystal Si was coarse with about 27 μm, and the distribution was nonuniform. Further, a shell layer cooled by the chill plate 31 was formed up to 2 mm from the bottom surface, and the primary crystal Si in this portion was unevenly distributed. Therefore, it is necessary to remove the surface of this portion and expose the analysis surface 42.

【0032】実施例3:試験番号3,4,6(A390
合金)と試験番号12,13,15(AC9B合金)に
ついて、他の合金元素Fe,Mg及びCuを分析した。
適性量のP及びCaを含む合金溶湯を一方向凝固させた
鋳塊から採取された試料6,15を分析したときの分析
結果は、金型鋳造による鋳塊やP及びCaの含有量が適
正でない合金溶湯を一方向凝固させた鋳塊から得られた
試料3,4,12,13を分析した場合に比較して、表
5に示すようにバラツキの少ない分析値を示した。この
ことから、本発明に従って採取された試料は、Si以外
の合金元素の分析にも有効であることが判る。
Example 3: Test Nos. 3, 4, 6 (A390
Other alloy elements Fe, Mg and Cu were analyzed for the alloy) and the test numbers 12, 13 and 15 (AC9B alloy).
The analysis results of samples 6 and 15 collected from the ingots obtained by unidirectionally solidifying the alloy melt containing appropriate amounts of P and Ca show that the ingots produced by die casting and the contents of P and Ca are appropriate. As shown in Table 5, compared with the case of analyzing the samples 3, 4, 12, and 13 obtained from the ingots obtained by unidirectionally solidifying the non-melted alloy melt, the analysis values showed little variation. From this, it is understood that the sample collected according to the present invention is also effective for the analysis of alloying elements other than Si.

【0033】[0033]

【表5】 [Table 5]

【0034】[0034]

【発明の効果】以上に説明したように、本発明において
は、P含有量,Ca含有量及びP/Ca重量比の調整し
た過共晶Al−Si合金溶湯を一方向凝固させることに
より、微細な初晶Siが均一に分散した組織をもつ鋳塊
が得られる。この鋳塊から採取された試料は、分光分析
結果の誤差要因となる偏析がないため、信頼性の高い発
光分光分析用試料として合金元素の含有量測定に使用さ
れる。また、分析時間が短時間であることから、操業条
件の制御もオンタイムで行うことができる。しかも、こ
の系の合金の組成測定では、従来では化学分析に頼らざ
るを得なかったものが、発光分光分析が可能になったこ
とからコストの大幅な削減が可能となる。
As described above, in the present invention, by finely unidirectionally solidifying the hypereutectic Al-Si alloy melt having the adjusted P content, Ca content and P / Ca weight ratio, An ingot having a structure in which various primary crystal Si are uniformly dispersed is obtained. The sample collected from this ingot has no segregation that causes an error in the spectroscopic analysis result, and is therefore used as a highly reliable emission spectroscopic analysis sample for measuring the content of alloying elements. Moreover, since the analysis time is short, control of operating conditions can be performed on time. Moreover, in the composition measurement of the alloy of this system, although it was conventionally necessary to rely on the chemical analysis, the emission spectroscopic analysis has become possible, so that the cost can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従った発光分光分析用試料となる鋳
塊を製造する装置
FIG. 1 is an apparatus for producing an ingot as a sample for emission spectroscopy according to the present invention.

【符号の説明】[Explanation of symbols]

10:ルツボ 15:電気炉 20:一
方向凝固装置 21:断熱性鋳型 22:金属体 23:凹
部 24:ベースプレート 30:冷却機構 31:チ
ル板 32:ノズル 33:冷却水 40:鋳
型キャビティ 41:ツバ状空間部 42:分析面
10: crucible 15: electric furnace 20: unidirectional solidification device 21: heat insulating mold 22: metal body 23: recessed part 24: base plate 30: cooling mechanism 31: chill plate 32: nozzle 33: cooling water 40: mold cavity 41: brim Space 42: Analysis surface

フロントページの続き (72)発明者 瀬尾 伸城 静岡県庵原郡蒲原町蒲原1丁目34番1号 株式会社日軽技研内 (72)発明者 堀川 宏 静岡県庵原郡蒲原町蒲原1丁目34番1号 株式会社日軽技研内(72) Inventor Shinjo Seo 1-34-1 Kambara, Kambara-cho, Awara-gun, Shizuoka Nipparu Giken Co., Ltd. No. Nichiritsu Giken Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溶解炉で合金組成計算値としてP/Ca
重量比が0.6〜6の条件下でP含有量及びCa含有量
をそれぞれ40〜130ppm及び6〜120ppmに
調整された過共晶Al−Si合金溶湯を断熱性鋳型に注
入し、前記合金溶湯を一方向凝固させて鋳塊とし、該鋳
塊から発光分光分析用試料を採取する過共晶Al−Si
合金の発光分光分析用試料の採取方法。
1. P / Ca as a calculated alloy composition value in a melting furnace
A hypereutectic Al-Si alloy molten metal having a P content and a Ca content adjusted to 40 to 130 ppm and 6 to 120 ppm, respectively, under a condition of a weight ratio of 0.6 to 6 was injected into a heat insulating mold, and the alloy Hypereutectic Al-Si obtained by unidirectionally solidifying a molten metal into an ingot, and collecting a sample for emission spectrometry from the ingot.
Method for collecting samples for emission spectroscopy of alloys.
【請求項2】 溶解炉で溶製された過共晶Al−Si合
金溶湯をルツボに移し、ルツボ中の溶湯にP及び/又は
Caを添加し、合金組成計算値としてP/Ca重量比:
0.6〜6,P含有量:40〜130ppm及びCa含
有量:6〜120ppmに調整した後、断熱性鋳型に注
入し、前記合金溶湯を一方向凝固させて鋳塊とし、該鋳
塊から発光分光分析用試料を採取する過共晶Al−Si
合金の発光分光分析用試料の採取方法。
2. A hypereutectic Al—Si alloy melt produced in a melting furnace is transferred to a crucible, P and / or Ca is added to the melt in the crucible, and a P / Ca weight ratio as an alloy composition calculation value:
After adjusting the content of 0.6 to 6, P: 40 to 130 ppm and the content of Ca: 6 to 120 ppm, the mixture is poured into a heat insulating mold, and the molten alloy is unidirectionally solidified to form an ingot. Hypereutectic Al-Si sample for emission spectroscopy
Method for collecting samples for emission spectroscopy of alloys.
【請求項3】 断熱性鋳型に注入された過共晶Al−S
i合金溶湯を、鋳型下部から供給される冷却水で直接冷
却し、一方向凝固させる請求項1又は2記載の発光分光
分析用試料の採取方法。
3. Hypereutectic Al-S injected into an adiabatic mold.
The method for collecting an emission spectroscopic analysis sample according to claim 1 or 2, wherein the molten i alloy is directly cooled by cooling water supplied from a lower portion of the mold to be unidirectionally solidified.
【請求項4】 請求項1〜3の何れかに記載の鋳塊を面
削し、冷却側端面から2〜10mmの位置を分析面とす
る発光分光分析用試料の採取方法。
4. A method for collecting a sample for emission spectroscopic analysis in which the ingot according to any one of claims 1 to 3 is chamfered and an analysis surface is located at a position 2 to 10 mm from the end surface on the cooling side.
【請求項5】 溶解炉から溶湯が注入される断熱性鋳型
と、該断熱性鋳型の下部外周に装着された金属体と、ベ
ースプレートを介し前記金属体に対向して離脱可能に配
置されるチル板と、該チル板の下面に冷却水を直接噴射
させるように配置したノズルとを備え、鋳型キャビティ
の一部としてツバ状空間部が前記金属体と前記ベースプ
レートとの間に形成されるように、前記ベースプレート
に対向する前記金属体の表面に凹部が形成されている発
光分光分析用試料採取一方向凝固装置。
5. An adiabatic mold into which molten metal is injected from a melting furnace, a metal body mounted on the outer periphery of the lower part of the adiabatic mold, and a chill that is detachably arranged facing the metal body via a base plate. A plate and a nozzle arranged to directly inject cooling water to the lower surface of the chill plate, so that a brim-shaped space is formed between the metal body and the base plate as a part of the mold cavity. A sampling unidirectional solidification apparatus for emission spectroscopic analysis, wherein a recess is formed on the surface of the metal body facing the base plate.
【請求項6】 溶解炉から採取された過共晶Al−Si
合金を保持し、P及び/又はCaを添加するルツボと、
該ルツボを加熱する電気炉とを備え、前記ルツボの底部
から前記過共晶Al−Si合金溶湯が断熱性鋳型に注入
されるように、前記ルツボの下方に断熱性鋳型を配置し
た請求項5記載の一方向凝固装置。
6. A hypereutectic Al-Si sample taken from a melting furnace.
A crucible for holding the alloy and adding P and / or Ca;
An electric furnace for heating the crucible is provided, and a heat insulating mold is arranged below the crucible so that the hypereutectic Al-Si alloy molten metal is injected into the heat insulating mold from the bottom of the crucible. The unidirectional solidification device described.
JP6019189A 1994-02-16 1994-02-16 Collection and solidification of sample for emission spectral analysis of hypereutectic al-si alloy Pending JPH07229892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6019189A JPH07229892A (en) 1994-02-16 1994-02-16 Collection and solidification of sample for emission spectral analysis of hypereutectic al-si alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6019189A JPH07229892A (en) 1994-02-16 1994-02-16 Collection and solidification of sample for emission spectral analysis of hypereutectic al-si alloy

Publications (1)

Publication Number Publication Date
JPH07229892A true JPH07229892A (en) 1995-08-29

Family

ID=11992399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6019189A Pending JPH07229892A (en) 1994-02-16 1994-02-16 Collection and solidification of sample for emission spectral analysis of hypereutectic al-si alloy

Country Status (1)

Country Link
JP (1) JPH07229892A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077669A (en) * 2012-10-09 2014-05-01 Daiki Aluminium Industry Co Ltd Manufacturing method of aluminum alloy reference standard for emission spectral analysis, and aluminum alloy reference standard for emission spectral analysis manufactured by the same method
CN103884578A (en) * 2014-02-20 2014-06-25 山西太钢不锈钢股份有限公司 Method for detecting contents of elements in alloy raw materials
JP2015219172A (en) * 2014-05-20 2015-12-07 住友金属鉱山株式会社 Method for preparing reference sample for analyzing cadmium metal
JP2020082140A (en) * 2018-11-27 2020-06-04 昭和電工株式会社 Mold for production of solid sample for composition analysis of aluminum

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077669A (en) * 2012-10-09 2014-05-01 Daiki Aluminium Industry Co Ltd Manufacturing method of aluminum alloy reference standard for emission spectral analysis, and aluminum alloy reference standard for emission spectral analysis manufactured by the same method
CN103884578A (en) * 2014-02-20 2014-06-25 山西太钢不锈钢股份有限公司 Method for detecting contents of elements in alloy raw materials
JP2015219172A (en) * 2014-05-20 2015-12-07 住友金属鉱山株式会社 Method for preparing reference sample for analyzing cadmium metal
JP2020082140A (en) * 2018-11-27 2020-06-04 昭和電工株式会社 Mold for production of solid sample for composition analysis of aluminum

Similar Documents

Publication Publication Date Title
KR100683365B1 (en) Semi-solid concentration processing of metallic alloys
US6622774B2 (en) Rapid solidification investment casting
US20110193273A1 (en) Process and apparatus for producing semi-solidified slurry of iron alloy
JPH07229892A (en) Collection and solidification of sample for emission spectral analysis of hypereutectic al-si alloy
US4273180A (en) Process and apparatus for continuous casting of metal in electromagnetic field
CN105358723A (en) Method of producing aluminium alloys containing lithium
CN109047685A (en) A method of preparing steel ingot
CN108559891A (en) Aluminium, zinc, magnesium, the wrought aluminium alloy of scandium system and its manufacturing method
JPH03172731A (en) Method and device for preparing standard sample of zinc base metal
CN110079751A (en) A kind of preparation method of made of Al-Cu alloy supersaturated solid solution
Chen et al. Experimental Investigations on Solidification of 500-kg Steel Ingots with Laboratory Trials
RU2820681C1 (en) Method of producing melt from thermite mixture and crucible for its implementation
Kazup et al. High purity primary aluminium casting by Indutherm CC3000 semi-continuous casting equipment
JP2004009064A (en) Method for producing continuously cast slab
Flemings New solidification processes and products
Nikitin et al. Influence of methods of producing the AlTi master alloy on its structure and efficiency in the grain refinement of aluminum alloy
RU2081719C1 (en) Method of ingots production
SU532460A1 (en) Method for producing ingots
RU2025213C1 (en) Ingot manufacturing method
BE1011970A3 (en) Process development of a metal jacket on a tree.
RU2051768C1 (en) Ingot making method
JPH0217260B2 (en)
RU2516178C2 (en) Method of hollow part casting
JPS63268553A (en) Apparatus for casting metal or alloy having fine crystalline grain
RU1799674C (en) Method of preparing liquid metal at making belts in roll-type casting molds