JPH07224330A - Production of non-burning agglomerate - Google Patents

Production of non-burning agglomerate

Info

Publication number
JPH07224330A
JPH07224330A JP1816194A JP1816194A JPH07224330A JP H07224330 A JPH07224330 A JP H07224330A JP 1816194 A JP1816194 A JP 1816194A JP 1816194 A JP1816194 A JP 1816194A JP H07224330 A JPH07224330 A JP H07224330A
Authority
JP
Japan
Prior art keywords
powder
mixture
product
water content
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1816194A
Other languages
Japanese (ja)
Inventor
Hidetoshi Noda
英俊 野田
Masanori Nagano
誠規 長野
Sumiyuki Kishimoto
純幸 岸本
Kazumasa Wakimoto
一政 脇元
Atsushi Sakai
敦 酒井
Kenichi Nemoto
謙一 根本
Minoru Ueda
稔 上田
Kiyoshi Omizo
潔 大溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEIHAN KK
JFE Engineering Corp
Original Assignee
KEIHAN KK
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEIHAN KK, NKK Corp, Nippon Kokan Ltd filed Critical KEIHAN KK
Priority to JP1816194A priority Critical patent/JPH07224330A/en
Publication of JPH07224330A publication Critical patent/JPH07224330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce good non-burning agglomerate without degrading moldability, molding strength, etc., by adding a specific amt. of molasses to a powder mixture composed of sintering returns, etc., and dust of fine powder, kneading the mixture, further humidifying the mixture to a specific water content and molding the mixture. CONSTITUTION:The sintering returns or sintering minus sieve powder (blast furnace product minus sieve powder, under sieve product) and the dust having relatively fine grain sizes are fed out and are mixed by mixer 34, 35. The resulted powder mixture is supplied through an accepting and compounding vessel 36 into a mixing machine 37 where 1 to 6wt.% molasses or a diluting liquid contg. the molasses is added as a binder to the powder mixture and the powder mixture is kneaded. The resulted raw material mixture is supplied via a kneader 39 to a molding machine 40 and is agglomerated to >=1mm. At this time, the water is properly added to the raw material mixture in the mixers 34, 35 and mixing machine 37 to adjust the water content in the raw material mixture until the total water content of molded product attains 1.5 to 4.5wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉または直接還元炉
等の冶金反応炉用原料用として、好適な非焼成塊成鉱の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-calcined agglomerated ore suitable as a raw material for a metallurgical reaction furnace such as a blast furnace or a direct reduction furnace.

【0002】[0002]

【従来の技術】例えば図8に示すように、焼結鉱を製造
する場合は、配合槽1において大略粒径8mm以下の粉
鉄鉱石に生石灰、石灰石等の媒溶剤を成品中の塩基度
(CaO/SiO2 )の値が1.0〜2.5程度となる
ように調整し、さらに燃料用粉コークスを添加する。次
いで、ドラム式のミキサー2及び3において所要量の水
分をこれに添加、混合し、造粒された後に、サージホッ
パー6に投入される。次いで、造粒された焼結原料はロ
ールフィーダー7によって切り出されて、直前に既に床
敷ホッパー9より切り出されている床敷鉱と共に焼結機
4のパレット上に給鉱され、点火され、焼結が行われな
がら排鉱部の方向へ移動して行く。焼結後は、粗破砕、
冷却、篩分け工程を経て、概ね4〜50mmの粒径を成
品とし、これを高炉に投入する一方、4mm以下の粒径
は返鉱となって焼結工程で再焼成される。また、高炉搬
送過程等で発生する4mm以下の粉を途中に設けられた
篩にて除去したものは通常、焼結篩下粉(庫下粉)とし
てヤードに戻され焼結原料の一部として返鉱と同様に再
焼成される。この返鉱及び篩下粉は、焼結工程にて既に
焼結したものであり、これらを再循環することは焼成コ
ストおよび輸送コストの面から極めて不合理である。
2. Description of the Related Art For example, as shown in FIG. 8, when a sintered ore is manufactured, a powdery iron ore having a particle size of approximately 8 mm or less is mixed with a solvent such as quick lime or limestone in a mixing tank 1 to obtain a basicity ( The value of CaO / SiO 2 ) is adjusted to be about 1.0 to 2.5, and powder coke for fuel is further added. Then, a required amount of water is added to and mixed with the drum type mixers 2 and 3 and then granulated, and then charged into the surge hopper 6. Next, the granulated sintering raw material is cut out by the roll feeder 7 and fed to the pallet of the sintering machine 4 together with the bedding ore already cut out immediately before from the bedding hopper 9, ignited and fired. It moves in the direction of the mining department while the connection is being made. After sintering, coarse crushing,
After a cooling and sieving process, a product having a particle size of approximately 4 to 50 mm is made into a product, and this product is put into a blast furnace, while a particle size of 4 mm or less is returned ore and refired in a sintering process. In addition, the powder of 4 mm or less generated in the process of conveying the blast furnace, etc. removed by a sieve provided on the way is usually returned to the yard as a powder under the sieve (undergarden powder) and is used as a part of the sintering raw material. It is re-fired in the same manner as return ore. The returned ore and undersize powder have been already sintered in the sintering process, and recirculating them is extremely unreasonable in terms of firing cost and transportation cost.

【0003】そこで、これらを団塊化し、高炉等に装入
可能な成品を製造する製造方法が提案されている。例え
ば、特開昭58−123839号公報には、20〜25
重量%の水を添加、混練したボール状のポルトランドセ
メントを核とし、これに返鉱を付着結合させて団鉱化
し、養生後、団鉱成品として使用する焼結返鉱の団鉱法
が開示されている。
Therefore, a manufacturing method has been proposed in which these are agglomerated to manufacture a product which can be charged into a blast furnace or the like. For example, JP-A-58-123839 discloses 20-25.
Disclosed is a sinter return ore lumping method in which ball-like Portland cement, to which wt% water has been added and kneaded, is used as a core, and return slag is adhered and bonded to this to be slag. Has been done.

【0004】しかしながら、上記の従来方法において
は、セメントが硬化して強度発現するまでに長時間を要
するため、少なくとも48時間以上の養生期間が必要に
なる。さらに、成品養生を行うためにバンカーあるいは
ヤードスペースを確保する必要性もある。
However, in the above-mentioned conventional method, it takes a long time for the cement to harden and develop its strength, so that a curing period of at least 48 hours or more is required. In addition, it is necessary to secure a bunker or a yard space for product curing.

【0005】このような欠点を補うために特公昭58−
53054号公報及び特公昭59−33648号公報で
は連続急速養生方法が提案されているが、このような養
生方法は養生塔や蒸気ガス吹込装置等の多くの付帯設備
を設置する必要があり、広面積の敷地を要し、設備コス
トが高い。
In order to compensate for such drawbacks, Japanese Patent Publication No. 58-
Although a continuous rapid curing method is proposed in Japanese Patent Publication No. 53054 and Japanese Patent Publication No. 59-33648, such a curing method requires many auxiliary equipment such as a curing tower and a steam gas blowing device to be installed. The area is large and the equipment cost is high.

【0006】[0006]

【発明が解決しようとする課題】ところで、焼結返鉱を
塊成化する場合に、混合原料中の水分含有量が過剰にな
ると成品の軟化が生じ、逆に混合原料中の水分含有量が
不足すると圧縮成型性が劣化して、成品のDI強度や歩
留りが低下するという問題点がある。
By the way, in the case of agglomeration of sintered slag ore, if the water content in the mixed raw material becomes excessive, the product softens, and conversely, the water content in the mixed raw material is increased. If the amount is insufficient, there is a problem that the compression moldability is deteriorated and the DI strength and the yield of the product are lowered.

【0007】本発明は、上記問題点を解決するためにな
されたものであって、成型性や成品強度等を低下させる
ことなく良好な非焼成塊成鉱を製造することができる方
法を提供することを目的とする。
The present invention has been made in order to solve the above problems, and provides a method capable of producing a good non-calcined agglomerated ore without lowering the moldability and the strength of the product. The purpose is to

【0008】[0008]

【課題を解決するための手段】本発明に係る非焼成塊成
鉱の製造方法は、焼結返鉱または焼結篩下粉(高炉成品
篩下粉、庫下品)の1種あるいは2種と、これより相対
的に粒度の細かいダストの混合粉に、1〜6重量%の糖
蜜あるいは前記量の糖蜜を含有した希釈液をバインダー
として添加して混練し、成型機にて1mm以上に塊成化
する際に、成品製造時の総水分量が1.5〜4.5重量
%となるように混合原料中の水分を調整することを特徴
とする。
The method for producing a non-sintered agglomerated ore according to the present invention comprises one or two types of sinter reclaimed or sintered sieving powder (blast furnace product sieving powder, warehousing product). , 1 to 6% by weight of molasses or a diluent containing the above amount of molasses is added as a binder to a mixed powder of dust having a relatively small particle size, and kneaded, and agglomerated to 1 mm or more with a molding machine. It is characterized in that the water content in the mixed raw material is adjusted so that the total water content during the production of the product is 1.5 to 4.5% by weight.

【0009】[0009]

【作用】図2に示すように、焼結返鉱51および焼結篩
下粉52からなる混合物に細粒ダスト53を混合する
と、粗い返鉱51および篩下粉52の粒子間に細粒ダス
ト53が充填され、全体としての成型性や結合性が向上
し、塊成鉱の強度が増大する。
As shown in FIG. 2, when the fine particle dust 53 is mixed with the mixture of the sintered return ore 51 and the sintered undersize powder 52, the fine dust 53 is formed between the particles of the coarse returned ore 51 and the undersize powder 52. 53 is filled, the overall formability and bondability are improved, and the strength of the agglomerated ore is increased.

【0010】ここで、混合原料に添加される水分は粉体
間の結合性及び凝集性を高める働きがあり、この添加量
が成品製造時の総水分量で1.5重量%を上回ると良好
な圧縮成型性が得られる。
Here, the water added to the mixed raw material has a function of enhancing the binding property and the cohesiveness between the powders, and it is preferable that the addition amount exceeds 1.5% by weight in the total water amount when the product is manufactured. Good compression moldability is obtained.

【0011】また、添加水分は粘度の高い糖蜜の分散性
を改善する効果もあり、ブリケットの強度向上が図られ
る。しかしながら添加水分量が成品製造時の総水分量で
4.5重量%を越えて過剰になると成品の軟化が生じる
ので、搬送時のハンドリングに耐え得る圧潰強度(例え
ば30kg/P以上)を得られない。
The added water also has the effect of improving the dispersibility of molasses having a high viscosity, so that the strength of the briquette can be improved. However, if the added water content exceeds 4.5% by weight in the total water content during product manufacture and becomes excessive, product softening occurs, so that crushing strength (eg, 30 kg / P or more) that can withstand handling during transportation can be obtained. Absent.

【0012】[0012]

【実施例】以下、添付の図面を参照しながら本発明の実
施例について説明する。図1は本発明の実施例に係る非
焼成塊成鉱の製造方法を示すプロセスフロー図である。
この実施例では成型機によるブリケットの製造工程につ
いて説明するが、成型機の代わりとして造粒機を用いて
も同様の効果が得られることは勿論である(成品はペレ
ットとなる)。焼結返鉱、焼結篩下粉およびダストは配
合槽31〜33にそれぞれ貯鉱され、各定量切出装置2
0によって所定の配合割合となるようにコンベア12上
に切出される。なお、ダストは集塵機などで集められた
細粒のものを用いるが、これは小ホッパ30からコンベ
ア11に移載され、コンベア11により第1配合槽31
に輸送されるようになっている。これらの原料はコンベ
ア12,13により第1ミキサー34および第2ミキサ
ー35に輸送され、混ぜ合される。この混練工程におい
て必要に応じて調湿(水分添加)し、原料はコンベア1
4,15を経て受入配合槽36に輸送される。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a process flow diagram showing a method for producing a non-fired agglomerated ore according to an embodiment of the present invention.
In this embodiment, the briquette manufacturing process using a molding machine will be described, but it goes without saying that the same effect can be obtained by using a granulating machine instead of the molding machine (the product becomes pellets). Sintered ore, sintered undersize powder and dust are stored in the mixing tanks 31 to 33, respectively, and each fixed quantity cutting device 2
0 is cut out on the conveyor 12 so as to have a predetermined mixing ratio. It should be noted that the fine particles collected by a dust collector or the like are used as the dust, which is transferred from the small hopper 30 to the conveyor 11 and is conveyed by the conveyor 11 to the first mixing tank 31.
To be shipped to. These raw materials are transported to the first mixer 34 and the second mixer 35 by the conveyors 12 and 13 and mixed. In this kneading step, the humidity is adjusted (moisture added) as necessary, and the raw material is the conveyor 1
It is transported to the receiving compounding tank 36 via 4 and 15.

【0013】発生粉貯鉱槽43にはグリズリまたは振盪
篩42で篩われた成品発生粉が貯えられており、これら
及び原料を定量切出装置24によって所定の配合比率で
切出し、所定の配合比率で原料に配合する。そして、こ
れにバインダー添加設備38より送られてきた糖蜜を混
合機37(通常はハグミル)において混合し、混合原料
中の水分を調整し、これを混練する。
The generated powder storage tank 43 stores the product generated powder that has been sieved by the grizzly or shaking sieve 42, and these and the raw materials are cut out at a predetermined mixing ratio by the quantitative cutting device 24, and the predetermined mixing ratio is set. Blend with the raw material. Then, the molasses sent from the binder addition equipment 38 is mixed in a mixer 37 (usually a hug mill) to adjust the water content in the mixed raw material and kneaded.

【0014】この調湿(水分添加)量は、成品製造時の
総水分量が1.5〜4.5重量%の範囲となるように予
め原料及びバインダー等から持ち込まれる含有水分に基
づき算出された値、あるいは各原料または混合原料を測
定した水分値との偏差分に相当する。無論、水分の調整
は前記総水分量の値をフィードバックすることにより第
1及び第2のミキサー34,35にて行なうことも可能
である。
The amount of humidity adjustment (addition of water) is calculated based on the water content previously brought in from the raw materials and the binder so that the total water content during the production of the product is in the range of 1.5 to 4.5% by weight. Value or the deviation from the measured water content of each raw material or mixed raw material. Of course, the water content can be adjusted by feeding back the value of the total water content in the first and second mixers 34 and 35.

【0015】ここで、成品製造時の総水分量とは、使用
原料、バインダー、添加水分の全てを含む混合原料中の
絶対水分量のことをいう。なお、バインダー(糖蜜)の
添加量はコスト的な観点からも、極力少なくすることが
望ましい。本実施例では糖蜜添加量を1〜6重量%とし
ている。糖蜜添加量の下限値を1重量%としたのは、1
重量%未満では成型性や成型後の強度が悪化するためで
ある。一方、糖蜜添加量の上限値を6重量%としたの
は、6重量%を超えるとバインダーの固化に時間がかか
り、成型直後の圧潰強度が低下するためである。
Here, the total water content at the time of manufacturing the product means the absolute water content in the mixed material containing all of the used materials, the binder and the added water. From the viewpoint of cost, it is desirable to minimize the amount of the binder (molasses) added. In this embodiment, the molasses addition amount is set to 1 to 6% by weight. The lower limit of molasses addition amount is set to 1% by weight is 1
This is because if the content is less than wt%, the moldability and the strength after molding deteriorate. On the other hand, the upper limit of the molasses addition amount is set to 6% by weight, because if it exceeds 6% by weight, it takes time for the binder to solidify, and the crush strength immediately after molding is lowered.

【0016】次いで、ニーダー39より成型機40に供
給された混合原料は塊成化され、グリズリまたは振盪篩
42を経て搬出される。この場合に、ロール成型圧力
は、原料条件によって異なるが、概ね0.5〜3.5ト
ン/cm程度の範囲とすることが望ましい。
Next, the mixed raw material supplied from the kneader 39 to the molding machine 40 is agglomerated and conveyed through the grizzly or shaking sieve 42. In this case, the roll forming pressure is preferably in the range of about 0.5 to 3.5 ton / cm, though it depends on the raw material conditions.

【0017】表1に本発明の実施例に用いた焼結返鉱の
粒度分布を示す。表2には実施例に用いた焼結返鉱の化
学成分を示す。表3には実施例に用いた焼結篩下粉の粒
度分布を示す。表4には実施例に用いた焼結篩下粉の化
学成分を示す。表5には実施例に用いたダストの粒度分
布を示す。表6には実施例に用いたダストの化学成分を
示す。なお、それぞれの組成の成分表示は重量%であ
る。
Table 1 shows the particle size distribution of the sintered reclaimed ore used in the examples of the present invention. Table 2 shows the chemical composition of the sintered slag ore used in the examples. Table 3 shows the particle size distribution of the sintered undersize powder used in the examples. Table 4 shows the chemical components of the sintered undersize powder used in the examples. Table 5 shows the particle size distribution of the dust used in the examples. Table 6 shows the chemical components of the dust used in the examples. In addition, the component indication of each composition is% by weight.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【表5】 [Table 5]

【0023】[0023]

【表6】 [Table 6]

【0024】図3は、横軸に温度をとり、縦軸に粘度を
とって、各種バインダー材料における両者の関係を示す
特性図である。図中、曲線Aは糖蜜を、曲線Bはデキス
トリン1を、曲線Cはアルコール廃液1を、曲線Dはア
ルコール廃液2を、曲線Eはデキストリン2を、それぞ
れ示す。図から明らかなように、バインダーに用いる糖
蜜はそれ自身の粘度が高く、結合作用をもたらすが、圧
縮成型過程あるいは成型後に水分が蒸発することによ
り、短時間で固化し強固な結合状態を示す。なお、液送
可能限界は粘度1×103 のところにあり、これを上回
る粘度の液は実質的に輸送管を通過できない。
FIG. 3 is a characteristic diagram showing the relationship between various binder materials, with the horizontal axis representing temperature and the vertical axis representing viscosity. In the figure, curve A shows molasses, curve B shows dextrin 1, curve C shows alcohol waste solution 1, curve D shows alcohol waste solution 2, and curve E shows dextrin 2. As is clear from the figure, molasses used as a binder has a high viscosity itself and brings about a binding action, but it solidifies in a short time due to evaporation of water after the compression molding process or after molding, and shows a strong bonded state. The liquid transferable limit is at a viscosity of 1 × 10 3 , and a liquid having a viscosity exceeding this cannot substantially pass through the transport pipe.

【0025】表7にバインダーとして用いる糖蜜の主要
成分(重量%)を示す。表8に実施例1及び2の原料配
合条件をそれぞれ示す。なお、表8においてバインダー
および水の添加量は焼結返鉱、焼結篩下粉、ダストの粉
体原料総重量(100%)に対する外掛割合を示す。
Table 7 shows the main components (% by weight) of molasses used as a binder. Table 8 shows the raw material mixing conditions of Examples 1 and 2, respectively. In addition, in Table 8, the addition amounts of the binder and water are the ratios of the sinter reclaimed powder, the sinter undersize powder, and the dust to the total weight (100%) of the powder raw material.

【0026】[0026]

【表7】 [Table 7]

【0027】[0027]

【表8】 [Table 8]

【0028】このような一連の装置において、表1〜表
7に示す原料及びバインダーを用いて、表8に示す配合
にて調合された実施例1,2の混合原料をそれぞれ使用
するという条件で、混合原料中の総水分量を種々変え、
成型されたブリケットの圧潰強度およびドラム強度(D
I強度)につきそれぞれ調べた。その結果を図4乃至図
7にそれぞれ示す。
In such a series of devices, the raw materials and binders shown in Tables 1 to 7 were used, and the mixed raw materials of Examples 1 and 2 prepared in the formulations shown in Table 8 were used. , Variously changing the total water content in the mixed raw materials,
Crush strength and drum strength of molded briquette (D
I intensity). The results are shown in FIGS. 4 to 7, respectively.

【0029】図4は、横軸に成品製造時の総水分量(重
量%)をとり、縦軸にブリケットの圧潰強度(kg/
P)をとって、表8の実施例1に示す混合原料を用いて
成型した成品の硬化速度について調べた結果を示すグラ
フ図である。図中、曲線Fは成型から1時間経過した結
果を、曲線Gは成型から24時間経過した結果をそれぞ
れ示す。
In FIG. 4, the horizontal axis represents the total water content (% by weight) at the time of manufacturing the product, and the vertical axis represents the crushing strength of briquettes (kg /
9 is a graph showing the results of investigating the curing rate of a product molded from the mixed raw material shown in Example 1 of Table 8 by taking P). In the figure, a curve F shows the result after 1 hour from the molding, and a curve G shows the result after 24 hours from the molding.

【0030】図5は、横軸に成品製造時の総水分量(重
量%)をとり、縦軸に成品DI強度(+15mm%)をと
って、表8の実施例1に示す混合原料を用いて成型した
成品のドラム強度の変化について調べた結果を示すグラ
フ図である。図中、曲線Hは成型から1時間経過した結
果を、曲線Jは成型から24時間経過した結果をそれぞ
れ示す。
In FIG. 5, the horizontal axis represents the total water content (% by weight) at the time of manufacturing the product, and the vertical axis represents the product DI strength (+15 mm%). The mixed raw materials shown in Example 1 of Table 8 were used. It is a graph which shows the result of having investigated about the change of the drum strength of the product molded by. In the figure, a curve H shows the result 1 hour after the molding, and a curve J shows the result 24 hours after the molding.

【0031】図6は、横軸に成品製造時の総水分量(重
量%)をとり、縦軸にブリケットの圧潰強度(kg/
P)をとって、表8の実施例2に示す混合原料を用いて
成型した成品の硬化速度について調べた結果を示すグラ
フ図である。図中、曲線Kは成型から1時間経過した結
果を、曲線Lは成型から24時間経過した結果をそれぞ
れ示す。
In FIG. 6, the horizontal axis represents the total water content (% by weight) at the time of product manufacturing, and the vertical axis represents the crushing strength of briquettes (kg /
9 is a graph showing the result of examining P) and measuring the curing rate of an article molded using the mixed raw material shown in Example 2 of Table 8. FIG. In the figure, a curve K shows the result of 1 hour after the molding, and a curve L shows the result of 24 hours after the molding.

【0032】図7は、横軸に成品製造時の総水分量(重
量%)をとり、縦軸に成品DI強度(+15mm%)をと
って、表8の実施例2に示す混合原料を用いて成型した
成品のドラム強度の変化について調べた結果を示すグラ
フ図である。図中、曲線Mは成型から1時間経過した結
果を、曲線Nは成型から24時間経過した結果をそれぞ
れ示す。これらの結果より明らかなように、製造時の混
合原料中の総水分量を1.5〜4.5重量%に制御する
ことにより強固な塊成鉱を得ることができる。
In FIG. 7, the horizontal axis represents the total water content (% by weight) at the time of manufacturing the product and the vertical axis represents the product DI strength (+15 mm%), and the mixed raw materials shown in Example 2 of Table 8 were used. It is a graph which shows the result of having investigated about the change of the drum strength of the product molded by. In the figure, a curve M shows the result 1 hour after the molding, and a curve N shows the result 24 hours after the molding. As is clear from these results, a strong agglomerated ore can be obtained by controlling the total water content in the mixed raw material at the time of production to 1.5 to 4.5% by weight.

【0033】[0033]

【発明の効果】本発明方法によれば従来法に比較して、
成型時の圧縮成型性や圧潰強度、DI強度を低下させる
ことなく、焼結返鉱、焼結篩下粉、ダスト等を強固に塊
成化することができる。
According to the method of the present invention, compared with the conventional method,
It is possible to strongly agglomerate sintered reclaimed mineral powder, sintered undersize powder, dust and the like without lowering the compression moldability, crushing strength and DI strength during molding.

【0034】また、焼結返鉱、焼結篩下粉、ダストとい
った本来循環再処理、再焼成を行っていた原料を塊成化
し、これを高炉等の原料として使用することができるた
め、焼結コスト及び各種原単位の低減、焼結設備費、保
全コストの削減を達成することができる。さらに、資源
の有効活用、環境保全への貢献といった波及効果をもた
らすことができる。
In addition, since the raw material which was originally subjected to the cyclic reprocessing and re-sintering such as the sintered sinter ore, the sintered sieve powder, and the dust can be agglomerated and used as the raw material for the blast furnace, etc. It is possible to reduce the binding cost and various basic units, the sintering equipment cost, and the maintenance cost. In addition, ripple effects such as effective use of resources and contribution to environmental conservation can be brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る非焼成塊成鉱の製造方法
を示すプロセスフロー図。
FIG. 1 is a process flow diagram showing a method for producing a non-fired agglomerated ore according to an embodiment of the present invention.

【図2】本発明方法により製造された塊成物の構造概念
図。
FIG. 2 is a structural conceptual diagram of an agglomerate produced by the method of the present invention.

【図3】各種バインダー材料における粘度と温度との関
係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between viscosity and temperature of various binder materials.

【図4】本発明方法の各実施例における成品の圧潰強度
を示すグラフ図。
FIG. 4 is a graph showing the crush strength of a product in each example of the method of the present invention.

【図5】本発明方法の各実施例における成品の圧潰強度
を示すグラフ図。
FIG. 5 is a graph showing the crush strength of a product in each example of the method of the present invention.

【図6】本発明方法の各実施例における成品のドラム強
度(Dl)を示すグラフ図。
FIG. 6 is a graph showing the drum strength (Dl) of the product in each example of the method of the present invention.

【図7】本発明方法の各実施例における成品のドラム強
度(Dl)を示すグラフ図。
FIG. 7 is a graph showing the drum strength (Dl) of the product in each example of the method of the present invention.

【図8】従来の焼結鉱の製造工程を説明するためのプロ
セスフロー図である。
FIG. 8 is a process flow diagram for explaining a conventional sinter production process.

【符号の説明】[Explanation of symbols]

31,32,33,36,43…配合槽、34,35…
ミキサー、37…混合機、38…バインダ添加設備、4
0…成型機、41…成品槽、42…振盪篩
31, 32, 33, 36, 43 ... Blending tank, 34, 35 ...
Mixer, 37 ... Mixer, 38 ... Binder addition equipment, 4
0 ... Molding machine, 41 ... Product tank, 42 ... Shaking sieve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長野 誠規 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 岸本 純幸 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 脇元 一政 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 酒井 敦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 根本 謙一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 上田 稔 京都府京都市中京区新町通四条上ル小結棚 町429番地 株式会社ケイハン内 (72)発明者 大溝 潔 京都府京都市中京区新町通四条上ル小結棚 町429番地 株式会社ケイハン内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masanori Nagano 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) 1-2-1 Marunouchi, Chiyoda-ku, Tokyo No. Nippon Steel Pipe Co., Ltd. (72) Inventor Kazumasa Wakimoto 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Atsushi Sakai 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Pipe Co., Ltd. (72) Inventor Kenichi Nemoto 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Minor Ueda 429 Shinjo-dori, Komachitan-cho, Shinmachi-dori, Nakagyo-ku, Kyoto, Kyoto Prefecture Address: Keihan Co., Ltd. (72) Inventor: Kiyoshi Omizo 429, Shinmachi-dori Shijo-Kami-Kanatancho, Nakagyo-ku, Kyoto-shi, Kyoto

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 焼結返鉱または焼結篩下粉(高炉成品篩
下粉、庫下品)の1種あるいは2種と、これより相対的
に粒度の細かいダストの混合粉に、1〜6重量%の糖蜜
あるいは前記量の糖蜜を含有した希釈液をバインダーと
して添加して混練し、成型機にて1mm以上に塊成化す
る際に、成品製造時の総水分量が1.5〜4.5重量%
となるように混合原料中の水分を調整することを特徴と
する非焼成塊成鉱の製造方法。
1. A mixed powder of 1 or 2 kinds of sinter reclaimed or sintered sieving powder (blast furnace product sieving powder, warehousing product) and dust having a finer particle size than 1 to 6 When the weight% molasses or a diluting solution containing the above molasses is added as a binder and kneaded and agglomerated with a molding machine to 1 mm or more, the total water content at the time of manufacturing the product is 1.5 to 4 0.5% by weight
A method for producing a non-calcined agglomerated ore, comprising adjusting the water content in the mixed raw material so that
JP1816194A 1994-02-15 1994-02-15 Production of non-burning agglomerate Pending JPH07224330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1816194A JPH07224330A (en) 1994-02-15 1994-02-15 Production of non-burning agglomerate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1816194A JPH07224330A (en) 1994-02-15 1994-02-15 Production of non-burning agglomerate

Publications (1)

Publication Number Publication Date
JPH07224330A true JPH07224330A (en) 1995-08-22

Family

ID=11963892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1816194A Pending JPH07224330A (en) 1994-02-15 1994-02-15 Production of non-burning agglomerate

Country Status (1)

Country Link
JP (1) JPH07224330A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256737A (en) * 2008-04-17 2009-11-05 Kobe Steel Ltd Method for controlling furnace-top gas temperature in blast furnace
KR101018251B1 (en) * 2003-12-23 2011-03-03 재단법인 포항산업과학연구원 Briquette for steelmaking material using byproducts of steelmaking and method for manufacturing the same
JP2011111662A (en) * 2009-11-30 2011-06-09 Jfe Steel Corp Method for producing molded raw material for producing reduced iron
US8206487B2 (en) 2007-07-27 2012-06-26 Kobe Steel, Ltd. Method for producing carbon composite metal oxide briquettes
JP2020063491A (en) * 2018-10-18 2020-04-23 日鉄日新製鋼株式会社 Method for manufacturing agglomerate for steel making

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018251B1 (en) * 2003-12-23 2011-03-03 재단법인 포항산업과학연구원 Briquette for steelmaking material using byproducts of steelmaking and method for manufacturing the same
US8206487B2 (en) 2007-07-27 2012-06-26 Kobe Steel, Ltd. Method for producing carbon composite metal oxide briquettes
JP2009256737A (en) * 2008-04-17 2009-11-05 Kobe Steel Ltd Method for controlling furnace-top gas temperature in blast furnace
JP2011111662A (en) * 2009-11-30 2011-06-09 Jfe Steel Corp Method for producing molded raw material for producing reduced iron
JP2020063491A (en) * 2018-10-18 2020-04-23 日鉄日新製鋼株式会社 Method for manufacturing agglomerate for steel making

Similar Documents

Publication Publication Date Title
CN101725206B (en) Iron ore tailing wall body autoclaved brick and preparation method thereof
KR100797839B1 (en) Briquettes and method for manufacturing the same
US5100464A (en) Steel mill by-product material briquettes and pellets
KR20120049377A (en) Method for producing briquettes, method for producing reduced metal, and method for separating zinc or lead
CN113166844B (en) Iron ore powder agglomerate production method and agglomerated product
JPH07157827A (en) Production of non-burning agglomerate
JPH07224330A (en) Production of non-burning agglomerate
JPH0971824A (en) Production of non-calcined agglomerate
JPH01162729A (en) Manufacture of briquette for sintering
WO1994005817A1 (en) Method for producing sintered ore
JPH07224329A (en) Production of non-burning agglomerate
JPH07278687A (en) Production of cold bonded briquette
LU101759B1 (en) Method for supplying raw material to a sinter plant
KR100415005B1 (en) A super-fine cement chain impregnate composition and manufacturing system and method of this
JPH0860262A (en) Production of cold bonded briquette
JPH07310128A (en) Production of cold bonded briquette
GB2043613A (en) Processing ore fines for reducing furnaces in direct-reduction iron- making
US11987860B2 (en) Low temperature briquette of fines bearing iron and other metals
JP2701178B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
JPH1199372A (en) Molten fly ash solidifying/stabilizing treatment and device therefor
JP6996485B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JPS5817813B2 (en) A method to improve productivity in the production of sintered ore using fine iron ore
JPH0742519B2 (en) Pretreatment method for raw material for blast furnace
JP7252454B2 (en) Method for producing non-fired agglomerate ore for blast furnace
JP2589633B2 (en) Pre-treatment method of sinter ore raw material for blast furnace