JPH07223815A - Titanium oxide fine powder and hydrophobic titanium oxide fine powder - Google Patents

Titanium oxide fine powder and hydrophobic titanium oxide fine powder

Info

Publication number
JPH07223815A
JPH07223815A JP6016374A JP1637494A JPH07223815A JP H07223815 A JPH07223815 A JP H07223815A JP 6016374 A JP6016374 A JP 6016374A JP 1637494 A JP1637494 A JP 1637494A JP H07223815 A JPH07223815 A JP H07223815A
Authority
JP
Japan
Prior art keywords
fine powder
titanium oxide
component
titanium
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6016374A
Other languages
Japanese (ja)
Other versions
JP3278278B2 (en
Inventor
Makoto Kanbayashi
誠 神林
剛 ▲瀧▼口
Takeshi Takiguchi
Hagumu Iida
育 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP01637494A priority Critical patent/JP3278278B2/en
Priority to DE69517229T priority patent/DE69517229T2/en
Priority to US08/385,918 priority patent/US5635326A/en
Priority to EP95300804A priority patent/EP0674237B1/en
Publication of JPH07223815A publication Critical patent/JPH07223815A/en
Application granted granted Critical
Publication of JP3278278B2 publication Critical patent/JP3278278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain titanium oxide fine powder having high reactivity with a hydrophobicizing agent and useful as an external additive of toner for electrophotography by using titanium oxide component and a titanium alkoxide- titanium hydroxide component as main components. CONSTITUTION:This titanium oxide fine powder is composed of a composition composed mainly of a TiO2 component and a Ti(OR)<m>(OH)n component [R is a hydrocarbon group; (m) and (n) each is 0-4; m+n is 4]. The above titanium oxide fine powder is extremely effective as an external additive in view of impartation of fluidity to the toner for electrostatic charge image development, to stabilize the static charge, etc. These results are unattainable by conventional fluidity improver composed of inorganic oxides such as titanium oxide because conventional titanium oxide requires high-temperature sintering or hydrolysis or thermal decomposition processes to form titanium oxide particles liable to take large particle size and anatase or rutile crystal structure. On the contrary, the production of coarse particle is suppressed, the agglomeration of primary particles is decreased and excellent fluidity can be applied to the toner in the fine powder of the present invention.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、乾式電子写真用トナー
の外添剤として有用な疎水性酸化チタン系微粉体及びそ
の原料となる酸化チタン系微粉体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrophobic titanium oxide-based fine powder useful as an external additive for a dry electrophotographic toner and a titanium oxide-based fine powder as a raw material thereof.

【0002】[0002]

【従来の技術】従来、微粉体は各分野に用いられている
が、分野に応じて微粉体は表面処理がされている。
2. Description of the Related Art Conventionally, fine powders have been used in various fields, but the fine powders are surface-treated according to the fields.

【0003】電子写真分野において、静電荷像現像用の
トナーの外添剤としてシリカ微粉体、酸化チタン微粉体
等が使用されており、トナーの各環境下における電子写
真特性を安定化させるために疎水化処理が施された微粉
体も使用されている。特に、酸化チタン微粉体がトナー
の外添剤として注目されつつある。
In the field of electrophotography, silica fine powder, titanium oxide fine powder, etc. are used as external additives for toners for developing electrostatic images, in order to stabilize the electrophotographic characteristics of the toner in each environment. A fine powder that has been subjected to a hydrophobic treatment is also used. In particular, titanium oxide fine powder has been attracting attention as an external additive for toner.

【0004】酸化チタンは、硫酸チタン水溶液を中和
し、生成した沈殿物を焼成することにより得られたもの
や、四塩化チタンを高温で分解して酸化することにより
得られたものや、チタンアルコキサイドを加水分解また
は熱分解して得たものが知られている。これらの酸化チ
タンは、アナターゼ型またはルチル型の結晶系を有する
ものや非晶質のものが知られている。これらの酸化チタ
ンをシランカップリング剤の如き疎水化剤で処理するこ
とにより、疎水性酸化チタンが生成される。従来の酸化
チタンは疎水化剤との反応性が低い傾向があることか
ら、反応性が高い酸化チタン系微粉体の開発が待望され
ている。
Titanium oxide is obtained by neutralizing an aqueous solution of titanium sulfate and calcining the formed precipitate, or by decomposing and oxidizing titanium tetrachloride at a high temperature, or titanium. Those obtained by hydrolyzing or thermally decomposing alkoxide are known. It is known that these titanium oxides have an anatase type or rutile type crystal system and are amorphous. Hydrophobic titanium oxide is produced by treating these titanium oxides with a hydrophobizing agent such as a silane coupling agent. Since conventional titanium oxide tends to have low reactivity with a hydrophobizing agent, development of highly reactive titanium oxide-based fine powder has been desired.

【0005】[0005]

【発明が解消しようとする課題】本発明の目的は、疎水
化剤との反応性の高い酸化チタン系微粉体を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a titanium oxide type fine powder having high reactivity with a hydrophobizing agent.

【0006】本発明の目的は、結晶化しにくい非晶質の
酸化チタン系微粉体を提供することにある。
An object of the present invention is to provide an amorphous titanium oxide-based fine powder which is difficult to crystallize.

【0007】本発明の目的は、温湿度等の環境に左右さ
れにくく、流動性向上剤として有用な疎水性酸化チタン
系微粉体を提供することにある。
An object of the present invention is to provide a hydrophobic titanium oxide type fine powder which is not easily affected by environment such as temperature and humidity and which is useful as a fluidity improver.

【0008】本発明の目的は、電子写真用トナーの外添
剤として有用な疎水性酸化チタン系微粉体を提供するこ
とにある。
An object of the present invention is to provide a hydrophobic titanium oxide-based fine powder useful as an external additive for electrophotographic toner.

【0009】[0009]

【課題を解決するための手段及び作用】本発明は、Ti
2成分及びTi(OR)m(OH)n成分〔式中、Rは
炭化水素基を示し、m及びnは0〜4の整数を示し、m
+nは4である〕を主要成分とする組成物からなること
を特徴とする酸化チタン系微粉体に関する。
Means and Actions for Solving the Problems
O 2 component and Ti (OR) m (OH) n component [in the formula, R represents a hydrocarbon group, m and n represent an integer of 0 to 4, and m
+ N is 4]. The present invention relates to a titanium oxide-based fine powder, which is characterized by comprising a composition containing as a main component.

【0010】さらに、本発明は、TiO2成分及びTi
(OR)m(OH)n成分〔式中、Rは炭化水素基を示
し、m及びnは0〜4の整数を示し、m+nは4であ
る〕を主要成分とする組成物で形成された酸化チタン系
微粉体をシラン系有機化合物で処理した疎水性微粉体か
らなることを特徴とする疎水性酸化チタン系微粉体に関
する。
Further, the present invention provides a TiO 2 component and a Ti
(OR) m (OH) n component [in the formula, R represents a hydrocarbon group, m and n represent an integer of 0 to 4, and m + n is 4]. The present invention relates to a hydrophobic titanium oxide-based fine powder comprising a titanium oxide-based fine powder treated with a silane-based organic compound.

【0011】本発明者らは、静電荷像現像用トナーの流
動性、帯電安定性、転写性、クリーニング性等について
鋭意検討したところ、外添剤として上記の組成物の微粉
体が流動性の付与、帯電の安定化等の点で極めて有効で
あることを見い出したものである。
The inventors of the present invention have earnestly studied the fluidity, charge stability, transferability, cleaning property, etc. of the toner for developing an electrostatic charge image. As a result, the fine powder of the above composition as an external additive has a fluidity. It has been found to be extremely effective in terms of imparting and stabilizing charging.

【0012】これは一般に知られている流動性向上剤と
しての酸化チタン等の無機酸化物では達成できなかった
ものである。
This cannot be achieved with a generally known inorganic oxide such as titanium oxide as a fluidity improver.

【0013】その理由としては、従来の酸化チタン製造
法では高温での燒結あるいは加水分解あるいは熱分解工
程が必要とされるために、粒子は粗大化しやすく得られ
る酸化チタン粒子はアナターゼまたはルチル型の結晶構
造をとり易くなる。
The reason for this is that the conventional titanium oxide production method requires a sintering, hydrolysis or thermal decomposition step at a high temperature, so that the particles are easily coarsened and the obtained titanium oxide particles are of anatase or rutile type. It becomes easy to take a crystal structure.

【0014】それに対してTiO2 成分とTi(OR)
m(OH)n成分(但し式中m及びnは0〜4の整数で
あり、m+n=4を満足するRは飽和或いは不飽和の環
状もしくは非環状の炭化水素基を示す。)を主要成分と
する組成物の微粉体では、粒子の粗大化が抑えられ、し
かも一次粒子どうしの合一も少なく、トナーに良好な流
動性を付与する。
On the other hand, TiO 2 component and Ti (OR)
The main component is the m (OH) n component (wherein m and n are integers of 0 to 4, and R satisfying m + n = 4 represents a saturated or unsaturated cyclic or acyclic hydrocarbon group). In the fine powder of the composition described above, coarsening of the particles is suppressed, the coalescence of the primary particles is small, and good fluidity is imparted to the toner.

【0015】加えて本発明の微粉体はチタンアルコキシ
ド及びチタンヒドロキシ成分を含んでいるため、通常の
ルチル型、アナターゼ型、もしくはアモルファス状の酸
化チタン粒子と比較して微粉体表面の活性Ti−OH基
がはるかに多く、それゆえトナーに分散させた場合には
良好な分散性を示し、またトナー表面に付着せしめた時
には、結着樹脂と上記微粉体の付着力が高く、耐久によ
ってトナー表面から微粉体が脱離し、キャリア表面やド
ラムを汚染するといったこともなく、長期の耐久におい
ても、初期の特性を長く維持することが可能である。
In addition, since the fine powder of the present invention contains a titanium alkoxide and a titanium hydroxy component, the active Ti--OH on the surface of the fine powder is more than that of ordinary rutile type, anatase type or amorphous titanium oxide particles. It has much more groups, and therefore exhibits good dispersibility when dispersed in the toner, and when it is adhered to the toner surface, the adhesive force between the binder resin and the fine powder is high, and the durability causes It is possible to maintain the initial characteristics for a long time even in long-term durability, without the fine powder detaching and contaminating the carrier surface or the drum.

【0016】また、本発明の微粉体は、TiO2 成分と
Ti(OR)m(OH)n成分よりなるため、本微粉体
をトナーに分散させキャリアと摩擦帯電せしめた時に、
微粉体中のTi(OR)m(OH)n成分が一種のリー
クポイントとなって帯電量過大、特に低温低湿下での帯
電量過大抑制に大いに機能し、安定した帯電量が得られ
る。特に結着樹脂としてポリエステル系の樹脂を用いた
時、その効果は大きい。
Further, since the fine powder of the present invention comprises the TiO 2 component and the Ti (OR) m (OH) n component, when the fine powder is dispersed in the toner and frictionally charged with the carrier,
The Ti (OR) m (OH) n component in the fine powder serves as a kind of leak point and greatly functions to suppress an excessive amount of charge, especially under a low temperature and low humidity, and a stable amount of charge is obtained. Particularly when a polyester resin is used as the binder resin, the effect is great.

【0017】さらに、本発明で使用する処理微粉体は、
一次粒子が小さくて、しかも二次凝集体が非常に少ない
ために、フルカラー画像を形成するためのカラートナー
に使用した場合、着色剤含有樹脂粒子への外添が均一に
おこなえ、可視光における光透過性に優れ、鮮明なOH
P画像が得られる。これは従来の酸化チタン粒子では達
成し得なかったことである。
Further, the treated fine powder used in the present invention is
When used in a color toner for forming a full-color image, the primary particles are small and the secondary aggregates are very small. Excellent transparency and clear OH
A P image is obtained. This is something that cannot be achieved with conventional titanium oxide particles.

【0018】さらに微粉体表面を例えばシラン系有機化
合物で処理しようとする際、従来のルチル型、アナター
ゼ型またはアモルファス状の酸化チタン微粒子であると
表面の活性Ti−OH基が少なく、充分に処理できなか
ったものが、本発明の微粉体であると微粉体中のTi
(OR)m(OH)n成分と処理剤との反応がスムーズ
に進行し、しかも凝集体を生成することなしに均一に表
面を処理することが可能であり、疎水化の程度を目標と
するレベルまで充分に高めることができる。これにより
高温高湿下での帯電安定化が良好に図れる。
Further, when the surface of the fine powder is to be treated with, for example, a silane-based organic compound, conventional rutile-type, anatase-type or amorphous titanium oxide fine particles have less active Ti-OH groups on the surface and are sufficiently treated. What could not be achieved is that the fine powder of the present invention is
The reaction between the (OR) m (OH) n component and the treatment agent proceeds smoothly, and moreover, the surface can be uniformly treated without forming aggregates, and the degree of hydrophobicity is targeted. You can raise it to the full level. This makes it possible to favorably stabilize the charge under high temperature and high humidity.

【0019】本発明においては、特にチタンアルコキシ
ドの如き揮発性チタン化合物を気相中温度600℃以
下、好ましくは温度200〜400℃の比較的低温で熱
分解して製造されたTiO2 成分とTi(OR)m(O
H)n成分を主要成分とする組成物の微粉体が好まし
い。
In the present invention, in particular, a TiO 2 component and Ti produced by pyrolyzing a volatile titanium compound such as a titanium alkoxide in the gas phase at a temperature of 600 ° C. or lower, preferably at a relatively low temperature of 200 to 400 ° C. (OR) m (O
H) Fine powder of a composition containing the n component as a main component is preferable.

【0020】特に、温度200〜400℃の比較的低温
で揮発性のチタン化合物を気化または霧化した後、加熱
水蒸気の存在下にて加水分解(あるいは熱分解であって
も良い)し、分解後直ちに微粒子が再び合一しない温度
(好ましくは100℃以下)までにできるだけ短時間で
冷却することが好ましい。
Particularly, after vaporizing or atomizing a volatile titanium compound at a relatively low temperature of 200 to 400 ° C., it is hydrolyzed (or may be thermally decomposed) in the presence of heated steam to decompose. Immediately thereafter, it is preferable to cool the particles to a temperature (preferably 100 ° C. or lower) at which the particles do not coalesce again in the shortest possible time.

【0021】上記手段により微細な一次粒子径を有する
微粉体が得られる。
By the above means, fine powder having a fine primary particle diameter can be obtained.

【0022】更に詳細に説明する。A more detailed description will be given.

【0023】すなわち、本発明者らは微粉体の粗大化を
抑え、凝集性の少ない微粉体を生成するために種々検討
したところTiO2 成分のみならず、Ti(OR)m
(OH)n成分を必須成分とする組成物の場合に酸化チ
タンの結晶化が抑えられ、粒子はより微小粒径化の方向
へ、形状はより球状の方向へ、更に微粉体表面のTi−
OH基はより多くなる方向へ変移することを見い出し本
発明に到達したものである。
That is, the inventors of the present invention have conducted various studies to suppress coarsening of the fine powder and produce fine powder with less cohesiveness. As a result, not only the TiO 2 component but also Ti (OR) m
In the case of a composition in which the (OH) n component is an essential component, crystallization of titanium oxide is suppressed, the particles move toward a finer particle size, the shape moves toward a more spherical direction, and Ti--
The present invention was found by finding that the OH group is displaced in the direction of increasing the number.

【0024】これは、ルチル型もしくはアナターゼ型の
酸化チタンでも、またアモルファス状の酸化チタンでも
達成し得なかったことである。
This cannot be achieved by using rutile type or anatase type titanium oxide or amorphous titanium oxide.

【0025】中でも本発明に用いるTiO2 成分とTi
(OR)m(OH)n成分を主要成分とする組成物の微
粉体は TiO2 成分 85〜99.5重量% Ti(OR)m(OH)n成分 0.5〜15重量% の組成を有していることが好ましい。
Among them, the TiO 2 component and Ti used in the present invention
The fine powder of the composition having the (OR) m (OH) n component as the main component has a composition of TiO 2 component 85 to 99.5% by weight and Ti (OR) m (OH) n component 0.5 to 15% by weight. It is preferable to have.

【0026】すなわち、TiO2 成分が85%より少な
い場合には、チタンアルコキシド及びチタンヒドロキシ
成分が多く残っている場合もしくは、多量の不純物を含
んでいる系がこれにあてはまり、これではシャープな粒
度分布を有する微粉体を生成することが困難であり、且
つ、個々の粒子が不均一な組成となりやすく、上記の如
き微粉体を含有するトナーはキャリア粒子と帯電せしめ
た時に、帯電量分布がブロードとなりやすく、均一な現
像及び高い転写率を達成することが困難となる。
That is, when the TiO 2 component is less than 85%, a large amount of titanium alkoxide and titanium hydroxy component remains, or a system containing a large amount of impurities is applicable to this, and a sharp particle size distribution is obtained. It is difficult to produce a fine powder having the above, and the individual particles are likely to have a non-uniform composition, and the toner containing the fine powder as described above has a broad charge amount distribution when charged with carrier particles. It is difficult to achieve uniform development and high transfer rate.

【0027】一方、TiO2 成分が99.5重量%より
多い場合には、微粉体は純粋な酸化チタン粒子に限りな
く近づき、結晶構造を取り易くなり、粒子は粗大化して
しまう傾向にある。これでは目的とする良好な流動性を
得ることは容易ではない。
On the other hand, when the TiO 2 component is more than 99.5% by weight, the fine powder approaches the pure titanium oxide particles as much as possible, the crystal structure is easily taken, and the particles tend to become coarse. With this, it is not easy to obtain the desired good fluidity.

【0028】また、Ti(OR)m(OH)n成分が
0.5重量%より少ない場合には、処理微粉体の着色剤
含有樹脂粒子への分散性が極端に低下し、特に着色剤含
有樹脂粒子表面に付着せしめた場合(処理微粉体を外添
した場合)着色剤含有樹脂粒子表面からの脱離が起こり
易くなり、キャリア汚染やドラム汚染を引き起こし易く
なる。特にキャリア表面を汚染した場合には、トナーの
帯電量は大きく低下してしまい、耐久時のトナー飛散、
カブリ等が悪化し、一定の画像濃度の確保も難しくな
る。更にTi(OR)m(OH)n成分が0.5重量%
より少ない場合、微粉体は粗大化する傾向を示し、トナ
ーの流動性を目的とするレベルまで向上させることが難
しくなる。
When the content of Ti (OR) m (OH) n is less than 0.5% by weight, the dispersibility of the treated fine powder in the colorant-containing resin particles is extremely reduced, and particularly the colorant-containing When they are attached to the surface of the resin particles (when the treated fine powder is added externally), they are likely to be detached from the surface of the colorant-containing resin particles, and carrier contamination or drum contamination is easily caused. Especially when the carrier surface is contaminated, the charge amount of the toner is greatly reduced, and the toner is scattered during durability.
Fog and the like deteriorate, and it becomes difficult to secure a constant image density. Further, the Ti (OR) m (OH) n component is 0.5% by weight.
When the amount is smaller, the fine powder tends to be coarsened, and it becomes difficult to improve the fluidity of the toner to a target level.

【0029】一方、Ti(OR)m(OH)n成分が1
5重量%より多い場合は、加水分解あるいは熱分解が目
的とするレベルまで進行しなかった系がこれにあてはま
り、微粉体の組成自体が広くバラついたものになってし
まう。この場合、帯電的に安定したトリボ分布のシャー
プなトナーを生成することは容易ではない。特にチタン
アルコキシ成分もチタンヒドロキシ成分も、ともに水分
を吸着する特性が酸化チタン成分よりもはるかに強いた
め、Ti(OR)m(OH)n成分が15重量%より多
い場合は、特に高温高湿環境下で帯電量不足となり易
く、耐久時のトナー飛散、カブリ等が発生しやすくな
る。
On the other hand, the Ti (OR) m (OH) n component is 1
If the amount is more than 5% by weight, a system in which hydrolysis or thermal decomposition has not progressed to a desired level applies to this, and the composition itself of the fine powder becomes widely varied. In this case, it is not easy to generate a toner having a stable tribo distribution that is electrostatically stable. In particular, both the titanium alkoxy component and the titanium hydroxy component have much stronger water adsorption properties than the titanium oxide component. Therefore, when the Ti (OR) m (OH) n component is more than 15% by weight, the high temperature and high humidity are particularly high. Under the environment, the charge amount is likely to be insufficient, and toner scattering, fog, etc. during durability are likely to occur.

【0030】更に、Ti(OR)m(OH)n成分が1
5重量%よりも多い微粉体では、クリーニング性が低下
してしまい、画像上にクリーニング不良跡が発生する場
合がある。これは感光体表面を微粉体(とりわけTi
(OR)m(OH)n成分がより多く含まれる微粉体)
で汚染してしまい、感光体からのトナーの離型性が大き
く低下するためと推察される。
Further, the Ti (OR) m (OH) n component is 1
If the amount of the fine powder is more than 5% by weight, the cleaning property may be deteriorated and a cleaning defect mark may be generated on the image. This is because the surface of the photoreceptor is fine powder (especially Ti
(Fine powder containing more (OR) m (OH) n component)
It is presumed that this is because the toner releasability from the photoconductor is greatly reduced.

【0031】それゆえ本発明においては、処理微粉体は
Ti(OR)m(OH)n成分は0.5〜15重量%、
好ましくは1.0〜12重量%、より好ましくは1.5
〜10重量%含有しているものが良い。
Therefore, in the present invention, the treated fine powder contains 0.5 to 15% by weight of the Ti (OR) m (OH) n component,
Preferably 1.0 to 12% by weight, more preferably 1.5
Those containing 10 to 10% by weight are preferable.

【0032】TiO2 成分とTi(OR)m(OH)n
成分との組成比決定は下記の手順にて行う。
TiO 2 component and Ti (OR) m (OH) n
The composition ratio with the components is determined by the following procedure.

【0033】はじめに、微粉体を60℃で3日間、真空
乾燥機中に放置し減圧乾燥せしめ含水量を定量する。
First, the fine powder is left for 3 days at 60 ° C. in a vacuum dryer and dried under reduced pressure to quantify the water content.

【0034】次にカルロエルバ社製元素分析装置EA−
1108にてC量とH量を算出し、この値より計算して
TiO2 成分とTi(OR)m(OH)n成分の組成割
合を計算する。
Next, an elemental analyzer EA- manufactured by Carlo Erba Co.
At 1108, the amount of C and the amount of H are calculated, and from these values, the composition ratio of the TiO 2 component and the Ti (OR) m (OH) n component is calculated.

【0035】なお、TiO2 以外の化合物がTi(O
R)m(OH)n(m+n=4)で示される化合物であ
ることは、FT−IR分析にて確認し、減圧乾燥後は、
上記2種の化合物以外の他の成分は微量であり、無視し
得る。
Compounds other than TiO 2 are Ti (O
It was confirmed by FT-IR analysis that the compound represented by R) m (OH) n (m + n = 4) was obtained.
Components other than the above two compounds are trace amounts and can be ignored.

【0036】本発明に用いられる微粉体の原料としてチ
タンテトラメトキシド、チタンテトラエトキシド、チタ
ンテトラプロポキシド、チタンテトラブトキシド、ジエ
トキシチタンオキシドなどのチタンアルコキシドの他、
四塩化チタン、四臭化チタンなどのテトラハロゲン化チ
タン、更に、トリハロゲン化モノアルコキシチタン、ジ
ハロゲン化ジアルコキシチタン、モノハロゲン化トリア
ルコキシチタンなどの揮発性を有するチタン化合物を用
いることもできる。
In addition to titanium alkoxides such as titanium tetramethoxide, titanium tetraethoxide, titanium tetrapropoxide, titanium tetrabutoxide and diethoxytitanium oxide, as raw materials for the fine powder used in the present invention,
Tetrahalogenated titanium compounds such as titanium tetrachloride and titanium tetrabromide, and volatile titanium compounds such as trihalogenated monoalkoxytitanium, dihalogenated dialkoxytitanium and monohalogenated trialkoxytitanium can also be used.

【0037】揮発性チタン化合物を気化または霧化する
際に、希釈ガスで揮発性チタン化合物を0.1〜10重
量%の割合に希釈することが好ましい。この希釈ガス
は、気化せしめられた揮発性チタン化合物を分解を行う
分解炉に導入するためのキャリアーガスとしての役割を
果たすものである。
When vaporizing or atomizing the volatile titanium compound, it is preferable to dilute the volatile titanium compound with a diluent gas to a ratio of 0.1 to 10% by weight. This diluting gas serves as a carrier gas for introducing the vaporized volatile titanium compound into a decomposition furnace for decomposing.

【0038】ここで希釈ガスとしては、アルゴンガス、
ヘリウムガス、チッ素ガスの如き不活性ガスや、水蒸気
または酸素が用いられる。特にヘリウムガスまたは/お
よびチッ素ガスを用いることが好ましい。更に必要に応
じて分散助剤、表面改質剤等を含有させても良い。
Here, as the diluting gas, argon gas,
An inert gas such as helium gas or nitrogen gas, water vapor or oxygen is used. Particularly, it is preferable to use helium gas and / or nitrogen gas. Further, if necessary, a dispersion aid, a surface modifier and the like may be added.

【0039】本発明においては揮発性チタン化合物を気
化または霧化せしめた後に分解を行うため、アルコキサ
イドの如き酸素含有化合物を使用する以外は、酸素含有
ガスが必要である。
In the present invention, since the volatile titanium compound is decomposed after being vaporized or atomized, an oxygen-containing gas is required except that an oxygen-containing compound such as alkoxide is used.

【0040】分解の温度としては600℃以下が好まし
く、より好ましくは200〜400℃、特に好ましくは
250乃至350℃が好ましい。200℃未満の温度で
は十分な分解速度が得られにくく、一方600℃を越え
る高温では微細な微粉体が得にくい。
The decomposition temperature is preferably 600 ° C. or lower, more preferably 200 to 400 ° C., and particularly preferably 250 to 350 ° C. If the temperature is lower than 200 ° C, it is difficult to obtain a sufficient decomposition rate, while if the temperature is higher than 600 ° C, it is difficult to obtain fine fine powder.

【0041】更に本発明においては、生成した微粉体同
士が気相中で再合一しないよう、分解後直ちに合一しな
い温度まで急冷することが好ましい。急冷により、微粉
体の合一を防止し、得られた微粉体を一次粒子の状態で
補集および回収できる。
Further, in the present invention, it is preferable to rapidly cool to a temperature at which they do not coalesce immediately after decomposition so that the fine powders produced do not coalesce again in the gas phase. The rapid cooling prevents coalescence of the fine powders, and the fine powders thus obtained can be collected and collected in the form of primary particles.

【0042】次に本発明におけるもうひとつの特徴であ
る表面処理について説明する。
Next, the surface treatment which is another feature of the present invention will be described.

【0043】本発明においては、帯電特性の調整や高湿
下での安定性を向上させるために、シラン系有機化合物
で微粉体表面が表面処理されていることにも大きな特徴
がある。
The present invention is also characterized in that the surface of the fine powder is surface-treated with a silane organic compound in order to adjust the charging characteristics and improve the stability under high humidity.

【0044】特に上述の如く気相法で核となる微粉体を
生成させた後、直ちに該微粉体に気化または霧化せしめ
たシラン系有機化合物を混合し、引き続き気相中にて表
面処理することが好ましい。
In particular, as described above, after the fine powder which becomes the core is produced by the vapor phase method, the fine powder is immediately mixed with the vaporized or atomized silane organic compound, and then the surface treatment is carried out in the vapor phase. It is preferable.

【0045】本発明者らの提案するTiO2 成分とTi
(OR)m(OH)n成分とを主要成分とする組成物の
微粉体は純粋な酸化チタンと比較して、はるかに表面活
性能が高く、すなわちシラン系有機化合物と反応し得る
Ti−OH基がより多く含有しているため反応に有利で
あり、少量の処理剤で均一に処理し得、疎水化度を高め
ることができる。特に気相中にて表面処理した場合に
は、従来の湿式処理とちがってろ過〜乾燥〜解砕といっ
た工程をとらずに表面処理できるため、処理前の微粉体
のもつ特性を損なわずに均一にしかも充分に表面処理を
施すことが可能となる。
The TiO 2 component and Ti proposed by the present inventors
The fine powder of the composition containing the (OR) m (OH) n component as the main component has much higher surface activity than that of pure titanium oxide, that is, Ti-OH capable of reacting with a silane-based organic compound. Since it contains more groups, it is advantageous for the reaction, and can be uniformly treated with a small amount of a treating agent, and the degree of hydrophobicity can be increased. Especially when the surface treatment is performed in the gas phase, unlike the conventional wet treatment, the surface treatment can be performed without taking steps such as filtration, drying and crushing, so that the characteristics of the fine powder before treatment are not impaired and uniform. Moreover, it becomes possible to sufficiently perform the surface treatment.

【0046】TiO2 成分とTi(OR)m(OH)n
を主要成分とする組成物の微粉体に対するシラン系有機
化合物の処理量及び処理時間等は特に何ら限定するもの
でないが、処理後の処理微粉体のSiO2 換算のSi量
が1〜18重量%好ましく、より好ましくは1.5〜1
6重量%、さらに好ましくは2.5〜14重量%となる
様、微粉体表面にシラン系有機化合物が処理されている
ことが好ましい。
TiO 2 component and Ti (OR) m (OH) n
The treatment amount and treatment time of the silane-based organic compound with respect to the fine powder of the composition containing as a main component are not particularly limited, but the Si amount of the treated fine powder after the treatment is 1 to 18% by weight in terms of SiO 2. Preferably, more preferably 1.5-1
It is preferable that the surface of the fine powder is treated with a silane-based organic compound such that the content of the fine powder is 6% by weight, more preferably 2.5 to 14% by weight.

【0047】処理微粉体のSiO2 換算のSi量が1重
量%より低い時は、処理が充分でない、あるいは何らか
の理由で処理がうまくいかなかったことを意味し、これ
では、帯電量不足、特に高温高湿下での濃度アップ、耐
久時トナー飛散、カブリ等が悪化する傾向を示す。ま
た、SiO2 換算のSi量が18重量%を越える場合
は、極端にシラン系有機化合物の処理量が多かった時が
これに相当し、これでは一次粒径の小さいしかも凝集性
の少ない微粉体を生成することが容易ではなく、凝集体
の多い処理微粉体になってしまう。これではトナーに良
好な流動性を付与することが容易ではない。充分に母体
の微粉体表面と反応し得なかった処理剤の脱落等によ
り、カブリの多い、しかもガサついたトナー画像が生成
しやすい。さらにこれが原因となってキャリア汚染とい
う新たな問題も引き起こしやすい。
When the amount of Si in terms of SiO 2 of the treated fine powder is less than 1% by weight, it means that the treatment is not sufficient or the treatment is not successful for some reason. There is a tendency that density increase under high temperature and high humidity, toner scattering during endurance, fog and the like deteriorate. Further, when the amount of Si in terms of SiO 2 exceeds 18% by weight, this corresponds to the case where the amount of the silane-based organic compound treated is extremely large, which corresponds to a fine powder having a small primary particle size and a low cohesiveness. Is not easy to produce, resulting in treated fine powder with a lot of aggregates. In this case, it is not easy to impart good fluidity to the toner. Due to the removal of the processing agent which could not sufficiently react with the surface of the fine powder of the base material, a toner image with a lot of fog and rubbing tends to be generated. Further, this causes a new problem of carrier contamination.

【0048】先にも示した様に本発明のTiO2 成分と
Ti(OR)m(OH)nを主要成分とする組成物の微
粉体は、従来の酸化チタンと比較してはるかに微粉体中
のTi−OH基が多くそれゆえ表面活性能が高く、シラ
ン系有機化合物との反応に有利であり、少ない処理剤量
で均一に微粉体表面を処理し疎水化の程度を高めること
ができる。
As described above, the fine powder of the composition containing the TiO 2 component and Ti (OR) m (OH) n of the present invention as the main components is much finer than the conventional titanium oxide. It has a large amount of Ti-OH groups in it, and therefore has a high surface activity, and is advantageous for the reaction with a silane-based organic compound, and it is possible to uniformly treat the fine powder surface with a small amount of a treating agent to enhance the degree of hydrophobicity. .

【0049】加えて、気相中にて処理する際は二次凝集
体を作らずにSiO2 換算のSi量を高めることが可能
である。これは他の処理方法、たとえば湿式での処理で
はなし得なかったことである。言い換えれば通常の湿式
処理方法で単純にSiO2 換算のSi量を高めようと加
える処理剤量を増やせば、SiO2 換算のSi量そのも
のを高くすることはできるが、どうしても微粉体の粒子
同士が凝集してしまい、処理前と比較してBET比表面
積の値も低く、見かけの一次粒径も大きくなる傾向を示
す。
In addition, it is possible to increase the amount of Si in terms of SiO 2 without forming secondary aggregates when processing in the gas phase. This is something that other processing methods, such as wet processing, could not do. Increasing the treating agent amount added trying simply to increase the amount of Si in terms of SiO 2 in conventional wet processing method other words, although it is possible to increase the Si content itself in terms of SiO 2, the particles of the just fine powder As a result, the BET specific surface area is low and the apparent primary particle size tends to be large as compared with before the treatment.

【0050】それに対して気相処理方法であると処理前
後でBET比表面積の値をほとんど変えずに、しかも母
体の一次粒径を保ったままでSiO2 換算のSi量を高
めることができる。
On the other hand, in the case of the vapor phase treatment method, the amount of Si in terms of SiO 2 can be increased with almost no change in the value of BET specific surface area before and after the treatment and with the primary particle size of the base material being maintained.

【0051】本発明において、SiO2 換算のSi量の
測定にあたっては、けい光X線分光分析法を用いる。
In the present invention, the fluorescent X-ray spectroscopic analysis method is used to measure the Si content in terms of SiO 2 .

【0052】本発明に用いられるシラン系有機化合物と
しては、表面改質の目的、たとえば帯電特性のコントロ
ール、さらには高湿下での帯電の安定化および反応性に
応じて適宜選択すれば良い。例えばアルキルアルコキシ
シラン、シロキサン、シラン、シリコーンオイル等の化
合物であり、反応処理温度にて、それ自体が熱分解しな
いものが良い。
The silane-based organic compound used in the present invention may be appropriately selected depending on the purpose of surface modification, for example, control of charging characteristics, and stabilization and reactivity of charging under high humidity. For example, compounds such as alkylalkoxysilanes, siloxanes, silanes, and silicone oils, which do not themselves thermally decompose at the reaction treatment temperature, are preferable.

【0053】特に好ましいものとしては、カップリング
剤等の揮発性を有し、疎水性基及び反応性に富んだ結合
基の双方を有している下記一般式で示されるところのア
ルキルアルコキシシランを用いるのが良い。
Particularly preferred is an alkylalkoxysilane represented by the following general formula, which has volatility such as a coupling agent and which has both a hydrophobic group and a binding group rich in reactivity. Good to use.

【0054】RmSiYn 〔式中、Rはアルコキシ基を示し、mは1〜3の整数を
示し、Yはアルキル基、ビニル基、グリシドキシ基、メ
タクリル基の如き炭化水素基を示し、nは1〜3の整数
を示す〕 例えばビニルトリメトキシシラン、ビニルトリエトキシ
シラン、γ−メタクリルオキシプロピルトリメトキシシ
ラン、ビニルトリアセトキシシラン、メチルトリメトキ
シシラン、メチルトリエトキシシラン、イソブチルトリ
メトキシシラン、ジメチルジメトキシシラン、ジメチル
ジエトキシシラン、トリメチルメトキシシラン、ヒドロ
キシプロピリトリメトキシシラン、フェニルトリメトキ
シシラン、n−ヘキサデシルトリメトキシシラン、n−
オクタデシルトリメトキシシラン等を挙げることができ
る。
RmSiYn [In the formula, R represents an alkoxy group, m represents an integer of 1 to 3, Y represents a hydrocarbon group such as an alkyl group, a vinyl group, a glycidoxy group and a methacryl group, and n is 1 to 1]. An integer of 3] For example, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane, Dimethyldiethoxysilane, trimethylmethoxysilane, hydroxypropyritrimethoxysilane, phenyltrimethoxysilane, n-hexadecyltrimethoxysilane, n-
Octadecyl trimethoxysilane etc. can be mentioned.

【0055】より好ましくは、式More preferably, the formula

【0056】[0056]

【外1】 〔式中、aは4〜12の整数を示し、bは1〜3の整数
を示す〕で示されるアルキルアルコキシシラン化合物が
良い。
[Outer 1] An alkylalkoxysilane compound represented by the formula [wherein a represents an integer of 4 to 12 and b represents an integer of 1 to 3] is preferable.

【0057】ここで一般式における、aが4より小さい
と、処理は容易となるが良好な疎水性が得られにくい。
またaが13より大きいと疎水性は十分になるが、微粉
体同士の合一が多くなり流動性付与能が低下してしまう
傾向を示す。
When a in the general formula is smaller than 4, the treatment is easy, but good hydrophobicity is difficult to obtain.
If a is greater than 13, the hydrophobicity will be sufficient, but the coalescence of the fine powders will increase and the fluidity imparting ability will tend to decrease.

【0058】また、bは3より大きいと反応性が低下し
て良好な疎水化が得られにくい。
If b is larger than 3, the reactivity is lowered and it is difficult to obtain good hydrophobicity.

【0059】したがって本発明において、aは好ましく
は4〜12、より好ましくは4〜8であり、bは好まし
くは1〜3、より好ましくは1〜2が良い。
Therefore, in the present invention, a is preferably 4 to 12, more preferably 4 to 8, and b is preferably 1 to 3, more preferably 1 to 2.

【0060】さらに本発明における処理微粉体は、流動
性付与の点から平均粒径は、好ましくは0.005〜
0.1μm、より好ましくは0.01〜0.05μmが
良い。
Further, the treated fine powder in the present invention has an average particle size of preferably 0.005 to 5 from the viewpoint of imparting fluidity.
0.1 μm, and more preferably 0.01 to 0.05 μm.

【0061】平均粒径が0.1μmより大きいと、流動
性が低下しトナーの帯電が不均一となりやすく、結果と
してトナーの飛散、カブリ等が生じやすく、高画質なト
ナー画像を生成しにくくなる。また、平均粒径が0.0
05μmより小さいと着色剤含有樹脂粒子表面に処理微
粉体が埋め込まれ易くなり、トナー劣化が早く生じやす
く、耐久性が低下しやすい。この傾向はシャープメルト
性のカラートナーに適用した場合より顕著である。
When the average particle diameter is larger than 0.1 μm, the fluidity is lowered and the toner is apt to be non-uniformly charged, resulting in toner scattering, fog and the like, and it is difficult to form a high quality toner image. . The average particle size is 0.0
If it is less than 05 μm, the treated fine powder is likely to be embedded in the surface of the colorant-containing resin particles, the toner is likely to deteriorate quickly, and the durability is likely to be deteriorated. This tendency is more remarkable than when it is applied to a color toner having a sharp melt property.

【0062】本発明における処理微粉体の粒径は透過型
電子顕微鏡により測定する。
The particle size of the treated fine powder in the present invention is measured by a transmission electron microscope.

【0063】[0063]

【実施例】以下に本発明の実施例について説明するが、
[%]及び[部]は全て[重量%]及び[重量部]を示
す。
EXAMPLES Examples of the present invention will be described below.
[%] And [parts] all indicate [% by weight] and [parts by weight].

【0064】実施例1 原料にチタンテトライソプロポキシドを使用した。ケミ
カルポンプで原料を少量ずつ、チッ素ガスをキャリアガ
スとして使用して200℃に加熱した蒸発器に送り込ん
で原料を完全に気化せしめた。一方、ケミカルポンプを
用いてキャリアガスであるチッ素とともに、水を蒸発器
に送り込み気化させ、さらに加熱させた後、前述の気化
せしめた原料とともに反応器内に送り込み、温度280
℃にて加熱分解させ、その後ただちに急冷して酸化チタ
ン系微粉体−Aを得た。
Example 1 Titanium tetraisopropoxide was used as a raw material. The raw materials were completely vaporized by feeding the raw materials little by little with a chemical pump to an evaporator heated to 200 ° C. using nitrogen gas as a carrier gas. On the other hand, using a chemical pump, together with nitrogen as a carrier gas, water is sent to an evaporator to be vaporized and further heated, and then sent to the reactor together with the vaporized raw material at a temperature of 280.
Titanium oxide-based fine powder-A was obtained by thermally decomposing at 0 ° C. and then immediately quenching.

【0065】組成は表1に示すようであった。The composition was as shown in Table 1.

【0066】実施例2 チタンテトライソプロポキシドのかわりにチタンテトラ
ノルマルプロポキシドを使用し蒸発器の温度を220℃
に、反応器の温度を300℃にした以外は合成例1と同
様にして酸化チタン系微粉体−Bを得た。
Example 2 Instead of titanium tetraisopropoxide, titanium tetranormal propoxide was used, and the temperature of the evaporator was 220 ° C.
Then, titanium oxide fine powder-B was obtained in the same manner as in Synthesis Example 1 except that the temperature of the reactor was set to 300 ° C.

【0067】実施例3 実施例1において加熱分解温度を650℃にする以外は
ほぼ同様にして酸化チタン系微粉体−Cを得た。
Example 3 A titanium oxide fine powder-C was obtained in substantially the same manner as in Example 1 except that the thermal decomposition temperature was 650 ° C.

【0068】実施例4 実施例1において加熱分解後、急冷却を行わなかった以
外は同様にして酸化チタン系微粉体−Dを得た。
Example 4 Titanium oxide fine powder-D was obtained in the same manner as in Example 1, except that rapid cooling was not carried out after thermal decomposition.

【0069】実施例5 合成例1において加熱分解の温度を200℃にしたこと
と、反応器に送り込む水の量を減らした以外は合成例1
とほぼ同様にして酸化チタン系微粉体−Eを得た。
Example 5 Synthesis Example 1 except that the temperature of thermal decomposition was set to 200 ° C. and the amount of water fed into the reactor was reduced in Synthesis Example 1.
Titanium oxide-based fine powder-E was obtained in the same manner as described above.

【0070】実施例6 合成例1において加熱分解の温度を280℃からさらに
170℃へ下げ、さらに原料のチタンテトライソプロポ
キシドの送り込む量を増やしたことを除いてほぼ同様に
して酸化チタン系微粉体−Fを得た。
Example 6 In the same manner as in Synthesis Example 1, except that the temperature of thermal decomposition was further lowered from 280 ° C. to 170 ° C. and the amount of titanium tetraisopropoxide as a raw material fed in was increased, the titanium oxide fine powder was produced in substantially the same manner. Body-F was obtained.

【0071】比較例1 四塩化チタンを気相中で800℃で加熱分解して酸化チ
タン微粉体−Gを得た。
Comparative Example 1 Titanium tetrachloride was decomposed by heating in a gas phase at 800 ° C. to obtain titanium oxide fine powder-G.

【0072】比較例2 硫酸チタン水溶液中で中和した後、生成した沈殿物を焼
成する硫酸法で製造して酸化チタン微粉体−Hを得た。
Comparative Example 2 Titanium oxide fine powder-H was obtained by neutralizing in an aqueous solution of titanium sulfate and then producing a precipitate by a sulfuric acid method in which the precipitate was baked.

【0073】各微粉体のデータを表1に示す。The data of each fine powder are shown in Table 1.

【0074】[0074]

【表1】 [Table 1]

【0075】実施例7 原料にチタンテトライソプロポキシドを使用した。チッ
素ガスをキャリアガスとして使用して200℃に加熱し
た蒸発器にケミカルポンプでチタンテトライソプロポキ
シドを少量ずつ送り込んでチタンテトライソプロポキシ
ドを完全に気化せしめた。一方、ケミカルポンプを用い
てキャリアガスであるチッ素ガスとともに水を蒸発器に
送り込み気化させ、さらに加熱させた後、前述の気化せ
しめたチタンテトライソプロポキシドともに反応器内で
温度280℃にて加熱分解した後、チッ素ガスをキャリ
アガスとして、表面処理剤であるイソブチルトリメトキ
シシランをケミカルポンプにて蒸発器に送り込み完全に
気化せしめ、先に合成した微粉体と加熱水蒸気を含むチ
ッ素流と混合し、280℃で反応させ、疎水化処理する
と同時に急冷却を行ない表面がイソブチルトリメトキシ
シランで改質された疎水性酸化チタン系微粉体−Iを補
集した。その組成を表2に示す。
Example 7 Titanium tetraisopropoxide was used as a raw material. Titanium tetraisopropoxide was fed little by little by a chemical pump into an evaporator heated to 200 ° C. using nitrogen gas as a carrier gas to completely vaporize titanium tetraisopropoxide. On the other hand, water was sent to the evaporator together with nitrogen gas which is a carrier gas using a chemical pump to vaporize and further heat, and then the vaporized titanium tetraisopropoxide was also heated at 280 ° C. in the reactor. After thermal decomposition, using nitrogen gas as a carrier gas, isobutyltrimethoxysilane, which is a surface treatment agent, was sent to an evaporator by a chemical pump to be completely vaporized, and a nitrogen flow containing the fine powder and heated steam synthesized previously. Then, the mixture was reacted at 280 ° C., subjected to a hydrophobization treatment, and rapidly cooled at the same time to collect hydrophobic titanium oxide fine powder-I whose surface was modified with isobutyltrimethoxysilane. The composition is shown in Table 2.

【0076】実施例8 イソブチルトリメトキシシランのかわりにプロピルトリ
エトキシシランを用いたことを除いて合成例1と同様に
表面改質された疎水性酸化チタン系微粉体−Jを得た。
Example 8 A surface-modified hydrophobic titanium oxide fine powder-J was obtained in the same manner as in Synthesis Example 1 except that propyltriethoxysilane was used instead of isobutyltrimethoxysilane.

【0077】実施例9 チタンテトライソプロポキシドのかわりにチタンテトラ
ノルマルプロポキシドを使用し蒸発器の温度を220
℃、反応器の温度を300℃にした以外は合成例1と同
様にして表面改質された疎水性酸化チタン系微粉体−K
を得た。
Example 9 Titanium tetranormal propoxide was used instead of titanium tetraisopropoxide, and the temperature of the evaporator was set to 220.
C. and hydrophobic titanium oxide fine powder-K surface-modified in the same manner as in Synthesis Example 1 except that the temperature of the reactor was 300.degree.
Got

【0078】実施例10 実施例1で得た酸化チタン系微粉体−Aを水系中で攪拌
混合しながらカップリング剤(ノルマルブチルトリメト
キシシラン)を上記微粉体に対して20重量%となるよ
うにかつ粒子が合一しないように添加混合し、乾燥、解
砕して表面改質された疎水性酸化チタン系微粉体−Lを
得た。
Example 10 While the titanium oxide fine powder-A obtained in Example 1 was stirred and mixed in an aqueous system, the coupling agent (normal butyltrimethoxysilane) was adjusted to 20% by weight based on the fine powder. And mixed so that the particles do not coalesce, dried and crushed to obtain a surface-modified hydrophobic fine titanium oxide powder-L.

【0079】実施例11 実施例7において原料のチタンテトラプロポキシドの供
給量を増加して加熱分解後、急冷却を行わない以外はほ
ぼ同様にして表面改質された疎水性酸化チタン系微粉体
−Mを得た。
Example 11 Hydrophobic titanium oxide fine powder surface-modified in substantially the same manner as in Example 7 except that the supply amount of titanium tetrapropoxide as a raw material was increased and thermal decomposition was not performed, followed by rapid cooling. -M was obtained.

【0080】同様にして表面改質しなかっただけの微粉
体も合成し組成分析を行なったところTiO2成分は9
0.2重量%含有され、Ti(OR)m(OH)n成分
は7.2重量%含有されていた。
[0080] TiO 2 component was subjected to a fine powder also synthesized composition analysis only did not surface modification in the same manner as 9
The content was 0.2% by weight, and the Ti (OR) m (OH) n component was 7.2% by weight.

【0081】比較例3 比較例1で得た酸化チタン微粉体−Gを湿式法にてオク
チルトリメトキシシランで疎水化処理して疎水性酸化チ
タン微粉体−Nを得た。
Comparative Example 3 The titanium oxide fine powder-G obtained in Comparative Example 1 was subjected to a hydrophobic treatment with octyltrimethoxysilane by a wet method to obtain a hydrophobic titanium oxide fine powder-N.

【0082】比較例4 比較例2で得た酸化チタン微粉体−Hを湿式法にてオク
チルトリメトキシシランで疎水化処理して疎水性酸化チ
タン微粉体−Oを得た。
Comparative Example 4 The titanium oxide fine powder-H obtained in Comparative Example 2 was hydrophobized with octyltrimethoxysilane by a wet method to obtain a hydrophobic titanium oxide fine powder-O.

【0083】表2に各疎水性微粉体のデータを示す。Table 2 shows the data of each hydrophobic fine powder.

【0084】[0084]

【表2】 [Table 2]

【0085】実験例1 ・プロポキシ化ビスフェノールとフマル酸を縮合して得
られたポリエステル樹脂100部 ・フタロシアニン顔料 4部 ・ジ−tert−ブチルサリチル酸のクロム錯塩 4部
Experimental Example 1 Polyester resin obtained by condensing propoxylated bisphenol and fumaric acid 100 parts Phthalocyanine pigment 4 parts Di-tert-butylsalicylic acid chromium complex salt 4 parts

【0086】上記材料をヘンシェルミキサーにより十分
予備混合を行い、2軸式押出し機で溶融混練し、冷却後
ハンマーミルを用いて約1〜2mm程度に粗粉砕し、次
いでエアージェット方式による微粉砕機で微粉砕した。
更に得られた微粉砕物を分級して重量平均粒径約8μm
の着色剤含有樹脂粒子を得た。
The above materials were sufficiently premixed by a Henschel mixer, melt-kneaded by a twin-screw extruder, cooled, roughly crushed to about 1 to 2 mm by a hammer mill, and then finely crushed by an air jet system. Finely crushed with.
Further, the finely pulverized product obtained is classified to have a weight average particle diameter of about 8 μm.
Colorant-containing resin particles were obtained.

【0087】この着色剤含有樹脂粒子100重量部と実
施例7の疎水化処理微粉体−Iの0.5重量部とをヘン
シェルミキサーで混合し、シアントナーとした。このシ
アントナーは、重量平均径が8μであった。着色剤含有
樹脂粒子上の処理微粉体をSEMにて観察してみると均
一にほぼ一次粒子の状態で着色剤含有樹脂粒子表面に付
着していることが確認した。
100 parts by weight of the colorant-containing resin particles and 0.5 part by weight of the hydrophobized fine powder-I of Example 7 were mixed with a Henschel mixer to obtain a cyan toner. This cyan toner had a weight average diameter of 8μ. When the treated fine powder on the colorant-containing resin particles was observed by SEM, it was confirmed that the fine particles were uniformly adhered to the surface of the colorant-containing resin particles in the state of almost primary particles.

【0088】平均粒径50μmのCu−Zn−Fe系フ
ェライトキャリアに、スチレン50重量%およびメチル
メタクリレート20重量%および2−エチルヘキシルア
クリレート30重量%からなる共重合体を、0.5%コ
ーティングしたコートフェライトキャリア95部と、シ
アントナー5部混合し二成分系現像剤とした。
A Cu-Zn-Fe ferrite carrier having an average particle size of 50 μm was coated with 0.5% of a copolymer consisting of 50% by weight of styrene, 20% by weight of methyl methacrylate and 30% by weight of 2-ethylhexyl acrylate. 95 parts of ferrite carrier and 5 parts of cyan toner were mixed to obtain a two-component developer.

【0089】この現像剤を用いて市販の普通紙カラー複
写機(カラーレーザーコピア550、キヤノン製)にて
現像コントラストを300Vに設定し、温度23℃、/
湿度65%RH下で画出しを行った。得られた画像はマ
クベスRD918型でSPIフィルターを使用して反射
濃度測定を行った(以後の画像濃度測定方法も同様)。
トナー画像濃度は1.52と高く、カブリもない鮮明な
ものであった。以後、更に10,000枚のコピーを行
ったが、その間の濃度変動は0.08と小さく、カブ
リ、鮮明さも初期と同等のものが得られた。低温低湿下
(温度20℃、湿度10%RH)においても現像コント
ラストを300Vに設定し、画出しを行ったところ、画
像濃度は1.44と高く、低湿下での帯電量制御にも効
果があった。
Using this developer, a commercially available plain paper color copying machine (color laser copier 550, manufactured by Canon) was used to set the development contrast to 300 V and the temperature was 23 ° C. /
Image formation was performed under a humidity of 65% RH. The obtained image was subjected to reflection density measurement using a Macbeth RD918 type using an SPI filter (the same applies to the subsequent image density measurement method).
The toner image density was as high as 1.52, and it was clear without fog. After that, 10,000 more copies were made, and the density fluctuation during that time was as small as 0.08, and fog and sharpness were the same as in the initial stage. Even under low temperature and low humidity (temperature 20 ° C, humidity 10% RH), when the development contrast was set to 300V and images were printed, the image density was as high as 1.44, which is also effective in controlling the charge amount under low humidity. was there.

【0090】OHP用フィルムにシアントナー像を転写
し、定着したものをオーバーヘッドプロジェクタで透光
したところ鮮明なシアン色の像がスクリーン上に投影さ
れた。
When a cyan toner image was transferred onto an OHP film and fixed, the image was transmitted through an overhead projector, and a clear cyan image was projected on the screen.

【0091】高温高湿下でも(温度30℃/湿度80%
RH)同様に現像コントラストを300Vに設定し、画
出しを行ったところ、画像濃度も1.54と非常に安定
で良好な画像が得られた。
Even under high temperature and high humidity (temperature 30 ° C./humidity 80%
(RH) Similarly, when the development contrast was set to 300 V and image formation was performed, the image density was 1.54, which was very stable and a good image was obtained.

【0092】更に23℃/60%RH、20℃/10%
RH、30℃/80%RHの各環境に1カ月放置後の初
期画像においても、全く異常は認められなかった。
23 ° C./60% RH, 20 ° C./10%
No abnormalities were observed in the initial image after being left for 1 month in each of RH and 30 ° C./80% RH environments.

【0093】表3に画像特性を示す(以下同様)。The image characteristics are shown in Table 3 (the same applies hereinafter).

【0094】実験例2及び3 表面改質された処理微粉体−J及び処理微粉体−Kを使
用すること以外は実験例1と同様にしてトナーおよび二
成分系現像剤を調製し、実験例1と同様にしてテストし
たところ良好な結果が得られた。
Experimental Examples 2 and 3 A toner and a two-component type developer were prepared in the same manner as in Experimental Example 1 except that the surface-modified treated fine powder-J and treated fine powder-K were used. When tested in the same manner as in 1, good results were obtained.

【0095】実験例4 表面改質された処理微粉体−Lを使用すること以外は実
験例1と同様にしてトナー及び二成分系現像剤を調製
し、実験例1と同様にしてテストした。
Experimental Example 4 A toner and a two-component developer were prepared in the same manner as in Experimental Example 1 except that the surface-modified treated fine powder-L was used, and tested in the same manner as in Experimental Example 1.

【0096】表面処理により高温高湿下(温度30℃、
湿度80%RH)の帯電性も安定し、画像濃度も約1.
5で安定して推移した。低温低湿環境下(温度20℃、
湿度10%RH)では、耐久試験がすすむにつれてトナ
ー画像の画質が、実施例1と比較して低下した。これ
は、実施例1よりもトナーの流動性が低下し、転写性の
低下が要因であると考えられる。
By surface treatment, high temperature and high humidity (temperature 30 ° C.,
The chargeability is stable at a humidity of 80% RH, and the image density is about 1.
It remained stable at 5. Under low temperature and low humidity environment (temperature 20 ℃,
At a humidity of 10% RH, the image quality of the toner image deteriorated as compared with Example 1 as the durability test progressed. It is considered that this is because the fluidity of the toner is lower than that in Example 1, and the transferability is reduced.

【0097】トナー表面をSEMにして観察してみる
と、処理微粉体がいくつか凝集して表面に付着している
様子が確認でき、実施例1と比較して一次粒子の状態で
付着している処理微粉体の割合は少なかった。
When the surface of the toner was observed with an SEM, it was confirmed that some of the treated fine powders were agglomerated and adhered to the surface. Compared to Example 1, the particles were adhered in the form of primary particles. The proportion of treated fine powder was small.

【0098】実験例5 表面改質された処理微粉体−Mを使用すること以外は実
験例1と同様にしてトナー及び二成分系現像剤を調製
し、実験例1と同様にしてテストした。
Experimental Example 5 A toner and a two-component developer were prepared in the same manner as in Experimental Example 1 except that the surface-modified treated fine powder-M was used, and tested in the same manner as in Experimental Example 1.

【0099】実験例1と比較して細線再現性及びハーフ
トーン部再現性が若干劣るトナー画像が得られたが、着
色剤含有樹脂粒子と混合する割合を0.5重量部から
1.0重量部へ増量することによって画質は向上した。
A toner image was obtained in which the fine line reproducibility and the halftone reproducibility were slightly inferior to those of Experimental Example 1, but the mixing ratio with the colorant-containing resin particles was 0.5 to 1.0 parts by weight. The image quality was improved by increasing the amount.

【0100】比較実験例1 疎水性酸化チタン微粉体−Oを使用することを除いて実
験例1と同様にしてテストをおこなった。
Comparative Experimental Example 1 A test was performed in the same manner as in Experimental Example 1 except that hydrophobic titanium oxide fine powder-O was used.

【0101】低温低湿下及び多数枚耐久後の画質が低下
した。
Image quality deteriorated under low temperature and low humidity and after many sheets were used.

【0102】比較実験例2 疎水性酸化チタン微粉体−Pを使用することを除いて実
験例1と同様にしてテストをおこなった。
Comparative Experimental Example 2 A test was conducted in the same manner as in Experimental Example 1 except that the hydrophobic titanium oxide fine powder-P was used.

【0103】低温低湿下及び多数枚耐久後の画質が低下
した。
Image quality deteriorated under low temperature and low humidity and after many sheets were used.

【0104】実験例及び比較実験例の結果を表3に示
す。
Table 3 shows the results of the experimental example and the comparative experimental example.

【0105】[0105]

【表3】 [Table 3]

【0106】[0106]

【発明の効果】本発明の酸化チタン系微粉体は、反応性
に富んでいることにより、良好に疎水化が可能である。
EFFECTS OF THE INVENTION The titanium oxide-based fine powder of the present invention is excellent in reactivity and thus can be satisfactorily hydrophobized.

【0107】さらに、本発明の疎水性酸化チタン系微粉
体は、電子写真用トナーの外添剤として有用である。
Further, the fine particles of hydrophobic titanium oxide of the present invention are useful as an external additive for electrophotographic toner.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 TiO2成分及びTi(OR)m(OH)
n成分〔式中、Rは炭化水素基を示し、m及びnは0〜
4の整数を示し、m+nは4である〕を主要成分とする
組成物からなることを特徴とする酸化チタン系微粉体。
1. A TiO 2 component and Ti (OR) m (OH)
n component [in the formula, R represents a hydrocarbon group, and m and n are 0 to
A titanium oxide-based fine powder comprising a composition having an integer of 4 and m + n is 4] as a main component.
【請求項2】 TiO2成分が85〜99.5重量%含
有され、Ti(OR)m(OH)n成分が0.5〜15重
量%含有されている請求項1に記載の酸化チタン系微粉
体。
2. The titanium oxide-based material according to claim 1, wherein the TiO 2 component is contained in an amount of 85 to 99.5% by weight and the Ti (OR) m (OH) n component is included in an amount of 0.5 to 15% by weight. Fine powder.
【請求項3】 酸化チタン系微粉体の平均一次粒子径が
0.005〜0.1μmである請求項1または2に記載
の酸化チタン系微粉体。
3. The titanium oxide-based fine powder according to claim 1, wherein the titanium oxide-based fine powder has an average primary particle diameter of 0.005 to 0.1 μm.
【請求項4】 酸化チタン系微粉体の平均一次粒子径が
0.01〜0.05μmである請求項3に記載の酸化チ
タン系微粉体。
4. The titanium oxide-based fine powder according to claim 3, wherein the titanium oxide-based fine powder has an average primary particle diameter of 0.01 to 0.05 μm.
【請求項5】 TiO2成分及びTi(OR)m(OH)
n成分〔式中、Rは炭化水素基を示し、m及びnは0〜
4の整数を示し、m+nは4である〕を主要成分とする
組成物で形成された酸化チタン系微粉体をシラン系有機
化合物で処理した疎水性微粉体からなることを特徴とす
る疎水性酸化チタン系微粉体。
5. A TiO 2 component and Ti (OR) m (OH)
n component [in the formula, R represents a hydrocarbon group, and m and n are 0 to
Which is an integer of 4 and m + n is 4] is a hydrophobic oxidation characterized by comprising a fine titanium oxide powder formed by a composition containing as a main component a hydrophobic fine powder treated with a silane organic compound. Titanium-based fine powder.
【請求項6】 TiO2成分が85〜99.5重量%含
有され、Ti(OR)m(OH)n成分が0.5〜15重
量%含有されている請求項5に記載の疎水性酸化チタン
系微粉体。
6. The hydrophobic oxidation according to claim 5, wherein the TiO 2 component is contained in an amount of 85 to 99.5% by weight, and the Ti (OR) m (OH) n component is included in an amount of 0.5 to 15% by weight. Titanium-based fine powder.
【請求項7】 酸化チタン系微粉体の平均一次粒子径が
0.005〜0.1μmである請求項5または6に記載
の疎水性酸化チタン系微粉体。
7. The hydrophobic titanium oxide-based fine powder according to claim 5, wherein the titanium oxide-based fine powder has an average primary particle size of 0.005 to 0.1 μm.
【請求項8】 酸化チタン系微粉体の平均一次粒子径が
0.01〜0.05μmである請求項7に記載の疎水性
酸化チタン系微粉体。
8. The hydrophobic titanium oxide-based fine powder according to claim 7, wherein the titanium oxide-based fine powder has an average primary particle diameter of 0.01 to 0.05 μm.
JP01637494A 1994-02-10 1994-02-10 Hydrophobic titanium oxide fine powder Expired - Fee Related JP3278278B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP01637494A JP3278278B2 (en) 1994-02-10 1994-02-10 Hydrophobic titanium oxide fine powder
DE69517229T DE69517229T2 (en) 1994-02-10 1995-02-09 Toner for developing electrostatic images
US08/385,918 US5635326A (en) 1994-02-10 1995-02-09 Electrostatic image-developing toner, fine powdery titanium oxide, and hydrophobic fine powdery titanium oxide
EP95300804A EP0674237B1 (en) 1994-02-10 1995-02-09 Toner for developing an electrostatic image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01637494A JP3278278B2 (en) 1994-02-10 1994-02-10 Hydrophobic titanium oxide fine powder

Publications (2)

Publication Number Publication Date
JPH07223815A true JPH07223815A (en) 1995-08-22
JP3278278B2 JP3278278B2 (en) 2002-04-30

Family

ID=11914527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01637494A Expired - Fee Related JP3278278B2 (en) 1994-02-10 1994-02-10 Hydrophobic titanium oxide fine powder

Country Status (1)

Country Link
JP (1) JP3278278B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0934262A (en) * 1995-07-24 1997-02-07 Canon Inc Developing method
US5752151A (en) * 1994-12-27 1998-05-12 Canon Kabushiki Kaisha Image forming apparatus having a cleaning blade with a tensile strength from 80 to 120 kg/cm2
JPH10293418A (en) * 1997-04-21 1998-11-04 Toyo Ink Mfg Co Ltd Electrostatic charge image developing toner and image forming method using same
WO1999008963A1 (en) * 1997-08-15 1999-02-25 Showa Denko K.K. Process for producing fine metal oxide particles
JP2000034122A (en) * 1998-07-16 2000-02-02 Titan Kogyo Kk Ultrafine particle titanium dioxide, its production and its application
JP2000268635A (en) * 1999-03-19 2000-09-29 Fujikura Ltd Snow accretion preventing type overhead electric wire and wire line thereof
JP2003252627A (en) * 2002-02-27 2003-09-10 Toshiba Corp Method of manufacturing particle and manufacturing device for the same
KR100486064B1 (en) * 2002-05-24 2005-04-29 한국화학연구원 An improved method for preparing spherical porous titania particles
US6982139B2 (en) 2002-05-28 2006-01-03 Fuji Xerox Co., Ltd Electrophotographic color toner, and electrophotographic color developer, toner cartridge, image forming device and image forming method using the same
JP2008303109A (en) * 2007-06-07 2008-12-18 Titan Kogyo Kk Hydrophobic orthotitanic acid microparticules and toner for electrophotography
JP2018094495A (en) * 2016-12-12 2018-06-21 富士ゼロックス株式会社 Titanium oxide particles and method for producing the same, composition for forming photocatalyst, photocatalyst and structure

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5752151A (en) * 1994-12-27 1998-05-12 Canon Kabushiki Kaisha Image forming apparatus having a cleaning blade with a tensile strength from 80 to 120 kg/cm2
JPH0934262A (en) * 1995-07-24 1997-02-07 Canon Inc Developing method
JPH10293418A (en) * 1997-04-21 1998-11-04 Toyo Ink Mfg Co Ltd Electrostatic charge image developing toner and image forming method using same
US6328947B1 (en) 1997-08-15 2001-12-11 Showa Denko K.K. Method for producing fine particles of metal oxide
WO1999008963A1 (en) * 1997-08-15 1999-02-25 Showa Denko K.K. Process for producing fine metal oxide particles
JPH11171543A (en) * 1997-08-15 1999-06-29 Showa Denko Kk Production of metal oxide fine particle
JP2000034122A (en) * 1998-07-16 2000-02-02 Titan Kogyo Kk Ultrafine particle titanium dioxide, its production and its application
JP2000268635A (en) * 1999-03-19 2000-09-29 Fujikura Ltd Snow accretion preventing type overhead electric wire and wire line thereof
JP2003252627A (en) * 2002-02-27 2003-09-10 Toshiba Corp Method of manufacturing particle and manufacturing device for the same
KR100486064B1 (en) * 2002-05-24 2005-04-29 한국화학연구원 An improved method for preparing spherical porous titania particles
US6982139B2 (en) 2002-05-28 2006-01-03 Fuji Xerox Co., Ltd Electrophotographic color toner, and electrophotographic color developer, toner cartridge, image forming device and image forming method using the same
JP2008303109A (en) * 2007-06-07 2008-12-18 Titan Kogyo Kk Hydrophobic orthotitanic acid microparticules and toner for electrophotography
JP2018094495A (en) * 2016-12-12 2018-06-21 富士ゼロックス株式会社 Titanium oxide particles and method for producing the same, composition for forming photocatalyst, photocatalyst and structure

Also Published As

Publication number Publication date
JP3278278B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
JP4674936B2 (en) Hydrophobic fine particles and their applications
JP4512872B2 (en) Surface-modified silica fine powder and method for producing the same
JP3417291B2 (en) Method for producing external additive for electrophotographic toner
JP2007099582A (en) Highly hydrophobic spherical sol-gel silica fine particle, method for producing the same, toner external additive for electrostatic charge image development composed of the fine particle, and developer using the toner external additive
JP3278278B2 (en) Hydrophobic titanium oxide fine powder
US5635326A (en) Electrostatic image-developing toner, fine powdery titanium oxide, and hydrophobic fine powdery titanium oxide
JP2736574B2 (en) Dry developer
JP2000258947A (en) Electrostatic charge image developing agent
JP2006250990A (en) Electrostatic charge image developing toner
JP2000034122A (en) Ultrafine particle titanium dioxide, its production and its application
JP2007171713A (en) Modified silica powder
JP4107299B2 (en) Toner for electrostatic image development
WO2010038538A1 (en) Hydrophobic silica fine particles and electrophotographic toner composition
EP1246022B1 (en) Electrostatic image developer and method of preparing
JP2000128534A (en) Hydrophobic rutile type titanium oxide and its production and application
JP2003076058A (en) Electrostatic image developer
JP2010085837A (en) Hydrophobic silica fine particle and electrophotographic toner composition
JP4346403B2 (en) Surface-treated silica particles and uses thereof
JP3525662B2 (en) Electrophotographic toner composition and image forming method
JPH086286A (en) Color toner and developer
JP2003192940A (en) Surface-modified inorganic oxide powder
JP2014136670A (en) Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP3943750B2 (en) toner
JP7456957B2 (en) Method for producing surface-treated vapor-phase silica particles, surface-treated vapor-phase silica particles, and toner external additive for electrostatic image development
JP3882893B2 (en) Electrostatic image developer, composite oxide fine particles for electrostatic image developer, and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees