JPH07221048A - Method for forming barrier metal layer - Google Patents

Method for forming barrier metal layer

Info

Publication number
JPH07221048A
JPH07221048A JP6011870A JP1187094A JPH07221048A JP H07221048 A JPH07221048 A JP H07221048A JP 6011870 A JP6011870 A JP 6011870A JP 1187094 A JP1187094 A JP 1187094A JP H07221048 A JPH07221048 A JP H07221048A
Authority
JP
Japan
Prior art keywords
film
tin
thin film
deposited
tin thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6011870A
Other languages
Japanese (ja)
Other versions
JP2803556B2 (en
Inventor
Yoshio Oshita
祥雄 大下
Yoichiro Numazawa
陽一郎 沼沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6011870A priority Critical patent/JP2803556B2/en
Priority to KR1019950001895A priority patent/KR950025880A/en
Publication of JPH07221048A publication Critical patent/JPH07221048A/en
Application granted granted Critical
Publication of JP2803556B2 publication Critical patent/JP2803556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76856After-treatment introducing at least one additional element into the layer by treatment in plasmas or gaseous environments, e.g. nitriding a refractory metal liner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To reduce the amount of residual chlorine deposited in TIN film with an improved embedding shape at the bottom part of a connection hole by applying plasma including nitrogen to the TiN film which is deposited by the chloride CVD method. CONSTITUTION:TiN thin film is deposited on Si substrate 18 by the chloride CVD method. The film-formation conditions at this time should be those where an improved embedding shape can be obtained. On the other hand, a parallel flat-plate type plasma device is constituted of an upper electrode 11, a lower electrode 12, a gas exhaust system 13, an N2 gas supply system 14, a substrate heating mechanism 15, a high-frequency power supply 16, and a control system 17. The Si substrate 18 where TiN thin film is deposited is retained on the lower electrode 12. After that, nitrogen plasma is generated between the upper electrode 11 and the lower electrode 12, Ti thin film is retained in the plasma for approximately 10 minutes, the nitrogen concentration in TiN thin film is compared with the value after deposition, and then the nitrogen concentration is reduced by approximately one digit, thus forming the TiN thin film in an improved embedding shape with less amount of residual nitrogen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LSIの半導体装置に
おける接続孔に形成するバリアメタル層の形成方法に関
し、特にチタンナイトランド(窒化チタン:TiN)を
CVD法により埋め込んだバリアメタル層の形成方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a barrier metal layer formed in a connection hole in an LSI semiconductor device, and more particularly to the formation of a barrier metal layer in which titanium nitride land (titanium nitride: TiN) is embedded by a CVD method. Regarding the method.

【0002】[0002]

【従来の技術】LSI素子を構成する半導体装置におい
ては、配線工程における熱処理により接続孔底部で配線
材料であるアルミ(Al)等の金属と基板シリコン(S
i)が反応し、金属の下の拡散層と基板の間のpn接合
が破壊される問題が生じる。この問題を避けるため、A
lあるいはタングステン(W)などの高融点金属と基板
Siの間に、TiNを堆積させることが行われている。
これは、TiNは、900℃以上の高温でもSiとは反
応せず、さらに燐(P)やボロン(B)などのSi中の
不純物が拡散する事を抑制するため、コンタクト部にお
けるバリア層として用いることができるためである。
2. Description of the Related Art In a semiconductor device constituting an LSI element, a metal such as aluminum (Al) which is a wiring material and a substrate silicon (S) are used as a wiring material at the bottom of a connection hole by heat treatment in a wiring process.
There is a problem that i) reacts and the pn junction between the diffusion layer under the metal and the substrate is broken. To avoid this problem, A
TiN is deposited between a refractory metal such as 1 or tungsten (W) and the substrate Si.
This is because TiN does not react with Si even at a high temperature of 900 ° C. or higher, and further suppresses diffusion of impurities such as phosphorus (P) and boron (B) in Si. This is because it can be used.

【0003】従来、このTiNバリア層形成のため、チ
タン(Ti)ターゲットとアルゴン(Ar)+窒素(N
2 )混合ガスを用いた反応性スパッタ法により接続部に
TiN薄膜を堆積させてきた。しかしながら、半導体装
置の微細化に伴い、配線接続孔の孔の直径が0.5ミク
ロン以下に狭くなり、かつ接続孔の直径に対する孔の深
さの比(アスペクト比)が大きくなってきた結果、反応
性スパッタ法により堆積させたTiN膜の段差被膜性の
劣化が問題となってきている。段差被膜性が劣化する
と、電極用の微細孔の底部には、TiNが成長せず孔上
部にTiN膜が堆積し、良好な電極が形成できない。そ
の結果、コンタクト不良などの問題が生じる。この問題
を回避するため、スパッタ粒子の方向性を制御したコリ
メートスパッタ法が開発されているが、半導体装置がよ
り微細化した場合には、従来のスパッタ法と同様、段差
被膜性が劣化する可能性がある。
Conventionally, in order to form this TiN barrier layer, a titanium (Ti) target and argon (Ar) + nitrogen (N
2 ) A TiN thin film has been deposited on the connection part by a reactive sputtering method using a mixed gas. However, with the miniaturization of the semiconductor device, the diameter of the wiring connection hole has become narrower than 0.5 μm and the ratio of the depth of the connection hole to the diameter thereof (aspect ratio) has increased. The deterioration of the step coverage of the TiN film deposited by the reactive sputtering method has become a problem. When the step coating property deteriorates, TiN does not grow at the bottom of the fine hole for the electrode and the TiN film is deposited on the upper part of the hole, so that a good electrode cannot be formed. As a result, problems such as contact failure occur. In order to avoid this problem, a collimated sputtering method in which the directionality of sputtered particles is controlled has been developed. However, when the semiconductor device becomes finer, the step coating property may deteriorate as in the conventional sputtering method. There is a nature.

【0004】本問題を解決するため、化学気相成長(C
VD)法によりTiN膜堆積技術が開発されている。こ
れは、気相中および基板表面での化学反応を利用し、接
続孔底部にTiN膜を堆積させる方法である。本CVD
法においては、Tiの原料ガスとして有機金属を用いる
有機金属CVD(MOCVD)法と塩化物を用いるクロ
ライド法に大別される。一般には、後者のクロライド法
により得られた膜の方が段差被膜性が良いとされ、例え
ば、Tiの原料としてTiCl4 、窒素の原料としてN
3 を使用し、加熱した基板上での原料ガスの熱分解お
よび還元反応を利用しTiN膜を堆積させる。
In order to solve this problem, chemical vapor deposition (C
The TiN film deposition technique has been developed by the VD) method. This is a method of depositing a TiN film on the bottom of the contact hole by utilizing the chemical reaction in the gas phase and on the substrate surface. Main CVD
The method is roughly classified into an organic metal CVD (MOCVD) method using an organic metal as a Ti source gas and a chloride method using a chloride. Generally, it is said that the film obtained by the latter chloride method has better step coverage, and for example, TiCl 4 is used as a raw material of Ti and N is used as a raw material of nitrogen.
The TiN film is deposited using H 3 by utilizing the thermal decomposition and reduction reaction of the source gas on the heated substrate.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
TiCl4 /NH3 ガス系を用いたCVD法によりTi
Nを堆積させた場合、膜中に塩素が残留する問題があ
る。特に、微細な接続孔の底部に良好に堆積できる条件
(ステップカバレッジが良好な条件)下でTiNを堆積
させると、10%程度の塩素が膜中に残る。逆に、膜中
の塩素量が少ない条件で堆積すると、接続孔底部にTi
Nを良好に堆積できない。すなわち、膜中の塩素量とス
テップカバレッジの良否は相反する関係にあり、残留塩
素量が少ないTiN薄膜を微細な接続孔の底部に良好に
堆積することは困難である。
However, when the conventional CVD method using TiCl 4 / NH 3 gas system is used, the Ti
When N is deposited, there is a problem that chlorine remains in the film. In particular, when TiN is deposited under conditions that allow good deposition at the bottom of fine connection holes (conditions with good step coverage), about 10% of chlorine remains in the film. On the contrary, if the film is deposited under the condition that the amount of chlorine in the film is small, the Ti on the bottom of the connection hole
N cannot be deposited well. That is, the amount of chlorine in the film and the quality of the step coverage are in a contradictory relationship, and it is difficult to satisfactorily deposit the TiN thin film having a small amount of residual chlorine on the bottom of the fine connection hole.

【0006】接続孔に堆積したTiN膜中に残留する塩
素は、配線形成後に配線材料であるAl等の腐食の原因
となり、半導体装置の特性の劣化あるいは長期信頼性の
低下といった問題を引き起こす。このため、良好な埋め
込み形状を実現しながら、堆積膜中の塩素の少ないTi
N層を形成する事が、将来のより微細な半導体装置作成
のため強く要求されている。
Chlorine remaining in the TiN film deposited in the contact holes causes corrosion of Al, which is a wiring material after the wiring is formed, and causes problems such as deterioration of characteristics of the semiconductor device and deterioration of long-term reliability. For this reason, Ti with a small amount of chlorine in the deposited film while realizing a good embedded shape
Forming an N layer is strongly required for future finer semiconductor device fabrication.

【0007】従って、本発明の目的は、良好な埋め込み
形状が得られるTiの塩化物を原料ガスとして使用する
クロライドCVD法により堆積させたTiN膜中の残留
塩素濃度を低減し、かつ埋め込み形状が良好なTiN層
を形成することを特徴とするバリアメタル層の形成方法
を提供することである。
Therefore, an object of the present invention is to reduce the residual chlorine concentration in a TiN film deposited by the chloride CVD method using Ti chloride as a raw material gas for obtaining a good buried shape, and to improve the buried shape. It is an object of the present invention to provide a method for forming a barrier metal layer, which is characterized by forming a good TiN layer.

【0008】[0008]

【課題を解決するための手段】本発明の第一の特徴は、
窒素を含むプラズマを、前述のクロライド法により堆積
させたTiN膜に照射する事により、接続孔の底部に良
好な埋め込み形状を有して堆積させたTiN膜中の残留
塩素量を低減させるTiN薄膜の形成方法である。
The first feature of the present invention is:
By irradiating the TiN film deposited by the above-mentioned chloride method with a plasma containing nitrogen, a TiN thin film having a good buried shape at the bottom of the connection hole and reducing the residual chlorine amount in the deposited TiN film Is a method of forming.

【0009】本発明の第二の特徴は、前述の窒素を含む
プラズマのガスとして、N2 、NH3 、N2 4 ガスあ
るいはそれらの混合ガスを使用するTiN薄膜の形成方
法である。
The second feature of the present invention is a method of forming a TiN thin film using N 2 , NH 3 , N 2 H 4 gas or a mixed gas thereof as the above-mentioned nitrogen-containing plasma gas.

【0010】本発明の第三の特徴は、前述のプラズマに
よるTiN薄膜の形成において、基板を加熱するTiN
薄膜の形成方法である。
A third feature of the present invention is that TiN which heats the substrate in the formation of the TiN thin film by the plasma described above.
It is a method of forming a thin film.

【0011】本発明の第四の特徴は、N2 、NH3 、N
2 4 ガスあるいはそれらの混合ガス中で、前記TiN
薄膜を熱処理するTiN薄膜の形成方法である。
The fourth feature of the present invention is N 2 , NH 3 , N.
In the 2 H 4 gas or a mixed gas thereof, the TiN
This is a method for forming a TiN thin film by heat-treating the thin film.

【0012】本発明の第五の特徴は、前記TiN膜を形
成する方法と、クロライド法によるTiN膜堆積とを交
互に繰り返す、TiN薄膜の形成方法である。
A fifth feature of the present invention is a method for forming a TiN thin film, wherein the method for forming the TiN film and the TiN film deposition by the chloride method are alternately repeated.

【0013】本発明の第六の特徴は、表面にTi塩化物
のみを供給し表面に塩化チタン層を形成した後、前記の
膜形成方法を行う工程を一単位とし、本工程を繰り返し
行う、TiN薄膜の形成方法である。
A sixth feature of the present invention is that the step of performing the above-mentioned film forming method after one layer of titanium chloride is formed on the surface by supplying only Ti chloride to the surface, and this step is repeated. This is a method of forming a TiN thin film.

【0014】[0014]

【作用】前述のごとく、Ti原料として塩化物を用いる
クロライドCVD法により堆積させたTiN膜中には、
多量の塩素が残留する。これは、半導体装置作製のため
に一般に成長温度が低く抑えられる結果、十分に塩素を
還元離脱できない事による。さらにこの時、配線接続孔
を良好に埋め込む堆積条件下でTiNを堆積させた場合
には、より多くの塩素を構成元素として含む成膜種が膜
堆積に主に寄与する結果、埋め込み形状が悪い場合と比
較し、より多くの塩素が膜中に残留することになる。
As described above, in the TiN film deposited by the chloride CVD method using chloride as the Ti raw material,
A large amount of chlorine remains. This is because chlorine is not sufficiently reduced and eliminated as a result of generally keeping the growth temperature low for manufacturing a semiconductor device. Further, at this time, when TiN is deposited under a deposition condition that satisfactorily fills the wiring connection hole, the film-forming species containing a larger amount of chlorine as a constituent element mainly contributes to the film deposition, resulting in a poor filling shape. Compared with the case, more chlorine will remain in the film.

【0015】上記問題を解決するため、本発明において
は、窒素を含むプラズマあるいは窒素を含む分子を、す
でにCVD法により堆積させたTiN表面に照射する。
この時、プラズマ中に存在する窒素イオン(あるいは窒
素原子)あるいは熱分解により生成された窒素原子が基
板表面に到達すると、TiとClの結合が破壊され、T
iN結合が新たに形成される。これは、TiNの標準生
成エンタルピの値が約80kcal/molであるのに
対し、TiとClとの結合エネルギーは約26kcal
/molと小さいため、より安定なTiN結合が形成さ
れるためである。解離した塩素が膜中から容易に離脱す
る結果、膜中の塩素量が低減する。
In order to solve the above problem, in the present invention, plasma containing nitrogen or molecules containing nitrogen is irradiated to the TiN surface already deposited by the CVD method.
At this time, when nitrogen ions (or nitrogen atoms) existing in the plasma or nitrogen atoms generated by thermal decomposition reach the substrate surface, the bond between Ti and Cl is broken, and T
An iN bond is newly formed. This is because the standard enthalpy of formation of TiN is about 80 kcal / mol, while the binding energy between Ti and Cl is about 26 kcal.
This is because the TiN bond is more stable because it is as small as / mol. As a result of dissociated chlorine being easily released from the film, the amount of chlorine in the film is reduced.

【0016】上記TiN膜改質に際し、表面に十分な窒
素が供給されている場合、膜中の残留塩素量の減少速度
を律速しているのは、窒素ラジカルあるいは窒素イオン
等のTiN膜中への拡散あるいは膜中からの塩素の拡散
離脱過程である。これらの拡散過程は、基板温度を上昇
させる事により促進される。しかし、改質を要するTi
N膜厚が厚い場合、あるいは製造工程の都合上基板温度
の上限が制限される場合、十分な膜質改善の効果が期待
できない。その際は、膜厚が薄い状態でTiN膜堆積を
一次中断し、前記膜改質を行い、再び膜を堆積させると
よい。膜厚が薄いため、前述の膜質改善方法により容易
に膜中の塩素濃度を減少させる事が可能となる。所定の
膜厚が得られるまで、上記膜堆積と膜改質を繰り返し行
う事により、厚いTiN膜中の塩素濃度を低温での改質
処理により十分減少させることが可能となる。
When sufficient nitrogen is supplied to the surface during the modification of the TiN film, the rate of decrease of the residual chlorine amount in the film is limited by the nitrogen radicals or nitrogen ions in the TiN film. This is the process of diffusion of chlorine or diffusion and release of chlorine from the film. These diffusion processes are promoted by raising the substrate temperature. However, Ti that requires modification
If the N film thickness is large, or if the upper limit of the substrate temperature is limited for the convenience of the manufacturing process, a sufficient effect of improving the film quality cannot be expected. In that case, the TiN film deposition may be temporarily interrupted in the thin film state, the film modification may be performed, and the film may be deposited again. Since the film thickness is thin, it is possible to easily reduce the chlorine concentration in the film by the above-mentioned film quality improving method. By repeating the above film deposition and film modification until a predetermined film thickness is obtained, the chlorine concentration in the thick TiN film can be sufficiently reduced by the modification treatment at a low temperature.

【0017】クロライドCVD法によるTiN膜堆積に
おいて、良好な埋め込み形状が得られる条件でTiN膜
を堆積させると、前述のようにTiCl4 等多くの塩素
を構成原子として含む分子が主に成長に寄与する。これ
らの分子は、反応性が低いため、TiN表面に一層吸着
するとそれ以上には吸着しない。これが、良好な埋め込
み形状が得られる理由の一つである。このようにTi塩
化物を表面に一層吸着させた後、Tiの原料ガスの供給
を停止する。その後、表面に窒素ラジカルあるいは窒素
イオンを供給すると、表面で効率よく塩素が解脱し、か
つTi−N結合が形成される。この場合、表面一層程度
にのみ存在する塩素を解脱させれば良く、先の改質処理
により効率よく塩素を解脱させることができる。さら
に、上記一回の工程により、ほぼ一層のTiNが形成さ
れるため、膜厚の制御性も非常によい。この結果、上記
工程を繰り返す事により、膜厚の制御性良く、膜中塩素
量の少ないTiN膜を、良好な埋め込み形状を実現しな
がら堆積することが可能となる。
In the TiN film deposition by the chloride CVD method, when the TiN film is deposited under the condition that a good buried shape is obtained, as described above, the molecules containing a large amount of chlorine such as TiCl 4 as a constituent atom mainly contribute to the growth. To do. Since these molecules have low reactivity, if they are further adsorbed on the surface of TiN, they will not be adsorbed any more. This is one of the reasons why a good embedded shape can be obtained. After the Ti chloride is further adsorbed on the surface in this manner, the supply of the Ti source gas is stopped. Then, when nitrogen radicals or nitrogen ions are supplied to the surface, chlorine is efficiently released on the surface and a Ti—N bond is formed. In this case, it suffices that the chlorine existing only in one layer of the surface be released, and the chlorine can be released efficiently by the above modification treatment. Furthermore, since almost one layer of TiN is formed by the above-mentioned one step, the controllability of the film thickness is very good. As a result, by repeating the above steps, it becomes possible to deposit a TiN film having a good controllability of the film thickness and a small amount of chlorine in the film while realizing a good embedded shape.

【0018】[0018]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0019】本実施例は、MOSLSIの配線形成工程
に用いた例である。シリコン基板上にMOSトランジス
タを形成し、その上に酸化膜をCVD法で堆積し、ソー
ス・ドレイン拡散層の上の酸化膜を開口し、バリアメタ
ルとしてTiN薄膜を堆積し、その上にAl配線を形成
する(以上図示せず)。
This embodiment is an example used in the wiring formation process of MOS LSI. A MOS transistor is formed on a silicon substrate, an oxide film is deposited thereon by a CVD method, an oxide film on the source / drain diffusion layer is opened, a TiN thin film is deposited as a barrier metal, and an Al wiring is formed thereon. (Not shown).

【0020】実施例1 改質するためのTiN薄膜層は、TiCl4 /NH3
ス系を用いた低圧(LP)CVD法により、基板温度5
00℃でSi基板上に堆積させた。この時の成膜条件
は、良好な埋め込み形状が得られる条件とした。堆積さ
せたTiN膜中の塩素濃度を二次イオン質量分析(SI
MS)により定量した結果、膜中には約1021cm-3程度
の塩素が残留していた。
Example 1 A TiN thin film layer for reforming was formed at a substrate temperature of 5 by a low pressure (LP) CVD method using a TiCl 4 / NH 3 gas system.
It was deposited on a Si substrate at 00 ° C. The film forming conditions at this time were set so as to obtain a good embedded shape. The chlorine concentration in the deposited TiN film was measured by secondary ion mass spectrometry (SI
As a result of quantification by MS), about 10 21 cm −3 of chlorine remained in the film.

【0021】図1は本実施例においてTiN膜改質に使
用した平行平板型プラズマ装置の模式図である。本装置
は、上部電極11、下部電極12、ガス排気系13、N
2 ガス供給系14、基板加熱機構15、高周波電源1
6、および制御系17から構成されている。下部電極1
1上に基板18を保持した。その後、装置内部圧力3P
a、RF電力150W、N2 ガス流量20SCCMの条
件で、上部電極11と下部電極12の間に窒素プラズマ
を発生させた。約10分間、このプラズマ中にTi薄膜
を保持した後、取り出した。膜中の塩素濃度を二次イオ
ン質量分析を行った結果、TiN膜中の塩素濃度が堆積
後の値と比較し約1桁低下していた。
FIG. 1 is a schematic view of a parallel plate type plasma device used for modifying the TiN film in this embodiment. This device includes an upper electrode 11, a lower electrode 12, a gas exhaust system 13, and an N
2 gas supply system 14, substrate heating mechanism 15, high frequency power supply 1
6 and a control system 17. Lower electrode 1
The substrate 18 was held on 1. After that, the internal pressure of the device is 3P
A nitrogen plasma was generated between the upper electrode 11 and the lower electrode 12 under the conditions of a, RF power of 150 W, and N 2 gas flow rate of 20 SCCM. After holding the Ti thin film in this plasma for about 10 minutes, it was taken out. As a result of secondary ion mass spectrometry of the chlorine concentration in the film, the chlorine concentration in the TiN film was decreased by about one digit compared with the value after deposition.

【0022】さらに、同じ条件のプラズマ中に基板を晒
している間、加熱機構15を用いて基板温度を300℃
に10分間保持した。その結果、加熱を行わなかった場
合と比較して、TiN膜中の塩素濃度がさらに1桁低下
した。本実施例においては、処理時間10分、基板温度
を300℃としたが、この時間及び温度に限るものでは
ない。要は、TiN膜中の塩素濃度が所定の濃度まで減
少するように、プラズマに晒す時間および基板温度を設
定すれば良い。
Further, while the substrate is exposed to plasma under the same conditions, the heating mechanism 15 is used to increase the substrate temperature to 300.degree.
Hold for 10 minutes. As a result, the chlorine concentration in the TiN film was further reduced by one digit as compared with the case where heating was not performed. Although the processing time is 10 minutes and the substrate temperature is 300 ° C. in the present embodiment, the time and temperature are not limited to this. In short, the time of exposure to plasma and the substrate temperature may be set so that the chlorine concentration in the TiN film is reduced to a predetermined concentration.

【0023】本実施例においては、TiN膜中の塩素量
を低減させるためN2 によるプラズマを用いたが、NH
3 あるいはN2 4 ガスあるいはそれらの混合ガスを用
いても同様な効果が得られる。
In this embodiment, N 2 plasma is used to reduce the amount of chlorine in the TiN film.
Similar effects can be obtained by using 3 or N 2 H 4 gas or a mixed gas thereof.

【0024】実施例2 図2は本発明の第二の実施例を説明するための、TiN
膜堆積装置の構成図である。本装置は、基板交換室21
とTiN成長用LPCVD装置22とTiN膜改質用プ
ラズマ装置23、基板搬送装置24から成っている。T
iN膜改質用プラズマ装置の基本構成は、実施例1と同
様である。まず初めに、基板交換室内に保持されている
基板25を、基板搬送装置24を用いてTiNCVD装
置に搬送した。TiCl4 /NH3 ガス系を用いて、成
長温度500℃、成長圧力300mmTorr、TiC
4 流量5SCCM、NH3 流量250SCCMの条件
で、TiN膜を約5nm堆積させた後、膜堆積を中断し、
基板をTiN膜改質用プラズマ装置23に搬送した。そ
の後、堆積させたTiN表面を基板温度300℃でN2
プラズマに1分間晒した。この時のプラズマ条件は実施
例1と同様とした。その後、再び基板をTiN成長用L
PCVD装置22に搬送しTiN膜を堆積させた。以上
の膜堆積とプラズマ処理操作を繰り返し行い、所定のT
iN膜厚が得られた後、基板交換室21に基板に取り出
した。上記プラズマ処理を行わないで、TiN堆積用L
PCVD装置のみを使用し連続的に成長させたTiN膜
中には約1021cm-3の塩素が残留していた。これに対し
て、成長を中断し窒素プラズマにより膜改質を行った結
果、約2桁程度TiN膜中の塩素量の低減が実現され
た。
Example 2 FIG. 2 illustrates TiN for explaining a second example of the present invention.
It is a block diagram of a film deposition apparatus. This device is provided with a substrate exchange chamber 21.
And a LPN device 22 for growing TiN, a plasma device 23 for modifying a TiN film, and a substrate transfer device 24. T
The basic configuration of the plasma device for modifying the iN film is the same as that of the first embodiment. First, the substrate 25 held in the substrate exchange chamber was transferred to the TiNCVD apparatus using the substrate transfer device 24. Using TiCl 4 / NH 3 gas system, growth temperature 500 ° C., growth pressure 300 mmTorr, TiC
After depositing a TiN film of about 5 nm under the conditions of an I 4 flow rate of 5 SCCM and an NH 3 flow rate of 250 SCCM, the film deposition was interrupted,
The substrate was transported to the TiN film modifying plasma device 23. Then, the deposited TiN surface is treated with N 2 at a substrate temperature of 300 ° C.
Exposed to plasma for 1 minute. The plasma conditions at this time were the same as in Example 1. After that, the substrate is again grown for TiN L
It was conveyed to the PCVD device 22 and a TiN film was deposited. By repeating the above film deposition and plasma treatment operations, a predetermined T
After the iN film thickness was obtained, the substrate was taken out to the substrate exchange chamber 21. L for TiN deposition without the above plasma treatment
About 10 21 cm -3 of chlorine remained in the TiN film continuously grown using only the PCVD apparatus. On the other hand, as a result of suspending the growth and modifying the film with nitrogen plasma, the amount of chlorine in the TiN film was reduced by about 2 digits.

【0025】本実施例においては、TiNを5nm堆積し
た後、300℃で窒素プラズマにより膜質の改善を行っ
たが、窒素プラズマ条件、プラズマ処理温度、一回の堆
積膜厚等は、TiN膜中の塩素濃度が所定の値となるよ
う適宜選択され得る。また、本実施例においては、Ti
の原料としてTiCl4 を用いたが、TiHCl3 等分
子中に塩素を含む分子を用いても同様な効果が得られ
る。
In the present embodiment, after TiN was deposited to a thickness of 5 nm, the film quality was improved by nitrogen plasma at 300 ° C. The nitrogen plasma conditions, plasma treatment temperature, film thickness deposited once, etc. The chlorine concentration can be appropriately selected so as to be a predetermined value. Further, in this embodiment, Ti
Although TiCl 4 was used as the raw material of the above, the same effect can be obtained by using a molecule containing chlorine in the molecule such as TiHCl 3 .

【0026】実施例3 装置としては、実施例2と同じ装置を使用した。TiN
膜堆積用LPCVD装置22において、TiCl4 /N
3 ガス系を用いてTiNを3nm堆積させた。堆積条件
は、実施例2と同じとした。その後、基板25をTiN
膜改質用プラズマ装置23に搬送した。ただし、本実施
例においては、TiN膜改質のために窒素プラズマでは
なく、NH3 ガスを使用した。400℃に加熱した基板
を、NH3 雰囲気(1Torr)中に保持し、約5分間
膜質の改善を行った。その後、実施例2と同様TiN成
長用LPCVD装置22に搬送した。以上の膜堆積およ
び加熱による膜改質処理工程を繰り返し行い、必要な膜
厚を有したTiN層を形成した。堆積させた膜中の塩素
量を測定した結果、膜改質処理にプラズマを使用した場
合と同等の量の塩素が膜中から除去された。
Example 3 As the apparatus, the same apparatus as in Example 2 was used. TiN
In the LPCVD apparatus 22 for film deposition, TiCl 4 / N
TiN was deposited to 3 nm using H 3 gas system. The deposition conditions were the same as in Example 2. Then, the substrate 25 is TiN
The film was conveyed to the film modifying plasma device 23. However, in this example, NH 3 gas was used for modifying the TiN film instead of nitrogen plasma. The substrate heated to 400 ° C. was kept in an NH 3 atmosphere (1 Torr) to improve the film quality for about 5 minutes. Then, it was conveyed to the LPCVD apparatus 22 for TiN growth like Example 2. The TiN layer having a required film thickness was formed by repeating the above film deposition and heating film modification treatment steps. As a result of measuring the amount of chlorine in the deposited film, the same amount of chlorine as in the case of using plasma for the film modification treatment was removed from the film.

【0027】本実施例においては、NH3 ガスを使用し
たが、処理温度、処理時間を最適化することにより、N
2 あるいはN2 4 ガス、あるいは以上の混合ガスを使
用しても同様な効果が得られる。
In this embodiment, NH 3 gas is used, but by optimizing the processing temperature and processing time, N 3 gas is used.
The same effect can be obtained by using 2 or N 2 H 4 gas or a mixed gas thereof.

【0028】実施例4 図3は本発明の第四の実施例を説明するための、TiN
膜堆積装置の構成図である。本装置は、基板31を保持
するサセプタ32、およびそれらを加熱する基板加熱機
構33、TiCl4 を供給するノズル34、TiCl4
ガス量を制御するTiCl4 流量ガス制御部35、NH
3 プラズマを発生するイオン化部36、NH3 流量制御
部37、プラズマを発生させるための高周波電源38、
装置内部を排気する排気系39、から構成される。基板
31には、通常の露光およびエッチング法により、幅
0.25μm 深さ1.0μm の電極用接続孔を形成し
た。
Example 4 FIG. 3 illustrates TiN for explaining a fourth example of the present invention.
It is a block diagram of a film deposition apparatus. The apparatus includes a substrate heating mechanism 33, TiCl 4 nozzles for supplying 34 to heat the susceptor 32, and they hold the substrate 31, TiCl 4
TiCl 4 flow rate gas control unit 35 for controlling the gas amount, NH
3 Ionization unit 36 for generating plasma, NH 3 flow rate control unit 37, high frequency power supply 38 for generating plasma,
It is composed of an exhaust system 39 for exhausting the inside of the apparatus. On the substrate 31, a contact hole for an electrode having a width of 0.25 μm and a depth of 1.0 μm was formed by a usual exposure and etching method.

【0029】加熱機構33により400℃に加熱された
基板31の表面に、ノズル34からTiCl4 を約5秒
間供給した。この時、堆積装置内部の圧力は、排気系3
9により約3mmTorrに維持された。基板温度およ
び装置内圧力は、気相中においてTiCl4 がほとんど
熱分解する事無く基板表面に到達するよう決定した。本
工程により、基板表面にほぼ一分子層のTi塩化物層が
形成された。
TiCl 4 was supplied from the nozzle 34 to the surface of the substrate 31 heated to 400 ° C. by the heating mechanism 33 for about 5 seconds. At this time, the pressure inside the deposition apparatus is set to the exhaust system 3
9 maintained at about 3 mm Torr. The substrate temperature and the pressure inside the apparatus were determined so that TiCl 4 reached the substrate surface in the gas phase with almost no thermal decomposition. By this step, a Ti chloride layer of almost one molecular layer was formed on the surface of the substrate.

【0030】次に、約5秒間装置内部の残留TiCl4
を排気した後、イオン化部36を用いてNH3 プラズマ
を発生させ基板表面を窒素を含むプラズマに晒した。こ
の時、基板にバイアスをかけ、効率的に窒素イオンを基
板表面に供給した。約5秒間基板をプラズマに晒した
後、NH3 プラズマの発生を停止し、窒素の基板表面へ
の供給を停止した。その後、約5秒間NH3 ガスを排気
した。以上の工程を行った結果、基板表面に約一分子層
のTiN層が形成された。
Next, for about 5 seconds, the residual TiCl 4 inside the apparatus was
After evacuating the substrate, NH 3 plasma was generated using the ionization section 36 to expose the substrate surface to the plasma containing nitrogen. At this time, the substrate was biased and nitrogen ions were efficiently supplied to the substrate surface. After exposing the substrate to the plasma for about 5 seconds, the generation of NH 3 plasma was stopped and the supply of nitrogen to the substrate surface was stopped. Then, NH 3 gas was exhausted for about 5 seconds. As a result of the above steps, a TiN layer of about one molecular layer was formed on the surface of the substrate.

【0031】上記膜堆積、排気、膜改質、排気の四工程
を200回繰り返し行った後、堆積したTiNの膜厚、
膜中の塩素量、埋め込み形状を調べた。堆積したTiN
膜厚は、TiN約200層に対応した。また、膜中の塩
素濃度は、約1018cm-3程度であり、従来のTiN堆積
膜と比較して大幅に膜中残留塩素濃度が低減した。さら
に、場所に依存せず一層づつTiN層が堆積した結果、
接続孔底部と表面でのTiN膜厚に差がなく、良好な埋
め込み形状が得られた。
After the above four steps of film deposition, evacuation, film modification and evacuation were repeated 200 times, the film thickness of the deposited TiN,
The amount of chlorine in the film and the embedded shape were examined. Deposited TiN
The film thickness corresponded to about 200 layers of TiN. The chlorine concentration in the film was about 10 18 cm −3 , and the residual chlorine concentration in the film was significantly reduced as compared with the conventional TiN deposited film. Furthermore, as a result of depositing TiN layers one by one without depending on the location,
There was no difference in the TiN film thickness between the bottom and the surface of the connection hole, and a good embedded shape was obtained.

【0032】本実施例においては、TiCl4 供給時間
5秒、基板温度400℃、装置内圧力3mmTorrと
したが、TiCl4 等のTi塩化物が表面に一層吸着
し、それ以上吸着しないように適宜決定する。また、N
3 プラズマ発生の時間を5秒としたが、表面での十分
な窒化が得られるように適宜決定する。
In the present embodiment, the TiCl 4 supply time was 5 seconds, the substrate temperature was 400 ° C., and the pressure inside the apparatus was 3 mmTorr. However, TiCl 4 and other Ti chlorides should be adsorbed further on the surface and should not be adsorbed any further. decide. Also, N
The time of H 3 plasma generation was set to 5 seconds, but it is appropriately determined so that sufficient nitriding on the surface can be obtained.

【0033】この実施例ではTiNを形成するためにN
3 プラズマを用いたが、それに代えてNH3 ガスを流
す方法を用いてもよい。
In this example, N was used to form TiN.
Although H 3 plasma is used, a method of flowing NH 3 gas may be used instead.

【0034】なお実施例1〜3では、TiN膜を形成す
るのにLPCVD法を用いたが、プラズマCVD法を用
いてもよい。その際は最初Tiの塩化物ガスとアンモニ
アガス(あるいは窒素と水素)を流しておき、TiNが
所望の膜厚になったらTiの塩化物の供給を止め、アン
モニアだけを流せば本発明でいう窒素を含むプラズマの
照射になる。
In Examples 1 to 3, the LPCVD method was used to form the TiN film, but a plasma CVD method may be used. In that case, Ti chloride gas and ammonia gas (or nitrogen and hydrogen) are first flowed, and when the TiN has a desired film thickness, the supply of Ti chloride is stopped and only ammonia is flowed, which is referred to in the present invention. Irradiation of plasma containing nitrogen.

【0035】具体的には、電子サイクロトロン共鳴(E
CR)を利用したCVDを例にとると、TiCl4 /N
3 を流量比で1:5、圧力7×10-4Torr、周波
数2.45GHzのマイクロ波を800W/cm2 、RF
バイアス500W/cm2 、磁場875Gaussであ
る。
Specifically, electron cyclotron resonance (E
For example, in the case of CVD using (CR), TiCl 4 / N
Flow rate of H 3 is 1: 5, pressure is 7 × 10 −4 Torr, microwave of frequency 2.45 GHz is 800 W / cm 2 , RF.
The bias is 500 W / cm 2 , and the magnetic field is 875 Gauss.

【0036】[0036]

【発明の効果】以上説明したように本発明は、Tiの原
料として塩化物を用いたクロライドCVD法により堆積
させたTiN膜を窒素プラズマ等を用いて改質すること
により、残留塩素量が少なく、かつ良好な埋め込み形状
を有したTiNバリアメタル層を形成できるという効果
がある。
As described above, according to the present invention, the amount of residual chlorine is reduced by modifying the TiN film deposited by the chloride CVD method using chloride as a raw material of Ti by using nitrogen plasma or the like. In addition, there is an effect that a TiN barrier metal layer having a good embedded shape can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例を説明するためのTiN
膜質改質装置を示す模式図である。
FIG. 1 is a TiN for explaining a first embodiment of the present invention.
It is a schematic diagram which shows a film quality modifier.

【図2】本発明の第二の実施例を説明するためのTiN
膜質改質および膜堆積装置を示す模式図である。
FIG. 2 TiN for explaining a second embodiment of the present invention
It is a schematic diagram which shows a film quality modification and a film deposition apparatus.

【図3】本発明の第四の実施例を説明するためのTiN
膜堆積装置を示す模式図である。
FIG. 3 is TiN for explaining a fourth embodiment of the present invention.
It is a schematic diagram which shows a film deposition apparatus.

【符号の説明】[Explanation of symbols]

11 上部電極 12 下部電極 13 ガス排気系 14 ガス供給系 15 基板加熱機構 16 高周波電源 17 制御系 18 基板 21 基板交換室 22 TiN成長用LPCVD装置 23 TiN膜改質用プラズマ装置 24 基板搬送装置 31 基板 32 サセプタ 33 基板加熱機構 34 TiCl4 供給用ノズル 35 TiCl4 流量制御部 36 イオン化部 37 N2 流量制御部 38 高周波電源 39 排気系11 Upper Electrode 12 Lower Electrode 13 Gas Exhaust System 14 Gas Supply System 15 Substrate Heating Mechanism 16 High Frequency Power Supply 17 Control System 18 Substrate 21 Substrate Exchange Room 22 TiN Growth LPCVD Device 23 TiN Film Reforming Plasma Device 24 Substrate Transfer Device 31 Substrate 32 Susceptor 33 Substrate heating mechanism 34 TiCl 4 supply nozzle 35 TiCl 4 flow control unit 36 Ionization unit 37 N 2 flow control unit 38 High frequency power supply 39 Exhaust system

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】Tiの塩化物を原料として化学気相成長法
によりTiN薄膜を堆積し、窒素を含むプラズマをこの
堆積膜に照射することを特徴とするTiN薄膜の形成方
法。
1. A method for forming a TiN thin film, which comprises depositing a TiN thin film by a chemical vapor deposition method using Ti chloride as a raw material and irradiating the deposited film with plasma containing nitrogen.
【請求項2】Tiの塩化物を原料として化学気相成長法
により所望の膜厚より薄いTiN薄膜を堆積し、窒素を
含むプラズマをこの堆積膜に照射し、次いで前記のTi
N堆積工程とそれに続くプラズマ照射工程を施し、これ
らの工程を繰り返して所望の膜厚のTiN膜を形成する
ことを特徴とするTiN薄膜の形成方法。
2. A TiN thin film thinner than a desired film thickness is deposited by a chemical vapor deposition method using Ti chloride as a raw material, plasma containing nitrogen is irradiated to the deposited film, and then the Ti film is deposited.
A method for forming a TiN thin film, comprising performing an N deposition step and a subsequent plasma irradiation step, and repeating these steps to form a TiN film having a desired film thickness.
【請求項3】Tiの塩化物を基板上にほぼ一分子層供給
し次いで窒素を含むプラズマを照射してTiNをほぼ一
分子層形成する工程を、所望の膜厚になるまで続けるこ
とを特徴とする請求項2に記載のTiN薄膜の形成方
法。
3. A process of supplying substantially one molecular layer of Ti chloride onto a substrate and then irradiating a plasma containing nitrogen to form almost one molecular layer of TiN until a desired film thickness is obtained. The method for forming a TiN thin film according to claim 2.
【請求項4】窒素を含むプラズマの照射に代えて、窒素
を構成元素として含むガス中で加熱することを特徴とす
る請求項1、2または3に記載のTiN薄膜の形成方
法。
4. The method for forming a TiN thin film according to claim 1, wherein heating is performed in a gas containing nitrogen as a constituent element instead of irradiation with plasma containing nitrogen.
【請求項5】半導体装置を構成する不純物拡散層上に絶
縁膜を形成したあと拡散層上の絶縁膜を開口し、この開
口部にバリアメタルとしてTiN薄膜を形成し、その上
に配線材料を形成する際、TiN薄膜の形成に請求項
1、2、3または4に記載の方法を用いるTiN薄膜の
形成方法。
5. An insulating film is formed on an impurity diffusion layer constituting a semiconductor device, an insulating film on the diffusion layer is opened, a TiN thin film is formed as a barrier metal in this opening, and a wiring material is formed on the TiN thin film. A method for forming a TiN thin film, which comprises using the method according to claim 1, 2, 3 or 4 when forming the TiN thin film.
【請求項6】窒素を含むプラズマを発生させるためのガ
スあるいは窒素を構成元素として含むガスとして、
2 ,NH3 ,N2 4 ガスの少なくとも一つである請
求項1、2、3、4または5に記載のTiN薄膜の形成
方法。
6. A gas for generating plasma containing nitrogen or a gas containing nitrogen as a constituent element,
The method for forming a TiN thin film according to claim 1, wherein the gas is at least one of N 2 , NH 3 , and N 2 H 4 gas.
【請求項7】基板を加熱しながらTiN薄膜を堆積する
請求項1、2、3、4、5または6に記載のTiN薄膜
の形成方法。
7. The method of forming a TiN thin film according to claim 1, wherein the TiN thin film is deposited while heating the substrate.
JP6011870A 1994-02-03 1994-02-03 Method of forming barrier metal layer Expired - Lifetime JP2803556B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6011870A JP2803556B2 (en) 1994-02-03 1994-02-03 Method of forming barrier metal layer
KR1019950001895A KR950025880A (en) 1994-02-03 1995-02-03 Method of Forming Barrier Metal Layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6011870A JP2803556B2 (en) 1994-02-03 1994-02-03 Method of forming barrier metal layer

Publications (2)

Publication Number Publication Date
JPH07221048A true JPH07221048A (en) 1995-08-18
JP2803556B2 JP2803556B2 (en) 1998-09-24

Family

ID=11789765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6011870A Expired - Lifetime JP2803556B2 (en) 1994-02-03 1994-02-03 Method of forming barrier metal layer

Country Status (2)

Country Link
JP (1) JP2803556B2 (en)
KR (1) KR950025880A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122775A2 (en) * 2000-02-01 2001-08-08 Applied Materials, Inc. Treatment of a metal nitride/metal stack
KR20020038054A (en) * 2000-11-16 2002-05-23 박종섭 Method for forming Thin film of Semiconductor Device
US6548389B2 (en) 2000-04-03 2003-04-15 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
KR20040006481A (en) * 2002-07-12 2004-01-24 주식회사 하이닉스반도체 Method for improving reliablity of etching and depositing device
JP2016125104A (en) * 2015-01-06 2016-07-11 株式会社日立国際電気 Method of manufacturing semiconductor device, and substrate processing apparatus and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135018A (en) * 1989-10-20 1991-06-10 Hitachi Ltd Method and apparatus for manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135018A (en) * 1989-10-20 1991-06-10 Hitachi Ltd Method and apparatus for manufacture of semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122775A2 (en) * 2000-02-01 2001-08-08 Applied Materials, Inc. Treatment of a metal nitride/metal stack
EP1122775A3 (en) * 2000-02-01 2001-08-16 Applied Materials, Inc. Treatment of a metal nitride/metal stack
US6436819B1 (en) 2000-02-01 2002-08-20 Applied Materials, Inc. Nitrogen treatment of a metal nitride/metal stack
KR100748371B1 (en) * 2000-02-01 2007-08-10 어플라이드 머티어리얼스, 인코포레이티드 Treatment of a metal nitride/metal stack
US6548389B2 (en) 2000-04-03 2003-04-15 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
KR20020038054A (en) * 2000-11-16 2002-05-23 박종섭 Method for forming Thin film of Semiconductor Device
KR20040006481A (en) * 2002-07-12 2004-01-24 주식회사 하이닉스반도체 Method for improving reliablity of etching and depositing device
JP2016125104A (en) * 2015-01-06 2016-07-11 株式会社日立国際電気 Method of manufacturing semiconductor device, and substrate processing apparatus and program
US10355098B2 (en) 2015-01-06 2019-07-16 Kokusai Electric Corporation Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2803556B2 (en) 1998-09-24
KR950025880A (en) 1995-09-18

Similar Documents

Publication Publication Date Title
US7655567B1 (en) Methods for improving uniformity and resistivity of thin tungsten films
US5508066A (en) Method for forming a thin film
JP3228746B2 (en) Method for nucleating tungsten on titanium nitride by CVD without silane
KR101020116B1 (en) A method and apparatus for forming a high quality low temperature silicon nitride film
US6905543B1 (en) Methods of forming tungsten nucleation layer
US6872429B1 (en) Deposition of tungsten nitride using plasma pretreatment in a chemical vapor deposition chamber
US20020114886A1 (en) Method of tisin deposition using a chemical vapor deposition process
US20100029094A1 (en) Method and Apparatus for Forming a High Quality Low Temperature Silicon Nitride Layer
JP2001291682A (en) Plasma treatment of titanium nitride film formed by chemical vapor deposition
US6933021B2 (en) Method of TiSiN deposition using a chemical vapor deposition (CVD) process
JPH0931625A (en) Method for pretreating semiconductor substrate
JPH1187341A (en) Film formation and film-forming apparatus
JPS6345373A (en) Adhesion of tungsten silicide high in silicon content
WO1999063590A9 (en) A method for treating a deposited film for resistivity reduction
KR20010013723A (en) Metal and metal silicide nitridization in a high density, low pressure plasma reactor
JPH0697111A (en) Formation of barrier metal
US6436820B1 (en) Method for the CVD deposition of a low residual halogen content multi-layered titanium nitride film having a combined thickness greater than 1000 Å
JPH08246152A (en) Improved titanium nitride layer built up by chemical vapor phase buildup and production thereof
JPH08170174A (en) Formation of titanium nitride film
JP2803556B2 (en) Method of forming barrier metal layer
JP2003022985A (en) Method and device for producing semiconductor device
JP2000058484A (en) Plasma cvd system and method for forming thin film by plasma cvd
JP3718297B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
KR0161889B1 (en) Formation method of wiring in semiconductor device
JP2844693B2 (en) Method of forming high melting point metal film