JPH07220942A - Wound iron core of transformer - Google Patents

Wound iron core of transformer

Info

Publication number
JPH07220942A
JPH07220942A JP6011865A JP1186594A JPH07220942A JP H07220942 A JPH07220942 A JP H07220942A JP 6011865 A JP6011865 A JP 6011865A JP 1186594 A JP1186594 A JP 1186594A JP H07220942 A JPH07220942 A JP H07220942A
Authority
JP
Japan
Prior art keywords
magnetic flux
iron core
flux density
electromagnetic steel
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6011865A
Other languages
Japanese (ja)
Other versions
JP3574955B2 (en
Inventor
Koichi Nagai
幸一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO DENKI KK
Original Assignee
TOYO DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO DENKI KK filed Critical TOYO DENKI KK
Priority to JP01186594A priority Critical patent/JP3574955B2/en
Publication of JPH07220942A publication Critical patent/JPH07220942A/en
Application granted granted Critical
Publication of JP3574955B2 publication Critical patent/JP3574955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To contrive to reduce remaining magnetic flux density and an exciting surge current in a structure similar to a wound iron core of a general transformer without providing a butt gap like a gapped wound iron core. CONSTITUTION:In a one-turn cut of wound iron core, a plurality of groups of electromagnetic steel band 1 shifting stepwise a location of a cut part 2 are super-imposed so as to be closely adhered to the radius direction. In the cut part 2 of a group of electromagnetic steel band 1, an insulator 3 of a sufficient length is arranged so as to cover the cut part 2 with a margin. Also, between the adjacent electromagnetic steel band groups 1, the insulator 3 of a sufficient length is arranged so as to cover the cut part 2 with a margin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ワンターンカット形の
巻鉄心において、励磁突入電流の減少を図るようにした
変圧器の巻鉄心に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a one-turn cut type winding core for a transformer, which is designed to reduce the exciting inrush current.

【0002】[0002]

【従来の技術】変圧器の励磁突入電流は、電源電圧の瞬
時値が「0」の時に投入され、しかも巻鉄心内の残留磁
気の方向と電圧投入直後の磁束の方向とが一致した場合
に最大となり、その場合、励磁突入電流が最大となる第
1サイクルの電流の最大値imax は、下記式で表わされ
る。
2. Description of the Related Art The exciting inrush current of a transformer is applied when the instantaneous value of the power supply voltage is "0", and moreover, when the direction of the residual magnetism in the wound iron core and the direction of the magnetic flux immediately after the application of the voltage match. The maximum value, imax, of the current in the first cycle at which the magnetizing inrush current becomes the maximum is expressed by the following equation.

【0003】imax =N・A(2Bm +Br −2)/L ( N;励磁巻線の巻数, A;巻鉄心の断面積,
L;励磁巻線の空心インダクタンス, Bm ;常規磁束
密度, Br ;残留磁束密度 ) この式から明らかなように、励磁突入電流の最大値ima
x を減少させるためには、常規磁束密度Bm を減少させ
ること、又は、残留磁束密度Br を減少させることが有
効であることが分かる。
Imax = N.multidot.A (2Bm + Br.sup.-2) / L (N: number of turns of exciting winding, A: cross-sectional area of wound core,
L: air-core inductance of exciting winding, Bm; normal magnetic flux density, Br; residual magnetic flux density) As is clear from this equation, the maximum value of exciting inrush current ima
It can be seen that in order to reduce x, it is effective to reduce the regular magnetic flux density Bm or the residual magnetic flux density Br.

【0004】そして、常規磁束密度Bm を減少させるに
あたっては、巻鉄心の断面積Aを大きな値に設定する
か、あるいは、励磁巻線の巻数Nを増加させることが考
えられる。
In order to decrease the regular magnetic flux density Bm, it is conceivable to set the cross-sectional area A of the wound iron core to a large value or increase the number N of turns of the exciting winding.

【0005】一方、残留磁束密度Br を減少させるにあ
たっては、巻鉄心に図7に示すようなバットギャップ5
5,55を積極的に設けることが考えられる。
On the other hand, in order to reduce the residual magnetic flux density Br, the butt gap 5 as shown in FIG.
It is conceivable to actively provide 5,55.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前者に
おいては、例えば常規磁束密度Bm を1/2にしようと
すると変圧器の容積が等価的に2倍になり変圧器の大型
化、コストアップ等の問題や、インピーダンス電圧、電
圧変動率が増加するという問題等がある。
However, in the former case, for example, if the normal magnetic flux density B m is halved, the volume of the transformer is equivalently doubled, and the size of the transformer is increased and the cost is increased. And the problem that the impedance voltage and the voltage fluctuation rate increase.

【0007】一方、後者においては、後述するように、
残留磁束密度Br の大幅な減少を達成できるが、バット
ギャップ部分に大きな振動性の力が作用し、バットギャ
ップ部分が騒音源になるという問題や、この騒音を防止
するために、一般の変圧器に比べて鉄心を強固に固定す
るためのなんらかの特別な対策を講じなければならない
という問題等がある。
On the other hand, in the latter, as will be described later,
Although the residual flux density Br can be greatly reduced, a problem that a large vibration force acts on the butt gap portion and the butt gap portion becomes a noise source, and in order to prevent this noise, a general transformer is used. There is a problem that some special measures must be taken to firmly fix the iron core, as compared with.

【0008】本発明は、上記問題点にかんがみ、図7に
示すようなギャップ入り鉄心のようにバットギャップ5
5,55を設けることなく、一般の変圧器の巻鉄心と類
似の構造で残留磁束密度を低減し、励磁突入電流の減少
を図ることができる巻鉄心を提供することを目的とす
る。
In view of the above problems, the present invention has a butt gap 5 as in a core with a gap as shown in FIG.
An object of the present invention is to provide a wound iron core having a structure similar to that of a wound iron core of a general transformer without providing 5, 55 and capable of reducing the residual magnetic flux density and reducing the exciting inrush current.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る変圧器の巻鉄心は、カット部分の位
置を階段状にずらせた一群の電磁鋼帯を複数群、径方向
に密着させて重ねて形成されるワンターンカット形の巻
鉄心において、前記一群の電磁鋼帯のカット部分に該カ
ット部分を余裕をもって覆う長さの絶縁体を配設し、か
つ、隣接する電磁鋼帯群の間にもカット部分を余裕をも
って覆う長さの絶縁体を配設したことを特徴とする。
In order to solve the above-mentioned problems, the winding iron core of the transformer according to claim 1 has a plurality of groups of electromagnetic steel strips in which the positions of the cut portions are shifted stepwise, in the radial direction. In a one-turn cut type wound iron core formed by closely adhering to each other, an insulating body having a length that covers the cut portion of the group of electromagnetic steel strips with a margin is provided, and the adjacent electromagnetic steel It is characterized in that an insulator having a length that covers the cut portion with a margin is arranged between the band groups.

【0010】また、請求項2に係る変圧器の巻鉄心は、
カット部分の位置を階段状にずらせた一群の電磁鋼帯を
複数群、径方向に密着させて重ねて形成されるワンター
ンカット形の巻鉄心において、前記一群の電磁鋼帯のカ
ット部分に該カット部分を余裕をもって覆う長さの絶縁
体を配設し、かつ、隣接する電磁鋼帯群の間にカット部
分を余裕をもって覆う長さの非磁性の金属体を配設した
ことを特徴とする。
The winding core of the transformer according to claim 2 is
In a one-turn cut type wound core formed by stacking a plurality of groups of electromagnetic steel strips in which the positions of the cut portions are staggered in a radial direction, the cuts are made in the cut portions of the one group of electromagnetic steel strips. It is characterized in that an insulator having a length that covers the portion with a margin is arranged, and a non-magnetic metal body having a length that covers the cut portion with a margin is arranged between adjacent electromagnetic steel strip groups.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0012】図1は、一実施例に係る変圧器のワンター
ンカット形巻鉄心の斜視図を示している。
FIG. 1 shows a perspective view of a one-turn cut wound core of a transformer according to an embodiment.

【0013】図1において、1は電磁鋼帯群、2は電磁
鋼帯のカット部分(合わせ目)を表わしている。
In FIG. 1, 1 is a group of electromagnetic steel strips, and 2 is a cut portion (joint) of the electromagnetic steel strips.

【0014】図1に示すように、各電磁鋼帯群1におけ
る複数のカット部分2は、階段状にずれて位置してい
る。また、複数の電磁鋼帯群1は、径方向に密着させて
重ねて形成されている。
As shown in FIG. 1, the plurality of cut portions 2 in each electromagnetic steel strip group 1 are positioned in a staggered manner. Further, the plurality of electromagnetic steel strip groups 1 are formed in close contact with each other in the radial direction and stacked.

【0015】また、カット部分2付近の拡大図である図
2に示すように、各電磁鋼帯群1のカット部分2には、
該カット部分2を余裕をもって覆う長さの絶縁体3が配
設されている。また、隣接する電磁鋼帯群1の間にも、
カット部分2を余裕をもって覆う長さの絶縁体4が配設
されている。
Further, as shown in FIG. 2, which is an enlarged view of the vicinity of the cut portion 2, the cut portion 2 of each electromagnetic steel strip group 1 is
An insulator 3 having a length that covers the cut portion 2 with a margin is provided. Also, between the adjacent electromagnetic steel strip group 1,
An insulator 4 having a length that covers the cut portion 2 with a margin is provided.

【0016】本実施例の巻鉄心は、上記のように構成さ
れているため、図3に示すように、磁束φは、配設した
絶縁体3,4のいずれかを通らなければならない。この
ことは、以下に述べるように、大幅な残留磁束密度の減
少を達成できることを意味している。
Since the wound iron core of this embodiment is constructed as described above, the magnetic flux φ must pass through one of the arranged insulators 3 and 4, as shown in FIG. This means that a significant reduction in the residual magnetic flux density can be achieved, as described below.

【0017】すなわち、合計0.1mmのカット部分を
有する磁路長1mの鉄心で常規磁束密度が1Tの場合を
例に挙げて説明すると、その鉄心部分における磁束密度
と必要な起磁力との関係は、材料の加工及び鉄心の組立
てによる材料特性の変化がないものと仮定すると、図4
における図形(1) で示すような曲線で表わされる。一
方、カット部分の磁束密度と必要な起磁力との関係は、
下記式 磁束密度=起磁力×4π×10-7/(0.1×10-3) で表わされ、図4における図形(2) で示すような直線で
表わされる。
That is, the case of an iron core having a magnetic path length of 1 m having a total of 0.1 mm cut portions and a normal magnetic flux density of 1 T will be described as an example. The relationship between the magnetic flux density in the iron core portion and the necessary magnetomotive force will be described. Assuming that there is no change in material properties due to material processing and iron core assembly,
It is represented by the curve shown in Figure (1). On the other hand, the relationship between the magnetic flux density at the cut portion and the necessary magnetomotive force is
The magnetic flux density is expressed by the following formula: magnetomotive force × 4π × 10 -7 /(0.1×10 -3 ), and is represented by a straight line as shown by the figure (2) in FIG.

【0018】従って、鉄心全体における磁束密度と起磁
力との関係は、図4図示図形(1) と図形(2) とを合成し
て、図5に示すような曲線で表わすことができる。この
図5に示す図形と図4図示図形(1) とを例にとって比較
すれば明らかなように、カット部分無しの鉄心の残留磁
束密度Br が0.7(T)であるのに対し、カット部分
有りの鉄心の残留磁束密度Br は0.06(T)とな
り、残留磁束密度Br が大幅に減少することが分かる。
Therefore, the relationship between the magnetic flux density and the magnetomotive force in the entire iron core can be represented by a curve as shown in FIG. 5 by synthesizing the figures (1) and (2) shown in FIG. As is clear by comparing the figure shown in FIG. 5 and the figure (1) shown in FIG. 4 as an example, while the residual magnetic flux density B r of the iron core without the cut portion is 0.7 (T), It can be seen that the residual magnetic flux density B r of the iron core with the cut portion is 0.06 (T), and the residual magnetic flux density B r is significantly reduced.

【0019】しかしながら、従来の一般的構造の巻鉄心
の場合、鉄心への起磁力を零にする、換言すると、励磁
巻線に対する電圧印加を解除したとき、図8に示すよう
に、磁束φは磁気抵抗の大きなカット部分2を迂回して
しまい、上述したようなカット部分2による残留磁束密
度Br の大幅な減少という効果を実際には発揮できてい
なかった。これに対し、本実施例の巻鉄心の場合、磁束
φは図3に示すように絶縁体3,4を通るため、残留磁
束密度Br の大幅な減少を達成できる。
However, in the case of the conventional wound iron core having a general structure, the magnetomotive force to the iron core is set to zero, in other words, when the voltage application to the exciting winding is released, the magnetic flux φ changes as shown in FIG. Since the cut portion 2 having a large magnetic resistance is bypassed, the above-mentioned effect of the cut portion 2 significantly reducing the residual magnetic flux density B r cannot be actually exhibited. On the other hand, in the case of the wound core of this embodiment, the magnetic flux φ passes through the insulators 3 and 4 as shown in FIG. 3, so that the residual magnetic flux density Br can be greatly reduced.

【0020】次に、本発明の効果を概算して示す。一般
の変圧器で、常規磁束密度Bm が1.5(T)、残留磁
束密度Br が常規磁束密度Bm の80%である1.2
(T)、K=N・A/Lとすると、 imax =K(2×1.5+1.2−2)=2.2K となる。これに対し、この変圧器に非磁性絶縁体を挿入
し残留磁束密度Br を0.1(T)にしたとすれば、 imax =K(2×1.5+0.1−2)=1.1K となり、励磁突入電流は半減する。
Next, the effects of the present invention will be roughly shown. In a general transformer, the regular magnetic flux density B m is 1.5 (T), and the residual magnetic flux density B r is 80% of the regular magnetic flux density B m 1.2.
If (T) and K = NA · L, then i max = K (2 × 1.5 + 1.2−2) = 2.2K. On the other hand, if a non-magnetic insulator is inserted in this transformer and the residual magnetic flux density B r is set to 0.1 (T), then i max = K (2 × 1.5 + 0.1−2) = 1 It becomes 0.1 K, and the magnetizing inrush current is halved.

【0021】逆に、鉄心構造が同じままで常規磁束密度
を下げて励磁突入電流を1.1Kまで下げようとする
と、残留磁束密度を常規磁束密度の80%として逆算す
ると、常規磁束密度を1.11(T)に下げなければな
らない。実際は、常規磁束密度を下げればKの値も変わ
ってくるが、常規磁束密度を大幅に下げなければならな
いことに変わりはない。
On the other hand, if the normal magnetic flux density is reduced to lower the exciting inrush current to 1.1K while the iron core structure remains the same, the residual magnetic flux density is calculated as 80% of the normal magnetic flux density. It must be lowered to 11 (T). Actually, if the standard magnetic flux density is reduced, the value of K also changes, but the standard magnetic flux density must be significantly reduced.

【0022】次に、励磁突入電流を定格電流程度に抑制
した変圧器について検討する。先の式で右辺を近似的に
「0」として常規磁束密度を逆算してみると、一般の変
圧器の場合は、残留磁束密度を常規磁束密度の80%と
して0.714(T)になる。一方、鉄心脚にバットギ
ャップを入れ、あるいは、互いに隣接する抜板ブロック
10a ,30a 間に非磁性絶縁体10b ,30b を入
れ、残留磁束密度を0.1(T)にした場合は、0.9
5(T)となる。即ち、残留磁束密度を0.1(T)と
した場合は、設計磁束密度を1.33倍と高くとれるこ
とを示している。一方、変圧器の製造コストは、構造が
類似の場合、等価容量の0.3〜1乗(普通は0.65
乗程度)に比例する。等価容量は設計磁束密度に反比例
するので、結局変圧器の製造コストは設計磁束密度の
0.3〜1.0乗(普通は0.65乗)に反比例するこ
とになる。
Next, a transformer in which the exciting inrush current is suppressed to about the rated current will be examined. When the normal magnetic flux density is calculated backward with the right side approximately equal to "0" in the above equation, in the case of a general transformer, the residual magnetic flux density is 0.714 (T) with 80% of the normal magnetic flux density. . On the other hand, when the butt gap is inserted in the iron core leg or the nonmagnetic insulators 10 b and 30 b are inserted between the blanking blocks 10 a and 30 a adjacent to each other, and the residual magnetic flux density is set to 0.1 (T). Is 0.9
It becomes 5 (T). That is, it is shown that when the residual magnetic flux density is 0.1 (T), the design magnetic flux density can be as high as 1.33 times. On the other hand, the manufacturing cost of a transformer is equivalent to 0.3 to the power of 1 (usually 0.65) when the structures are similar.
Power). Since the equivalent capacity is inversely proportional to the design magnetic flux density, the manufacturing cost of the transformer is ultimately inversely proportional to the design magnetic flux density of 0.3 to 1.0 power (usually 0.65 power).

【0023】そこで、0.65乗に反比例すると仮定し
て試算すると、非磁性絶縁体を入れる方法は、磁束密度
を単純に下げる方法と比較してコストは83%になる。
非磁性絶縁体の増加、製造工数の増加を考慮しても10
数%のコスト低減が期待できる。
Therefore, if a trial calculation is performed assuming that the magnetic flux density is inversely proportional to the 0.65th power, the cost of the method of inserting the nonmagnetic insulator is 83% as compared with the method of simply lowering the magnetic flux density.
10 even considering the increase in non-magnetic insulators and manufacturing man-hours
Cost reduction of several% can be expected.

【0024】しかし、構造が大きく変わった場合のコス
トは、上記のように一概には論じられない。同じ残留磁
束を低減する方法でも、先に述べた鉄心脚にバットギャ
ップを入れる構造とした場合は、それによるコストアッ
プをみなければならない。
However, the cost when the structure is largely changed cannot be generally discussed as described above. Even if the method of reducing the residual magnetic flux is the same, if the butt gap is formed in the iron core leg as described above, it is necessary to increase the cost.

【0025】それでも、容量の大きい変圧器の場合で励
磁突入電流を一般の変圧器より大幅に下げる必要がある
場合は、バットギャップを入れる効果はある。小容量の
変圧器の場合は、バットギャップを入れるためのコスト
アップの割合が大きくなり、磁束密度を大きく下げても
ギャップを入れない方が有利になることが多い。
Even so, in the case of a transformer having a large capacity, when it is necessary to significantly lower the exciting inrush current as compared with a general transformer, there is an effect of inserting a butt gap. In the case of a small-capacity transformer, the cost increase rate for inserting the butt gap increases, and it is often advantageous not to insert the gap even if the magnetic flux density is greatly reduced.

【0026】本実施例の励磁突入電流防止変圧器は、バ
ットギャップを入れないで残留磁束密度を低くしたもの
で、電磁鋼帯のカット部分を電磁鋼帯の積層方向(径方
向)に締め付けることは必要であるが、その他の構造が
一般のワンターンカット形巻鉄心変圧器と類似となるの
で、経済的に大変有利である。また、励磁突入電流を磁
束密度の低減だけで対処した変圧器と比較して電圧変動
率の増加は少なく、また、バットギャップ入変圧器にあ
りがちなギャップによる騒音の問題もなく、特性的にも
バランスのとれた欠点の少ない変圧器といえる。
The exciting inrush current prevention transformer of this embodiment has a low residual magnetic flux density without a butt gap, and the cut portion of the electromagnetic steel strip is tightened in the laminating direction (radial direction) of the electromagnetic steel strip. However, the other structure is similar to a general one-turn cut type wound core transformer, which is very economically advantageous. In addition, the voltage fluctuation rate does not increase much compared to the transformer that deals with the excitation inrush current only by reducing the magnetic flux density, and there is no problem of noise due to the gap that tends to occur in the butt gap transformer, and in terms of characteristics. It is a well-balanced transformer with few defects.

【0027】なお、本実施例の巻鉄心を製造するにあた
っては、配設する絶縁体のスペースを考慮して鉄心を設
計、製造することが必要なことは当然である。
When manufacturing the wound iron core of this embodiment, it is of course necessary to design and manufacture the iron core in consideration of the space of the insulator to be arranged.

【0028】図6は、本発明の他の実施例に係る巻鉄
心、すなわち、電磁鋼帯群1のカット部分2に該カット
部分2を余裕をもって覆う長さの絶縁体3を配設し、か
つ、隣接する電磁鋼帯群1の間にカット部分2を余裕を
もって覆う長さの非磁性の金属体5を配設したことを特
徴とする巻鉄心における、磁束φの流れを示している。
FIG. 6 shows a wound core according to another embodiment of the present invention, that is, a cut portion 2 of an electromagnetic steel strip group 1 is provided with an insulator 3 having a length to cover the cut portion 2 with a margin. Moreover, the flow of the magnetic flux φ in the wound iron core is characterized in that a non-magnetic metal body 5 having a length that covers the cut portion 2 with a margin is arranged between the adjacent electromagnetic steel strip groups 1.

【0029】巻鉄心を上記のように構成したことによ
り、図6に示すように、磁束φは、非磁性の金属体5を
通過することができないため、必ず絶縁体3を通って流
れるようになる。
By constructing the wound iron core as described above, the magnetic flux φ cannot pass through the non-magnetic metal body 5 as shown in FIG. 6, so that it always flows through the insulator 3. Become.

【0030】このため、本実施例の巻鉄心によっても、
上述した実施例と同様、大幅な残留磁束密度の減少を達
成できるようになる。
Therefore, even with the wound iron core of this embodiment,
Similar to the above-described embodiment, it is possible to achieve a great reduction in the residual magnetic flux density.

【0031】なお、本発明は、単相2脚巻鉄心に限定さ
れるものではなく、単相3脚巻鉄心、三相3脚巻鉄心、
三相5脚巻鉄心等に幅広く適用できる。
The present invention is not limited to a single-phase two-leg wound core, but a single-phase three-leg wound core, a three-phase three-leg wound core,
Widely applicable to three-phase five-legged iron cores.

【0032】[0032]

【発明の効果】以上説明したように、本発明によると、
残留磁束密度を低減させ、励磁突入電流の減少を図るこ
とができる。
As described above, according to the present invention,
It is possible to reduce the residual magnetic flux density and reduce the exciting inrush current.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例に係る変圧器の巻鉄心の斜視図FIG. 1 is a perspective view of a wound iron core of a transformer according to an embodiment.

【図2】その要部拡大図[Fig. 2] Enlarged view of the main part

【図3】上記要部における磁束の流れを示す図FIG. 3 is a diagram showing a flow of magnetic flux in the main part.

【図4】起磁力と磁束密度との関係を示すグラフFIG. 4 is a graph showing the relationship between magnetomotive force and magnetic flux density.

【図5】同じく、起磁力と磁束密度との関係を示すグラ
FIG. 5 is a graph showing the relationship between magnetomotive force and magnetic flux density.

【図6】他の実施例に係る巻鉄心の要部における磁束の
流れを示す図
FIG. 6 is a diagram showing a flow of magnetic flux in a main part of a wound iron core according to another embodiment.

【図7】従来例のギャップ入り巻鉄心の斜視図FIG. 7 is a perspective view of a conventional wound core with a gap.

【図8】従来からの一般的構造の巻鉄心の問題点を説明
するための説明図
FIG. 8 is an explanatory diagram for explaining problems of a conventional wound iron core having a general structure.

【符号の説明】[Explanation of symbols]

1 電磁鋼帯群 2 カット部分 3 絶縁体 4 非磁性の金属体 1 Electromagnetic steel strip group 2 Cut part 3 Insulator 4 Non-magnetic metal body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カット部分の位置を階段状にずらせた一
群の電磁鋼帯を複数群、径方向に密着させて重ねて形成
されるワンターンカット形の巻鉄心において、前記一群
の電磁鋼帯のカット部分に該カット部分を余裕をもって
覆う長さの絶縁体を配設し、かつ、隣接する電磁鋼帯群
の間にもカット部分を余裕をもって覆う長さの絶縁体を
配設したことを特徴とする変圧器の巻鉄心。
1. A one-turn cut type wound iron core formed by stacking a plurality of groups of electromagnetic steel strips in which the positions of the cut portions are shifted in a stepwise manner, in close contact with each other in the radial direction, It is characterized in that an insulator having a length that covers the cut portion with a margin is arranged in the cut portion, and an insulator with a length that covers the cut portion with a margin is also arranged between adjacent electromagnetic steel strip groups. And winding core of transformer.
【請求項2】 カット部分の位置を階段状にずらせた一
群の電磁鋼帯を複数群、径方向に密着させて重ねて形成
されるワンターンカット形の巻鉄心において、前記一群
の電磁鋼帯のカット部分に該カット部分を余裕をもって
覆う長さの絶縁体を配設し、かつ、隣接する電磁鋼帯群
の間にカット部分を余裕をもって覆う長さの非磁性の金
属体を配設したことを特徴とする変圧器の巻鉄心。
2. A one-turn cut type winding core formed by stacking a plurality of groups of electromagnetic steel strips in which the positions of the cut portions are shifted in a stepwise manner and closely contacting each other in the radial direction. An insulating material having a length that covers the cut portion with a margin is arranged in the cut portion, and a non-magnetic metal body having a length that covers the cut portion with a margin is disposed between the adjacent electromagnetic steel strip groups. Winding iron core of a transformer.
JP01186594A 1994-02-03 1994-02-03 Transformer winding core Expired - Lifetime JP3574955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01186594A JP3574955B2 (en) 1994-02-03 1994-02-03 Transformer winding core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01186594A JP3574955B2 (en) 1994-02-03 1994-02-03 Transformer winding core

Publications (2)

Publication Number Publication Date
JPH07220942A true JPH07220942A (en) 1995-08-18
JP3574955B2 JP3574955B2 (en) 2004-10-06

Family

ID=11789621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01186594A Expired - Lifetime JP3574955B2 (en) 1994-02-03 1994-02-03 Transformer winding core

Country Status (1)

Country Link
JP (1) JP3574955B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143710A1 (en) * 2009-06-12 2010-12-16 タカオカ化成工業 株式会社 Frame-shaped iron core and method for assembling same
JP2011134794A (en) * 2009-12-22 2011-07-07 Takaoka Kasei Kogyo Kk Winding core and method of assembling the same
JP2011243792A (en) * 2010-05-19 2011-12-01 Takaoka Kasei Kogyo Kk Wound core
WO2020090577A1 (en) * 2018-11-01 2020-05-07 東芝産業機器システム株式会社 Stacked core for stationary induction apparatus
US12033782B2 (en) 2018-11-01 2024-07-09 Toshiba Industrial Products and Systems Corp. Stacked core for stationary induction apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7160589B2 (en) * 2018-07-17 2022-10-25 東芝産業機器システム株式会社 Wound core for static induction equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143710A1 (en) * 2009-06-12 2010-12-16 タカオカ化成工業 株式会社 Frame-shaped iron core and method for assembling same
JP2010287756A (en) * 2009-06-12 2010-12-24 Takaoka Kasei Kogyo Kk Frame-shaped iron core, and method for assembling the same
JP2011134794A (en) * 2009-12-22 2011-07-07 Takaoka Kasei Kogyo Kk Winding core and method of assembling the same
JP2011243792A (en) * 2010-05-19 2011-12-01 Takaoka Kasei Kogyo Kk Wound core
WO2020090577A1 (en) * 2018-11-01 2020-05-07 東芝産業機器システム株式会社 Stacked core for stationary induction apparatus
JP2020072211A (en) * 2018-11-01 2020-05-07 東芝産業機器システム株式会社 Laminated iron core for stationary induction equipment
US12033782B2 (en) 2018-11-01 2024-07-09 Toshiba Industrial Products and Systems Corp. Stacked core for stationary induction apparatus

Also Published As

Publication number Publication date
JP3574955B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
EP0121839A1 (en) Transformer with ferromagnetic circuits of unequal saturation inductions
US9472329B2 (en) High leakage transformers with tape wound cores
US20170278606A1 (en) Magnetic circuit component
US9123461B2 (en) Reconfiguring tape wound cores for inductors
JPH07220942A (en) Wound iron core of transformer
JPH08181024A (en) Choke coil for suppressing harmonic current
JP2001319813A (en) Inductive element
KR102136026B1 (en) Combined structure of variable-capacity transformer structure using ferrite core for magnetic flux assistance and method for manufacturing the same
WO1993000692A1 (en) Segmented core inductor
JP4409856B2 (en) Superconducting coil
CA1263159A (en) Oscillating flux transformer
JP2006140243A (en) Toroidal transformer
JPS62230012A (en) Device composed of core
JPH0644539B2 (en) Inner iron transformer
JPH03241719A (en) Ac reactor
JPS60173814A (en) Through-type current transformer
JP2000182850A (en) Thin-film transformer
KR102139004B1 (en) Variable-capacity transformer structure using magnetic flux assist slot and manufacturing method thereof
JP2775221B2 (en) Transformer core
JPH05159952A (en) Zero-phase current transformer and winding method therefor
KR101838274B1 (en) The transformer which reduce stray loss
JPS61288406A (en) Stationary induction machine
JP2002231535A (en) Coil for large current
JPS6037111A (en) Current transformer
JP2023146181A (en) Three-phase tripod wound iron core and three-phase tripod wound iron core transformer using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term