JPH0722026A - Manufacture of nickel electrode plate - Google Patents

Manufacture of nickel electrode plate

Info

Publication number
JPH0722026A
JPH0722026A JP5187463A JP18746393A JPH0722026A JP H0722026 A JPH0722026 A JP H0722026A JP 5187463 A JP5187463 A JP 5187463A JP 18746393 A JP18746393 A JP 18746393A JP H0722026 A JPH0722026 A JP H0722026A
Authority
JP
Japan
Prior art keywords
nickel
electrode plate
active material
current collector
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5187463A
Other languages
Japanese (ja)
Inventor
Takehito Bougauchi
丈仁 坊ケ内
Mitsuo Yamane
三男 山根
Noriyoshi Kishimoto
知徳 岸本
Hiroe Nakagawa
裕江 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP5187463A priority Critical patent/JPH0722026A/en
Publication of JPH0722026A publication Critical patent/JPH0722026A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a manufacturing method of a nickel electrode plate with which productivity can be enhanced and a low cost can be realized. CONSTITUTION:A mixture of positive electrode active material powder composed mainly of nickel hydroxide with cobalt compound powder is agitated in an alkaline solution, oxidized by an oxidizing agent, washed, dried and a binder is added thereto to be kneaded. This kneaded material is applied to a nickel plated perforated steel plate, a net, an expanded metal, or a nickel foil, as a current collector, or worked into a sheet-shape to be press-fitted to those collectors so as to form the nickel electrode plate. Since the mixture of the positive electrode active material powder with the cobalt compound powder is oxidized in the solution to be applied to the collector or worked into a sheet- shape to be press-fitted, time for aging can be omitted and a price of the collector can be decreased, and a cost can be thereby reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル極板の製造方法
に関するもので、さらに詳しく言えば、ニッケル−亜鉛
蓄電池、ニッケル−水素蓄電池、ニッケル−カドミウム
蓄電池等のアルカリ蓄電池の正極に用いられ、その生産
性の向上、低コスト化に寄与できる製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a nickel electrode plate, and more specifically, it is used for a positive electrode of an alkaline storage battery such as a nickel-zinc storage battery, a nickel-hydrogen storage battery or a nickel-cadmium storage battery. The present invention relates to a manufacturing method that can contribute to improvement in productivity and cost reduction.

【0002】[0002]

【従来の技術】近年、ポータブルエレクトロニクス機器
などの軽量化が急速に進む中で、その電源として用いら
れるアルカリ蓄電池にも軽量化、小型化が要求されてい
る。即ち、アルカリ蓄電池には高エネルギー密度化が要
求されている。
2. Description of the Related Art In recent years, as the weight of portable electronic devices and the like has been rapidly reduced, the weight and size of alkaline storage batteries used as a power source have been required. That is, higher energy density is required for alkaline storage batteries.

【0003】上記したアルカリ蓄電池の正極として用い
られるニッケル極板には、シンター式、ペースト式、ボ
タン式、ポケット式などの形式のものが知られている。
As the nickel electrode plate used as the positive electrode of the above-mentioned alkaline storage battery, types such as a sinter type, a paste type, a button type and a pocket type are known.

【0004】シンター式ニッケル極板は、穿孔綱板また
はニッケルネットなどの多孔性基板にニッケル粉末を焼
結させて多孔性焼結基板とし、この多孔性焼結基板に水
酸化ニッケルを主成分とする正極活物質を充填したもの
である。この極板では、焼結させたニッケル粉末の相互
間の結合を良好にしておく必要性から、多孔度が80%
以下の基板が用いられている。
The sinter-type nickel electrode plate is a porous sintered substrate obtained by sintering nickel powder on a porous substrate such as a perforated steel plate or a nickel net, and the main component of this porous sintered substrate is nickel hydroxide. The positive electrode active material. This electrode plate has a porosity of 80% because it is necessary to maintain good bonding between the sintered nickel powders.
The following substrates are used.

【0005】ボタン式ニッケル極板は、上記した正極活
物質の粉末にカーボン粉末等の導電性付加剤を加え、プ
レスしてペレット状にしたものであり、ポケット式ニッ
ケル極板は、穿孔綱板に設けたポケット部に上記した正
極活物質の粉末を充填したものである。
The button type nickel electrode plate is obtained by adding a conductive additive such as carbon powder to the above-mentioned powder of the positive electrode active material and pressing it into a pellet form. The pocket type nickel electrode plate is a perforated rope plate. The above-mentioned powder of the positive electrode active material is filled in the pocket portion provided in the.

【0006】ペースト式ニッケル極板は、上記した正極
活物質の粉末に1〜30重量%のCoO(一酸化コバル
ト)の粉末を混合し、この混合物をメチルセルロースや
カルボキシメチルセルロースなどの水溶液中で混練し、
この混練物を集電体としてのニッケル繊維多孔体に充填
したものである。この極板では、電解液を注液して1〜
3日間程度静置するエージングという工程によって電解
液中にCoOを溶解させ、β−Co(OH)2 として上
記多孔体および正極活物質の周囲に析出させてから充電
を行い、導電性の高いβ−CoOOHからなる導電性ネ
ットワークを形成し、放電性能の改善を図っている。
In the paste type nickel electrode plate, 1 to 30% by weight of CoO (cobalt monoxide) powder is mixed with the powder of the positive electrode active material described above, and the mixture is kneaded in an aqueous solution of methylcellulose, carboxymethylcellulose or the like. ,
This kneaded product was filled in a nickel fiber porous body as a current collector. In this electrode plate, 1 to
CoO is dissolved in the electrolytic solution by a step of standing for about 3 days, and β-Co (OH) 2 is deposited around the porous body and the positive electrode active material and then charged to obtain β having high conductivity. -A conductive network made of CoOOH is formed to improve discharge performance.

【0007】[0007]

【発明が解決しようとする課題】上記したシンター式ニ
ッケル極板は、基板の多孔度を80%以上にすることが
困難であるため、電池のエネルギー密度は400mAh
/cc程度が限界であるという問題があり、基板の細孔
が10μm以下であるため、正極活物質は含浸法という
複雑な程度によらなければならないという問題があっ
た。
In the above-mentioned sintering type nickel electrode plate, since it is difficult to make the porosity of the substrate 80% or more, the energy density of the battery is 400 mAh.
There is a problem that / cc is a limit, and since the pores of the substrate are 10 μm or less, there is a problem that the positive electrode active material must depend on the complicated degree of the impregnation method.

【0008】また、上記したボタン式ニッケル極板やポ
ケット式ニッケル極板は、正極活物質を直接穿孔綱板に
充填しているので、集電性能が不十分で、50〜60%
程度の活物質の利用率しか得られないという問題があっ
た。
Further, in the above-mentioned button type nickel electrode plate and pocket type nickel electrode plate, since the perforated steel plate is directly filled with the positive electrode active material, the current collecting performance is insufficient and it is 50 to 60%.
There was a problem in that only the utilization rate of the active material was obtained.

【0009】また、上記したペースト式ニッケル極板
は、放電性能の改善を図ることはできるが、負極に亜鉛
極を用いた場合には、溶出したコバルトイオンが亜鉛と
反応して水素を発生させるため、自己放電が増加すると
いう問題や、CoOの電解液に対する溶解度が低いため
にエージングに時間がかかるという問題があった。
Further, although the above-mentioned paste type nickel electrode plate can improve the discharge performance, when a zinc electrode is used for the negative electrode, the eluted cobalt ions react with zinc to generate hydrogen. Therefore, there are problems that self-discharge increases and that aging takes time because CoO has a low solubility in an electrolytic solution.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、水酸化ニッケルを主成分とする正極活物
質粉末にコバルト化合物粉末を混合し、この混合物をア
ルカリ性溶液中で攪拌後酸化剤により酸化して水洗、乾
燥させた後、バインダーを加えて混練し、この混練物
を、集電体としての、ニッケルメッキされた穿孔綱板、
ネット、エキスパンドメタルまたはニッケル箔に塗着、
またはシート状に加工して集電体としての、ニッケルメ
ッキされた穿孔綱板、ネット、エキスパンドメタルまた
はニッケル箔に圧着することを特徴とするものである。
In order to solve the above-mentioned problems, according to the present invention, a cobalt compound powder is mixed with a positive electrode active material powder containing nickel hydroxide as a main component, and the mixture is stirred in an alkaline solution and then oxidized. After being oxidized with an agent, washed with water, and dried, a binder is added and kneaded, and the kneaded product is used as a current collector, a perforated steel plate plated with nickel,
Apply to net, expanded metal or nickel foil,
Alternatively, it is characterized by being processed into a sheet shape and press-bonded to a nickel-plated perforated steel plate, net, expanded metal or nickel foil as a current collector.

【0011】[0011]

【作 用】従って、本発明は、正極活物質粉末とコバル
ト化合物粉末との混合物を溶液中で酸化剤により酸化し
て導電性の高いβ−CoOOHに変化させてから集電体
に塗着または圧着しているので、負極に亜鉛極を用いて
も、前記β−CoOOHが生成するまでに至る中間生成
物によって自己放電を生じることはない。
[Operation] Therefore, according to the present invention, a mixture of a positive electrode active material powder and a cobalt compound powder is oxidized in a solution by an oxidizing agent to be converted into β-CoOOH having high conductivity, and then applied to a current collector or Since they are pressure-bonded, even if a zinc electrode is used as the negative electrode, self-discharge does not occur due to the intermediate product until the formation of β-CoOOH.

【0012】また、本発明は、コバルト化合物粉末をあ
らかじめ溶解させているので、エージングのための時間
を短縮することができ、生産性を向上させることができ
る。
Further, in the present invention, since the cobalt compound powder is dissolved in advance, the time for aging can be shortened and the productivity can be improved.

【0013】[0013]

【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described below based on examples.

【0014】本発明の製造方法は、正極活物質としての
水酸化カドミウムを5重量%含有した球状水酸化ニッケ
ル粉末と、コバルト化合物としての平均粒径が約1μ
m、表面積が70m2 /gの一酸化コバルト粉末とを重
量比95:5の割合で、水酸化カリウムを主体とする比
重が1.25の水溶液中で混合し、十分に撹拌した後酸
化剤としてのK2 2 8 (ペルオキソニ硫酸カリウ
ム)を、CoOのモル数以上であって酸素が発生するま
で加え、反応後、得られた混合物を濾過し、水洗し、乾
燥した後、20重量%の導電材料としての繊維長が1m
m程度のニッケル短繊維と、3重量%のバインダーとし
てのテトラフルオロエチレンとを加え、溶媒としてのエ
タノールによって混練した。こうして得られた混練物
を、表面に厚さが3μmのコバルトメッキを施した、ニ
ッケルメッキされた集電体としての穿孔綱板に塗着し、
乾燥し、プレスして厚さが約1mmのニッケル極板A1
としてなるものである。
In the production method of the present invention, spherical nickel hydroxide powder containing 5% by weight of cadmium hydroxide as a positive electrode active material and an average particle size of cobalt compound of about 1 μm.
m and a surface area of 70 m 2 / g of cobalt monoxide powder in a weight ratio of 95: 5 in an aqueous solution containing potassium hydroxide as the main component and having a specific gravity of 1.25, and sufficiently stirred and then oxidized. K 2 S 2 O 8 (potassium peroxodisulfate) is added until the number of moles of CoO is greater than the amount of oxygen generated, and after the reaction, the resulting mixture is filtered, washed with water and dried, then 20 wt. % Fiber length as conductive material is 1m
m short nickel fibers and 3% by weight of tetrafluoroethylene as a binder were added and kneaded with ethanol as a solvent. The kneaded material thus obtained is applied to a perforated steel plate as a nickel-plated current collector, the surface of which is plated with cobalt having a thickness of 3 μm,
Nickel electrode plate A1 with a thickness of about 1 mm after drying and pressing
It will be as.

【0015】一方、他の本発明の製造方法は、前記混練
物を厚さが0.5mmのシート状に加工し、表面に厚さ
が3μmのコバルトメッキを施した、ニッケルメッキさ
れた集電体としての穿孔綱板に両面により圧着し、厚さ
が約1mmのニッケル極板A2としてなるものである。
On the other hand, according to another manufacturing method of the present invention, the kneaded product is processed into a sheet having a thickness of 0.5 mm, and the surface is plated with cobalt having a thickness of 3 μm. A nickel electrode plate A2 having a thickness of about 1 mm is obtained by pressure-bonding both sides to a perforated steel plate as a body.

【0016】上記した本発明の製造方法に対し、従来の
製造方法は、上記球状水酸化ニッケル粉末と一酸化コバ
ルト粉末との混合物に、上記した導電材料とバインダー
とを混合し、溶媒としてのエタノールによって混練し、
この混練物を上記した穿孔綱板に塗着し、乾燥し、プレ
スして厚さが約1mmのニッケル極板B1としてなるも
のである。
In contrast to the above-described manufacturing method of the present invention, a conventional manufacturing method is to mix the above-mentioned spherical nickel hydroxide powder and cobalt monoxide powder with the above-mentioned conductive material and binder to prepare ethanol as a solvent. Kneaded by
This kneaded product is applied to the perforated steel plate, dried, and pressed to form a nickel electrode plate B1 having a thickness of about 1 mm.

【0017】一方、他の従来の製造方法は、前記混練物
を厚さが0.5mmのシート状に加工し、表面に厚さが
3μmのコバルトメッキを施した、ニッケルメッキされ
た集電体としての穿孔綱板に両面より圧着し、厚さが約
1mmのニッケル極板B2としてなるものである。
On the other hand, in another conventional manufacturing method, the kneaded product is processed into a sheet having a thickness of 0.5 mm, and the surface is plated with cobalt having a thickness of 3 μm. As a nickel electrode plate B2 having a thickness of about 1 mm, which is pressure-bonded from both sides to the perforated steel plate.

【0018】上記した各ニッケル極板を正極として用
い、ペースト式カドミウム極板からなる負極、ポリアミ
ド系不織布からなるセパレータを組み合わせ、電解液と
して比重が1.25の水酸化カリウム水溶液を正極、負
極およびセパレータの90%を満たす量だけ注液し、公
称容量が2.0Ahのニッケル−カドミウム蓄電池A
1,A2,B1,B2を作製した。なお、蓄電池B1,
B2は電解液の注液後、エージングを行ってから化成し
ている。
Each of the above nickel plates is used as a positive electrode, a negative electrode made of a paste type cadmium electrode plate and a separator made of a polyamide non-woven fabric are combined, and an aqueous solution of potassium hydroxide having a specific gravity of 1.25 is used as an electrolytic solution for the positive electrode, negative electrode and Nickel-cadmium storage battery A with a nominal capacity of 2.0 Ah, filled with 90% of the separator
1, A2, B1 and B2 were produced. The storage battery B1,
B2 is formed after aging after injecting the electrolytic solution.

【0019】前記した各電池について、0.1Cで15
時間充電し、0.2Cで放電する充放電サイクル試験を
行い、充放電サイクルと活物質利用率との関係を調査
し、結果を図1に示す。
For each of the above batteries, 15 at 0.1C
A charging / discharging cycle test of charging for 0.2 hours and discharging at 0.2 C was conducted to investigate the relationship between the charging / discharging cycle and the active material utilization rate.

【0020】図1から、ニッケル−カドミウム蓄電池B
1,B2は、その活物質利用率が安定化するまで3サイ
クル程度要しているのに対し、ニッケル−カドミウム蓄
電池A1,A2は最初からその活物質利用率が安定化し
ていることがわかる。
From FIG. 1, nickel-cadmium storage battery B
It can be seen that the active material utilization rates of the active materials 1 and B2 are stable for about 3 cycles, whereas the active material utilization rates of the nickel-cadmium storage batteries A1 and A2 are stable from the beginning.

【0021】次に、上記した各電池について、1サイク
ル目、3サイクル目の放電容量を調査するため、活物質
利用率の変化とニッケル極板の電位の変化との関係を調
査し、結果を図2に示す。
Next, in order to investigate the discharge capacities of the first cycle and the third cycle of each of the above-mentioned batteries, the relationship between the change of the active material utilization rate and the change of the potential of the nickel electrode plate was investigated, and the results were obtained. As shown in FIG.

【0022】図2から、ニッケル−カドミウム蓄電池B
1,B2は、放電容量が安定化するまで3サイクル程度
要しているのに対し、ニッケル−カドミウム蓄電池A
1,A2は、最初から放電容量が安定化していることが
わかる。
From FIG. 2, nickel-cadmium storage battery B
1 and B2 require about 3 cycles until the discharge capacity is stabilized, whereas nickel-cadmium storage battery A
It can be seen that the discharge capacities of 1 and A2 are stabilized from the beginning.

【0023】上記した如く、本発明の製造方法によって
得られたニッケル極板は、導電性の高いβ−CoOOH
によって正極活物質相互間や正極活物質と集電体との間
に導電性ネットワークが形成されるため、充放電サイク
ルの初期から高い活物質利用率を実現することができ
る。
As described above, the nickel electrode plate obtained by the manufacturing method of the present invention has a high conductivity β-CoOOH.
Since a conductive network is formed between the positive electrode active materials or between the positive electrode active material and the current collector, a high active material utilization rate can be realized from the beginning of the charge / discharge cycle.

【0024】次に、集電体の表面に施したコバルトメッ
キ層の厚さを0μm〜7μmまで変化させたものを準備
し、上記した本発明の製造方法によってニッケル極板を
製造し、そのニッケル極板を用いて作製したニッケル−
カドミウム蓄電池A1,A2について、1サイクル目の
活物質利用率を調査し、結果を図3に示す。
Next, a cobalt plating layer formed on the surface of the current collector having a thickness varying from 0 μm to 7 μm was prepared, and a nickel electrode plate was manufactured by the above-described manufacturing method of the present invention. Nickel produced by using electrode plate
For the cadmium storage batteries A1 and A2, the active material utilization rate in the first cycle was investigated, and the results are shown in FIG.

【0025】図3から、コバルトメッキ層の厚さを5μ
m以下にすれば、活物質利用率を90%以上にできるこ
とがわかる。
From FIG. 3, the thickness of the cobalt plating layer is 5 μm.
It can be seen that the active material utilization rate can be increased to 90% or more by setting it to be m or less.

【0026】上記した如く、本発明の製造方法によって
得られたニッケル極板は、化成時にコバルトメッキ層を
β−CoOOHに変化させて集電体と正極活物質とを強
固に結合させることができるので、集電体に5μm以下
のコバルトメッキ層を施すことによって充放電サイクル
の初期から高い活物質利用率を実現することができる。
なお、コバルトメッキ層の厚さを5μm以上にすると、
一部のコバルトがβ−CoOOHに変化せずに残留し、
集電体の表面を不働態化するので、コバルトメッキ層の
厚さは5μm以下にするのが好ましい。
As described above, in the nickel electrode plate obtained by the manufacturing method of the present invention, the cobalt plating layer can be changed to β-CoOOH at the time of chemical formation to firmly bond the current collector and the positive electrode active material. Therefore, by applying a cobalt plating layer of 5 μm or less to the current collector, a high active material utilization rate can be realized from the beginning of the charge / discharge cycle.
If the thickness of the cobalt plating layer is 5 μm or more,
Part of cobalt remains unchanged to β-CoOOH,
Since the surface of the current collector is passivated, the thickness of the cobalt plating layer is preferably 5 μm or less.

【0027】[0027]

【発明の効果】上記した如く、本発明は、集電体に、ニ
ッケルメッキされた穿孔綱板、ネット、エキスパンドメ
タルまたはニッケル箔を用い、正極活物質粉末とコバル
ト化合物との混合物を溶液中で酸化してから前記集電体
に塗着、またはシート状に加工して圧着しているので、
エージングのための時間を省略することができ、生産性
を向上させることができる。
As described above, according to the present invention, a nickel-plated perforated steel plate, net, expanded metal or nickel foil is used as a current collector, and a mixture of a positive electrode active material powder and a cobalt compound is used in a solution. After being oxidized, it is applied to the current collector, or processed into a sheet shape and pressure-bonded,
The time for aging can be omitted, and the productivity can be improved.

【0028】また、本発明は、集電体の価格を低下させ
ることができるので、コストの低減を図ることができ
る。
Further, according to the present invention, the cost of the current collector can be reduced, so that the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法によって得られたニッケル極
板を用いたニッケル−カドミウム蓄電池と従来の製造方
法によって得られたニッケル極板を用いたニッケル−カ
ドミウム蓄電池とについて、充放電サイクル数と活物質
利用率との関係を比較した図である。
FIG. 1 shows the number of charge / discharge cycles of a nickel-cadmium storage battery using a nickel electrode plate obtained by the production method of the present invention and a nickel-cadmium storage battery using a nickel electrode plate obtained by a conventional production method. It is the figure which compared the relationship with the active material utilization rate.

【図2】前記各ニッケル−カドミウム蓄電池について、
1サイクル目と3サイクル目の放電特性を比較した図で
ある。
FIG. 2 shows the nickel-cadmium storage batteries
It is a figure which compared the discharge characteristic of the 1st cycle and the 3rd cycle.

【図3】本発明の製造方法に用いる集電体の表面に施し
たコバルトメッキ層の厚さと活物質利用率との関係を示
す図である。
FIG. 3 is a diagram showing the relationship between the thickness of a cobalt plating layer applied to the surface of a current collector used in the production method of the present invention and the active material utilization rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 裕江 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroe Nakagawa 6-6 Josaimachi, Takatsuki City, Osaka Prefecture Yuasa Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルを主成分とする正極活物
質粉末にコバルト化合物粉末を混合し、この混合物をア
ルカリ性溶液中で攪拌後酸化剤により酸化して水洗、乾
燥させた後、バインダーを加えて混練し、この混練物を
集電体としての、ニッケルメッキされた穿孔綱板、ネッ
ト、エキスパンドメタルまたはニッケル箔に塗着、また
はシート状に加工して集電体としての、ニッケルメッキ
された穿孔綱板、ネット、エキスパンドメタルまたはニ
ッケル箔に圧着することを特徴とするニッケル極板の製
造方法。
1. A positive electrode active material powder containing nickel hydroxide as a main component, mixed with a cobalt compound powder, stirred in an alkaline solution, oxidized with an oxidizing agent, washed with water, dried, and then added with a binder. Kneaded, and the kneaded product was applied to a nickel-plated perforated steel plate, net, expanded metal or nickel foil as a current collector, or processed into a sheet to be nickel-plated as a current collector. A method for producing a nickel electrode plate, which comprises press-bonding a perforated steel plate, a net, an expanded metal or a nickel foil.
【請求項2】 正極活物質に、耐アルカリ性金属、耐ア
ルカリ性合金、耐アルカリ性金属酸化物、表面が耐アル
カリ性金属によってコーティングされた導電材料または
カーボン等の導電性付加剤を混合させたことを特徴とす
る請求項第1項記載のニッケル極板の製造方法。
2. The positive electrode active material is mixed with an alkali resistant metal, an alkali resistant alloy, an alkali resistant metal oxide, a conductive material whose surface is coated with an alkali resistant metal, or a conductive additive such as carbon. The method for producing a nickel electrode plate according to claim 1.
【請求項3】 酸化剤がK2 2 8 、Na2
2 8 、(NH4 2 、S2 8 またはH2 2 である
ことを特徴とする請求項第1項記載のニッケル極板の製
造方法。
3. The oxidizing agent is K 2 S 2 O 8 , Na 2 S.
2 O 8, (NH 4) 2, S 2 O 8 or method of claim nickel electrode plate of the first term, wherein the is H 2 O 2.
【請求項4】 バインダーがテトラフルオロエチレンま
たはポリビニルアルコールであることを特徴とする請求
項第1項記載のニッケル極板の製造方法。
4. The method for producing a nickel electrode plate according to claim 1, wherein the binder is tetrafluoroethylene or polyvinyl alcohol.
【請求項5】 集電体の表面に厚さが5μm以下のコバ
ルトメッキ層を設けたことを特徴とする請求項第1項記
載のニッケル極板の製造方法。
5. The method for producing a nickel electrode plate according to claim 1, wherein a cobalt plating layer having a thickness of 5 μm or less is provided on the surface of the current collector.
JP5187463A 1993-06-29 1993-06-29 Manufacture of nickel electrode plate Pending JPH0722026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5187463A JPH0722026A (en) 1993-06-29 1993-06-29 Manufacture of nickel electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5187463A JPH0722026A (en) 1993-06-29 1993-06-29 Manufacture of nickel electrode plate

Publications (1)

Publication Number Publication Date
JPH0722026A true JPH0722026A (en) 1995-01-24

Family

ID=16206525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5187463A Pending JPH0722026A (en) 1993-06-29 1993-06-29 Manufacture of nickel electrode plate

Country Status (1)

Country Link
JP (1) JPH0722026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103858A (en) * 2014-06-18 2014-10-15 河南创力新能源科技有限公司 Cladding iron electrode and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103858A (en) * 2014-06-18 2014-10-15 河南创力新能源科技有限公司 Cladding iron electrode and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0571630B1 (en) Method for production of nickel plate and alkali storage battery
JP2001035499A (en) Electricity collecting base board for electrode of alkaline secondary battery, electrode using same, and alkaline secondary battery incorporating the electrode
US5200282A (en) Nickel electrode and alkaline battery using the same
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
US6099991A (en) Electrode for alkaline storage batteries and process for producing the same
JPH0722026A (en) Manufacture of nickel electrode plate
JP3114402B2 (en) Manufacturing method of alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
EP0403052B1 (en) Nickel electrode and alkaline battery using the same
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3384109B2 (en) Nickel plate
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JPS6149374A (en) Nickel positive electrode for alkali cell
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2981538B2 (en) Electrodes for alkaline batteries
JP3003218B2 (en) Method for producing nickel electrode plate and method for producing alkaline storage battery
JP3075114B2 (en) Nickel positive electrode for alkaline storage batteries
JP3191830B2 (en) Method for producing nickel electrode for alkaline storage battery
JP2646136B2 (en) Nickel electrode for alkaline storage battery
JPH0513075A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH1173956A (en) Non-sintered nickel electrode for alkaline storage battery
JPH04129171A (en) Manufacture of nickel-hydrogen storage battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof