JPH07218254A - Oceanographic meter - Google Patents

Oceanographic meter

Info

Publication number
JPH07218254A
JPH07218254A JP6085924A JP8592494A JPH07218254A JP H07218254 A JPH07218254 A JP H07218254A JP 6085924 A JP6085924 A JP 6085924A JP 8592494 A JP8592494 A JP 8592494A JP H07218254 A JPH07218254 A JP H07218254A
Authority
JP
Japan
Prior art keywords
wave
sea
fluctuation
measuring
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6085924A
Other languages
Japanese (ja)
Other versions
JP2948472B2 (en
Inventor
Tomoji Takayama
知司 高山
Norihiko Nagai
紀彦 永井
Noriaki Hashimoto
典明 橋本
Tomoharu Takahashi
智晴 高橋
Hiroshi Sasaki
弘 佐々木
Yoshiki Ito
芳樹 伊藤
Norio Isobe
憲雄 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAIYO CHIYOUSA KYOKAI
UNYUSHO KOWAN GIJUTSU KENKYUSHO
Kaijo Corp
Original Assignee
KAIYO CHIYOUSA KYOKAI
UNYUSHO KOWAN GIJUTSU KENKYUSHO
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIYO CHIYOUSA KYOKAI, UNYUSHO KOWAN GIJUTSU KENKYUSHO, Kaijo Corp filed Critical KAIYO CHIYOUSA KYOKAI
Priority to JP6085924A priority Critical patent/JP2948472B2/en
Publication of JPH07218254A publication Critical patent/JPH07218254A/en
Application granted granted Critical
Publication of JP2948472B2 publication Critical patent/JP2948472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To observe general oceanographic phenomena unified and stably by measuring sea surface fluctuation and the velocity fluctuation of water particle motion at a specific depth position with a single complex function sensor and obtaining a plurality of wave motion and flow data simultaneously. CONSTITUTION:A transmission and reception circuit for velocity measurement 12 generates tone burst wave in resonance with oscillation pulses produced at trigger pulses Tr2 from a flow velocity fluctuation measuring circuit 2B, excites a plurality of vibrators for velocity measurement in a transmitter/receptor to send ultrasonic wave in water, and sends the received Doppler signals to a measuring part 2 as water particle scattered reception signals at the specific depth position. On the other hand, a transmission and reception circuit for sea water level measurement 11 excites a vibrator for sea water level measurement in a transmitter/receptor 10 with oscillation signals produced with trigger pulses Tr3 from a sea water level fluctuation measuring circuit 2A and multiplies the received sea water level signal with water pressure signal and send to a measuring part 2. The measuring part 2 sends the sea water level and flow fluctuation calculated with those signals to a calculation part 3 and the calculation part 3 obtains wave direction spectrum, and height, period and direction of the wave.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、海の波のパラメータで
ある波高、周期、波向等と共に、複数層の潮流等に関す
る流況および潮位変動・長周期波(津波・副振動等)等
を一体的に測定する海象計に関し、特に1個のセンサ
(送受波器)でこれら海象事象の測定に必要な多要素の
波動および流動データが同一測点において同時に得ら
れ、かつ、既往の海洋観測技術によっては現実に不可能
視されて来た海面波動の大きさに比べて水深が大きい沿
岸大水深海域における波向の測定、また沿岸沖合いにお
いて海面や海中に特別の施設・機材を用いることなく、
海底から波浪と共に潮流、潮位変動等の測定を可能と
し、長期にわたる定常観測にも適用可能な海象計を具現
する。
BACKGROUND OF THE INVENTION The present invention relates to wave parameters such as wave height, period, wave direction, etc. of ocean waves, as well as flow conditions and tidal level fluctuations / long-period waves (tsunami, secondary vibration, etc.) related to tidal currents of multiple layers, etc. A sea-level meter that integrally measures seawater, especially multi-element wave and flow data necessary for measuring these sea-level events can be simultaneously obtained with one sensor (transceiver) at the same station, and the existing ocean Depending on the observation technology, the measurement of the wave direction in the coastal deep sea area where the depth of the water is large compared to the magnitude of the sea surface wave that has been considered impossible, and the use of special facilities and equipment on the sea surface or in the sea off the coast. Without
We will realize a sea condition meter that can measure tidal currents and tide level fluctuations along with waves from the sea floor and can be applied to long-term steady observations.

【0002】[0002]

【従来の技術】従来、海底または海中に設置して、海表
面の波、すなわち海面の波動を測定する計器としては、
たとえば超音波式波高計がある。この超音波式波高計は
海底または海中に設置された計測センサである超音波送
受波器から海面に向けて送信された超音波パルスが海面
と空気との境界層で反射し、海面エコーとして再び海中
の送受波器に戻ってくるまでの所要時間を計測すること
によって海面の位置を捉えるという原理を用いており、
この動作を短時間間隔で繰り返し行うことによって時々
刻々変化する海面の波形を得るものである。波高や周期
は得られた波形を統計処理することによって求められ
る。
2. Description of the Related Art Conventionally, as an instrument which is installed on the sea floor or under the sea and measures a wave on the sea surface, that is, a wave on the sea surface,
For example, there is an ultrasonic wave height meter. In this ultrasonic wave height meter, the ultrasonic pulse transmitted toward the sea surface from the ultrasonic transducer, which is a measurement sensor installed on the sea floor or under the sea, is reflected at the boundary layer between the sea surface and air, and again as a sea surface echo. It uses the principle of capturing the position of the sea surface by measuring the time required to return to the transducer in the sea,
By repeating this operation at short time intervals, it is possible to obtain a waveform of the sea surface that changes from moment to moment. The wave height and period can be obtained by statistically processing the obtained waveform.

【0003】また、波の来襲方向、すなわち波向を測定
する計器としては、たとえば超音波流速計を応用した定
置式超音波流速計型波向計がある。この超音波流速計型
波向計は、海面の波によって生じる海中の水粒子運動の
水平方向流速成分を直交2成分測定用センサを用いた超
音波流速計で測定し、同時に同一センサに装備された水
圧計測センサで波によって生じる水中の圧力変動を測定
し、波向あるいは波の方向スペクトルを推定するに必要
な複数の波動量を得るものである。
As an instrument for measuring the direction of wave arrival, that is, the wave direction, there is, for example, a stationary ultrasonic velocity meter-type wave direction meter to which an ultrasonic velocity meter is applied. This ultrasonic velocity meter-type wave direction meter measures the horizontal velocity component of the motion of water particles in the sea caused by waves on the sea surface with an ultrasonic velocity meter that uses a sensor for measuring two orthogonal components, and is simultaneously installed in the same sensor. The water pressure measuring sensor measures the pressure fluctuation in the water caused by the waves, and obtains a plurality of wave quantities necessary for estimating the wave direction or the wave direction spectrum.

【0004】このほか、波の方向スペクトルを推定する
ための多要素の波動データを同時に測定する方法として
は、たとえば3台以上の複数の超音波式波高計を同一地
域に設置して海面の波動を同時に測定する波高計アレイ
による方法がある。この波高計アレイは、3台以上の波
高計、たとえば超音波式波高計を海底または海中に所要
の間隔をもって、たとえば三角形状、星形状あるいは直
線状に配置して同時に複数点の海面波形を測定すること
によって、波向あるいは波の方向スペクトルを推定する
に必要な複数の波動量を得るものである。
In addition, as a method of simultaneously measuring multi-element wave data for estimating a wave direction spectrum, for example, three or more ultrasonic wave height meters are installed in the same area and wave motions on the sea surface are measured. There is a method using a wave height meter array that simultaneously measures This wave height meter array measures three or more wave height meters at the same time by arranging three or more wave height meters, for example, ultrasonic wave height meters at the required intervals on the seabed or in the sea, for example, in a triangular shape, a star shape, or a straight line shape. By doing so, a plurality of wave quantities necessary for estimating the wave direction or the wave direction spectrum are obtained.

【0005】沿岸海域の海底又は海中に設置した計器に
より自動的に流れを測定する方法および機種は、その設
置方法により固定設置式のものと係留設置式のものとに
大別される。固定設置式には超音波式流速計および電磁
式流速計がある。係留設置式には、プロペラ型およびロ
ータ型の流向・流速計がある。なお、大多数の係留設置
式の流向・流速計や一般に市販されている電磁式流速計
は、測定・記録装置を内蔵した直記式の構造となってい
るため、取扱い上の分類としてはこれらを一括して直記
式あるいは可搬式として区分する場合もある。また、海
底や海中に計器を設置して行う自動測定のほか、船舶に
よる流れの測定方法として、発電型・超音波式・電磁式
・エクマンメルツ等の流向・流速計を停泊した船上より
所定の水深に吊下げて行う測定方法、航行中の船舶によ
り曳航して測定を行なう電磁海流計(GEK)や投下式
の検流計(XCP)等による方法、あるいは船舶・航空
機・陸岸等から漂流ブイや漂流桿あるいは染料等を放流
しその移動を測位機や船舶・人工衛星等によって追跡す
る方法等がある。
The method and model for automatically measuring the flow by an instrument installed on the sea floor or in the sea in the coastal sea area are roughly classified into a fixed installation type and a mooring installation type according to the installation method. The fixed installation type includes an ultrasonic velocity meter and an electromagnetic velocity meter. There are propeller type and rotor type flow direction / velocimeters in the mooring type. Most of the mooring-installed flow direction / velocity meters and electromagnetic velocity meters that are commercially available generally have a direct-writing structure with a built-in measuring / recording device. It may be classified as a direct writing type or a portable type. In addition to automatic measurement by installing instruments on the sea floor or under the sea, as a method of measuring the flow by a ship, the flow direction of power generation type, ultrasonic type, electromagnetic type, Eckmann-Mertz, etc. Measurement method suspended from the ship, electromagnetic ocean current meter (GEK) or drop-type galvanometer (XCP) towed by a moving vessel, or a drifting buoy from a ship, aircraft, or shore. There is also a method of discharging drift rods or dyes and tracking the movement of the drift rods or dyes with a positioning device, a ship, an artificial satellite, or the like.

【0006】なお、上記の係留設置式あるいは船上から
の吊下げ式による流向・流速計の一部の機種には、本体
内に組み込まれた直記式測定記録装置に替わる電気的変
換回路を介して、海面上のブイ装置に測定信号を伝達
し、ブイから陸岸へ無線伝送して測定データを取得する
方法が用いられる例もある。また、これらの測器を海底
に設置して底層流のみを測定する場合には、ブイ・係留
索によらず海底面に直接設置する枠組み型の架台に測器
を取付けて設置される。但し、海底設置の場合の測器は
直記式に限られ、測定データの取得は、一定期間ごとに
測器を回収することによって行われる。
[0006] Some of the above-mentioned mooring type or suspension type flow direction / velocity meters are equipped with an electric conversion circuit which replaces the direct recording type recording device incorporated in the main body. In some cases, a method of transmitting a measurement signal to a buoy device on the surface of the sea and wirelessly transmitting the measurement signal from the buoy to the shore to obtain measurement data is used. In addition, when these instruments are installed on the sea floor and only bottom flow is measured, the instruments are installed on a frame-type pedestal that is installed directly on the sea bottom without using buoys and mooring lines. However, instruments installed on the seabed are limited to direct writing instruments, and measurement data is collected by collecting instruments at regular intervals.

【0007】固定設置式流速計は、超音波センサによる
シングアランド時間差方式あるいは電磁センサによる起
電力方式により、2方向成分あるいは3方向成分の変動
流速を測定入力として、夫々の時間平均によって各成分
流速を求め、また所要成分ごとの流速値をベクトル合成
することによって潮流等固有の流向・流速が求められ
る。この固定設置式流速計による測定は、長期定常観測
を目的とし、安定した測定座標を確保することが要求さ
れるため、計器の設置は着底式架台を必要とし、海面付
近や任意の水深位置で測定を行う場合には観測塔等の施
設を用いて施工される。
The fixed-installation type velocity meter uses the Sing-Aland time difference method using an ultrasonic sensor or the electromotive force method using an electromagnetic sensor as a measurement input for the fluctuation velocity of two-direction components or three-direction components, and calculates the component velocity by each time average. And the flow direction value for each required component is vector-synthesized to obtain the unique flow direction and flow velocity such as tidal current. Measurement with this fixed installation type current meter is intended for long-term steady observation, and it is required to secure stable measurement coordinates.Therefore, installation of the instrument requires a bottom-mounting platform, near the sea surface or at any water depth position. When measuring in, it will be constructed using facilities such as an observation tower.

【0008】係留設置式流向・流速計は、係留用のアー
ムおよび矢羽根によって流れに沿って自由に回転する機
構を有する本体と、本体内に組み込まれた測定・記録装
置を格納した水密筐体からなる。流速の測定は、本体外
部に装備されたプロペラまたはロータの流れによる回転
をマグネットカップリング等によって水密筐体内に伝達
し、その回転数を機械的又は電気的計数機構あるいは回
転数に比例した発電機構を介して測定・記録することに
よって求め、流向の測定は、本体が流れに従って保持す
る方向を水密筐体内の磁針から検知し、測定・記録する
ことによって求められる。
The mooring-installed flow direction / velocity meter is a watertight casing containing a main body having a mechanism for freely rotating along a flow by an arm for mooring and an arrow blade, and a measuring / recording device incorporated in the main body. Consists of. The flow velocity is measured by transmitting the rotation due to the flow of a propeller or rotor mounted outside the main body to the inside of the watertight case by a magnetic coupling etc., and the number of rotations is mechanical or electrical counting mechanism or a power generation mechanism proportional to the number of rotations. The measurement of the flow direction is performed by measuring and recording the flow direction by detecting from the magnetic needle in the watertight case the direction in which the main body holds the flow direction.

【0009】可搬式流向・流速計は、海底に投入された
係留用アンカーにより海面又は海中に設置された係留ブ
イと係留索によって、測器を所定の水深に吊下げ、ある
いは吊上げることによって設置される。
The portable flow direction / velocity meter is installed by suspending or hoisting a measuring instrument at a predetermined water depth by a mooring buoy and a mooring line installed on the sea surface or in the sea by a mooring anchor put on the seabed. To be done.

【0010】潮位の測定は、海上保安庁・気象庁におい
て規格化された井戸・導水管・球分体等の施設を設けた
検潮所において、浮子式の検潮器が標準的に用いられ、
短期・臨時の観測には水圧式簡易検潮器等が用いられて
いる。
For the measurement of the tide level, a floating tide gauge is normally used at a tide gauge station provided with facilities such as wells, water conduits, and spherical bodies standardized by the Japan Coast Guard and the Meteorological Agency.
A simple hydraulic tide gauge is used for short-term and temporary observations.

【0011】潮位の観測は所定の機能を具備し、潮汐に
よる海面の時間変化を対象として機能する検潮井戸に浮
子式検潮器(従前は、ケルビン型・リシャール型等が用
いられたが、現在ではフース型検潮器にほぼ統一されて
いる。また、古くは水圧式・本多式検潮儀等も用いられ
た。)を設置し、一等水準点又は東京湾平均水面と関係
づけられた検潮基準面を基準として測定される。測定
は、検潮井戸の水面変化にフォローして上下する浮子の
動きを検潮機構に伝達し、機械的倍率変換機構を介して
記録紙上に水位の時間変化曲線を記録することによって
行われる。また、測定記録は、測定値をディジタル変換
して伝送・記録する方法も用いられている。
Floating tide gauges (Kelvin type, Richard type, etc. were used in the past) for tide wells that have a predetermined function for tide level observation and function for the time change of the sea surface due to tide. At present, it is almost unified with the hous type tide gauge, and in the old days, water pressure type and Honda type tide gauges were also used.) It is measured with reference to the tide gauge reference surface. The measurement is performed by transmitting the movement of the floating float that follows the change in the water level of the tidal well to the tidal mechanism and recording the time-varying curve of the water level on the recording paper via the mechanical magnification conversion mechanism. As the measurement record, a method of digitally converting the measured value and transmitting / recording is also used.

【0012】なお、本発明に包含される沿岸海域におけ
る沖合い潮位ならびに津波・副振動等の長周期波の測定
を目的とした専用計器に関する従来技術は未開発であ
る。
The prior art relating to a dedicated instrument for the purpose of measuring offshore tide levels in coastal waters and long-period waves such as tsunamis and secondary vibrations, which is included in the present invention, has not been developed.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、従来の
超音波式波高計は海面の波形を測定するもので、その測
定データからは、波高、周期の情報は得られるけれども
波向に関する情報を得ることはできない。言い換えれば
超音波式波高計は波浪計としての機能を有しておらず、
また波高計と波向計(例えば超音波流速計型波向計)を
併用する場合にも、波高計による測定は浅海域より沿岸
大水深海域(水深50m標準)まで一定の精度で可能で
あるのに対し、波向計による測定は設置水深の増加と共
に測定確度は急激に低下し、測器の測定精度とは関係な
くその適用限界は水深20m程度以浅の海域に制約され
る((2)〜(4)式参照)。従って、それ以上の水深
の海域において波浪の諸元(波高・周期・波向)を一体
的に測定することは不可能である。
However, the conventional ultrasonic wave altimeter measures the waveform of the sea surface, and it is possible to obtain the information on the wave direction but the information on the wave direction from the measurement data. I can't. In other words, the ultrasonic wave height meter does not have a function as a wave meter,
Even when a wave height meter and a wave direction meter (for example, an ultrasonic velocity meter type wave direction meter) are used together, the wave height meter can measure with a certain degree of accuracy from the shallow sea area to the coastal deep sea area (water depth 50 m standard). On the other hand, in the case of measurement with a wave direction meter, the measurement accuracy drops sharply with an increase in the installed water depth, and its application limit is restricted to sea areas with a depth of about 20 m or less regardless of the measurement accuracy of the measuring instrument ((2) (See Expression (4)). Therefore, it is impossible to integrally measure the wave characteristics (wave height, period, wave direction) in deeper waters.

【0014】また、超音波流速計型波向計の測定データ
は複数の波動量であり、波向あるいは波の方向スペクト
ルを推定するために必要な情報を提供するけれども海面
波形データは得られない。波高、周期に関する情報は水
圧計測センサーで測定した圧力変動波形を海の波の理論
である微小振幅波の理論にしたがって、統計処理するこ
とによって海面波形に相当する波浪諸元を推定するもの
である。しかしながら、海面の波による水中の波動量の
大きさは、水深位置が深くなるほど、また波の周期が短
くなるほどその伝達過程での減衰が大きいため現象を解
析するにたる波動量を得ることが困難となる。
Further, the measurement data of the ultrasonic velocity meter-type wave direction meter is a plurality of wave quantities and provides the information necessary for estimating the wave direction or the wave direction spectrum, but the sea surface waveform data cannot be obtained. . The information about wave height and period is to estimate the wave parameters corresponding to the sea surface waveform by statistically processing the pressure fluctuation waveform measured by the water pressure measurement sensor according to the theory of the small amplitude wave which is the theory of the sea wave. . However, the magnitude of the amount of wave motion in the water due to the waves on the sea surface is greater as the depth of water becomes deeper and the period of the wave becomes shorter. Becomes

【0015】海面の波による水中の波動量の大きさは、
水深hが進行波の波長の1/2以下の領域では微小振幅
波の理論により次の(1)式乃至(4)式により示され
る。
The magnitude of the amount of wave motion in water due to waves on the sea surface is
In the region where the water depth h is ½ or less of the wavelength of the traveling wave, the following formulas (1) to (4) are shown by the theory of the minute amplitude wave.

【0016】(1)式は水平面上X軸(静水面)を正方
向に進む正弦波の水位ηを表す。
Equation (1) represents the water level η of a sine wave that travels in the positive direction on the X axis (static surface) on the horizontal plane.

【数1】 ここに、Hは波の波高、Kは波数;K=2π/L、Lは
波の波長、σは各振動数;σ=2π/T、Tは波の周
期、tは時間である。
[Equation 1] Here, H is the wave height, K is the wave number; K = 2π / L, L is the wave wavelength, σ is each frequency; σ = 2π / T, T is the wave period, and t is time.

【0017】(1)式の波による水中の任意の点Zにお
ける圧力Pは次の(2)式により与えられる。
The pressure P at an arbitrary point Z in water due to the wave of the equation (1) is given by the following equation (2).

【数2】 ここに、W0 は水の単位体積重量、hは水深である。[Equation 2] Here, W 0 is the unit volume weight of water, and h is the water depth.

【0018】また、波による水粒子運動速度の水平成分
Uと鉛直成分Wは次の(3)式と(4)式により与えら
れる。
The horizontal component U and the vertical component W of the motion velocity of water particles due to waves are given by the following equations (3) and (4).

【数3】 [Equation 3]

【数4】 (2)式および(3)式に示されるように超音波流速計
型波向計で測定される波動量の大きさは測定水深と波の
周期に依存して減衰する。このため適用水深と解析可能
な波高、周期に制約を生じるという欠点がある。
[Equation 4] As shown in the equations (2) and (3), the magnitude of the wave amount measured by the ultrasonic velocity meter-type wave direction meter attenuates depending on the measured water depth and the wave period. For this reason, there is a drawback that the applicable water depth and the wave height and period that can be analyzed are restricted.

【0019】波高計アレイによる波向の測定方法は、3
台以上の波高計を使用するため機器構成が大掛かりとな
り費用も高額となるという欠点がある。また、得られた
データから波の方向スペクトルあるいは波向を推定する
ためには、設置した波高計間の相互距離、相互角度およ
び波高計アレイの設置方位が正確に測量されていること
が条件とされる。しかし、海中での正確な測量は技術的
に難しく、特に水深が大きな場合には莫大な費用を要
し、技術的にも困難であるという欠点もある。
The wave direction measurement method using the wave height meter array is 3
Since wave height meters of more than one unit are used, there is a drawback that the equipment configuration becomes large and the cost becomes high. Also, in order to estimate the wave direction spectrum or wave direction from the obtained data, it is necessary to accurately measure the mutual distance between the installed wave height meters, the mutual angle, and the installation direction of the wave height array. To be done. However, accurate measurement in the sea is technically difficult, and there is also a drawback that it is technically difficult, especially when the water depth is large, enormous cost is required.

【0020】定常的な流れの測定には、固定設置式又は
係留設置式の流向・流速計が用いられるが、後者に属す
る機種は通常直記式の構造となっており、1週〜1ケ月
ごとに測器を設置・回収して測定データを取得する繁雑
な作業を必要とする。また、複数層の水深のデータを同
時刻に取得しようとする場合には、何れの設置方式によ
る場合も測定点数に相当する複数台の測器を必要とす
る。
A fixed installation type or a mooring installation type flow direction / velocity meter is used for steady flow measurement, but the model belonging to the latter usually has a direct writing structure, and every 1 week to 1 month. It requires complicated work to install and collect instruments in and collect measurement data. In addition, in order to acquire the water depth data of multiple layers at the same time, a plurality of measuring instruments corresponding to the number of measurement points are required regardless of the installation method.

【0021】また、前者では海面上または海面付近に及
ぶ施設・構造物の設置・構築を実施上の必要条件とする
測定方法であるために、船舶の運航、漁業等との関連に
おいて測定点の選定上の自由度が極めて低くなるという
制約を受ける。また、前者による場合には、施設の設計
・構築に多大の技術的・経済的負担を要し、後者は荒天
時の測定を目的とした使用において、安定した機器の設
置並びに測定性能を確保することはできない。
Further, in the former case, since it is a measurement method which requires the installation and construction of facilities and structures extending over or near the sea surface to be a necessary condition for implementation, the measurement points are related to the operation of ships and the fishing industry. There is a constraint that the degree of freedom in selection is extremely low. Also, the former requires a large technical and economic burden to design and build the facility, and the latter ensures stable equipment installation and measurement performance when used for measurement during stormy weather. It is not possible.

【0022】本発明によれば、海底に設置された超音波
送受波器により海底から海面に至る任意水深(測定点)
からの後方散乱波を検知して流れに関する情報を得るこ
とができるので、莫大な経費と技術的困難を伴う欠陥を
排除することができる。
According to the present invention, an arbitrary water depth (measuring point) from the sea bottom to the sea surface by an ultrasonic wave transmitter / receiver installed on the sea floor.
Since backscattered waves from the can be detected to obtain information about the flow, defects with enormous cost and technical difficulties can be eliminated.

【0023】潮位の測定は、検潮所において行われ、検
潮所は港内あるいは河口付近等に接岸して設けられてお
り、検潮施設の基本となる検潮井戸・導水管は約24時
間を基調とする潮汐(天文潮)による潮位変化の測定を
目的として設計・構築されている。従って、沿岸沖合い
に発生する潮汐・異常潮位等(天文潮+高潮などの気象
潮+その他)の実況を正しく測定することは殆ど不可能
であり、また周期が数分〜数十分程度の種々の長周期波
(エッジ波・津波・副振動等)等はその発生すら検知さ
れぬことも稀ではない。特に長周期波類の沖合いでの進
行波形・水位変動等の測定については未開発であり、異
常潮位等と共に陸岸への遡上高・浸水位等によってその
規模を推測しているに過ぎない。遡上高等によるこれら
事象の推測値は、地形・地物や事象の入射条件により同
一地点においても数倍の差異を生じ得る。
The tide level is measured at the tidal station, and the tidal station is provided alongside the harbor or near the mouth of the river. The tidal well, which is the basis of the tidal facility, and the water pipe are about 24 hours. It is designed and constructed for the purpose of measuring the change in tide level due to the tide (astronomical tide) based on. Therefore, it is almost impossible to accurately measure the actual conditions such as tides and abnormal tides (ocean tide + storm surge + other weather tides) that occur off the coast. It is not uncommon for long-period waves (edge waves, tsunami, secondary vibration, etc.) to be detected even if they do not occur. In particular, the measurement of the offshore traveling waveforms and water level fluctuations of long-period waves has not yet been developed, and its scale is only estimated by the run-up height and inundation level along the coast along with abnormal tide levels. . Estimated values of these events due to run-up height may differ several times even at the same point depending on the topography / features and incident conditions of the event.

【0024】本発明は、在来技術によっては不可能視さ
れていた沿岸沖合い地点における潮汐・異常潮位・長周
期波(津波・副振動など)等を定常的かつ一体的に測定
することを初めて可能とするものである。このことは、
これらの事象個々の性質を明らかにすることのほか、波
浪の変形(浅海域における水深変化に伴う波高・波長・
屈折現象等の変化)、港内静穏度、海浜変形・河口埋
没、海岸堤防・防波堤における越波・越流現象等の調査
・研究にとって本来不可欠な基礎情報を提供するもので
あり、沿岸海域に発生する海象事象の解明、港湾・漁港
・海岸・沿岸防災・その他の海洋性の施設・構築物に関
する計画・設計あるいは機能調査および施工管理、また
諸種の事象・現象の発生あるいは環境変化の予測や災害
原因の究明・対応策の検討等の基礎資料として、実態に
則した情報を取得し得ることとなる。なお、この発明に
よって取得される基礎情報は従来この種の調査において
利用されてきたシミュレーション(数値計算・水理模型
実験)に対しても、手法の改善向上、適正な初期条件の
設定、実態に則した推定結果の検証について必要有益な
資料を提供することとなる。
For the first time, the present invention is to measure the tide, abnormal tide level, long-period wave (tsunami, secondary vibration, etc.) at a coastal offshore point, which is considered impossible by conventional techniques, in a steady and integrated manner. It is possible. This is
In addition to clarifying the nature of each of these events, wave deformation (wave height, wavelength,
It provides basic information that is essential for investigations and researches on changes in refraction, etc.), port tranquility, beach deformation / estuary burial, and overtopping / overflow phenomena on coastal levees / breakwaters, which occur in coastal waters. Elucidation of oceanographic events, planning / design or functional survey and construction management of ports / fishing ports / coasts / coastal disaster prevention / other marine facilities / constructions, and prediction of various events / phenomenon or environmental change and cause of disaster As a basic material for investigation and examination of countermeasures, it will be possible to obtain information in line with actual conditions. In addition, the basic information obtained by this invention can be applied to simulations (numerical calculations / hydraulic model experiments) that have been conventionally used in this type of investigation, to improve the method, to set appropriate initial conditions, and to determine the actual conditions. It will provide necessary and useful materials for verification of the estimated estimation results.

【0025】本発明は上記従来技術の欠点に鑑みてなさ
れたもので、まず従来の波高計ではなし得ない波向測定
機能の充足として、従来の波向計あるいは波向測定方法
の持つ欠点を排除し、超音波パルスの海中伝搬時間測定
法を用いて波による海面変動を測定する機能と、超音波
のドップラー効果を応用して所要水深位置の複数点によ
る水粒子運動の流速変動を測定する機能とを一体化して
具備した波浪計を発明し、更にこれらの機能を応用して
機構上1個の複合機能センサにより、波浪および流況、
潮位変動等の事象諸元を推定するために必要な複数の波
動および流動に関するデータを同時に取得することによ
って、海象事象(波浪、流況、潮位変動等)全般の一元
的・定常的観測を可能とする測定機能の拡張と測定デー
タの質的向上およびセンサ設置上の技術的、経済的な欠
点を排除することができる海象計を提供することを目的
とする。
The present invention has been made in view of the above-mentioned drawbacks of the prior art. First, as the satisfaction of the wave direction measuring function which cannot be achieved by the conventional wave height meter, the drawbacks of the conventional wave direction meter or the wave direction measuring method are considered. Exclude and measure the sea surface fluctuation due to the wave using the ultrasonic propagation time measurement method of the ultrasonic pulse, and measure the flow velocity fluctuation of the water particle motion at multiple points at the required depth position by applying the Doppler effect of the ultrasonic wave Inventing a wave meter that has both functions and functions, and applying these functions to a single multi-function sensor in terms of mechanism,
Simultaneous acquisition of multiple wave and flow data necessary for estimating event specifications such as tidal fluctuations enables unified and steady observation of all oceanographic events (waves, current regimes, tidal fluctuations, etc.) It is an object of the present invention to provide a sea condition meter capable of eliminating the technical and economic drawbacks of sensor installation by expanding the measurement function and improving the quality of measurement data.

【0026】[0026]

【課題を解決するための手段】本発明は、海底または海
中に設置したセンサーから海面に向けて3つ以上の複数
方向に超音波パルスを送信する手段と、該超音波パルス
のうち鉛直方向に送信された超音波パルスの海面エコー
を受信して送信から受信までに要する時間を求める操作
から、海面水位の時間変動(海面波形)データを測定す
る海面変動測定手段と、該超音波パルスのうちその送信
ビーム軸を鉛直から所要角度傾けて送信された超音波パ
ルスの後方散乱波を受信してドップラー周波数解析によ
って所定散乱層内の流速を求める操作から、波動ならび
に流動によって生じる送信超音波パルスのビーム軸方向
の水粒子速度の時間変動データを測定する流速変動測定
手段とによって、一元的に測定された海面水位の時間変
動データと複数点の水粒子速度の時間変動データを用い
て計算される周波数スペクトル、クロススペクトルおよ
び海面波の波動理論から計算される水深方向への波動運
動の伝達関数を用いて、波の方向スペクトル、波高・周
期・波向などの波浪パラメータを算出する演算手段と、
複数層における各複数点の水粒子速度の時間変動データ
を用いて計算される各層の3方向成分(水平直交2成分
・鉛直成分)の流速および水平直交2成分をベクトル合
成して求められる潮流(流向・流速)等の演算手段、ま
た、海面水位の時間変動データを時間平均して求められ
る潮位、長周期波等の演算手段とを備えるように構成し
たものである。
SUMMARY OF THE INVENTION The present invention is a means for transmitting an ultrasonic pulse from a sensor installed on the seabed or in the sea toward a sea surface in three or more directions, and in the vertical direction of the ultrasonic pulse. From the operation of determining the time required from the reception of the transmitted sea surface echo of the transmitted ultrasonic pulse to the reception, the sea level fluctuation measuring means for measuring the time fluctuation (sea level waveform) data of the sea level and the ultrasonic pulse From the operation of receiving the backscattered wave of the ultrasonic pulse transmitted by inclining the transmission beam axis from the vertical by the required angle and obtaining the flow velocity in the predetermined scattering layer by Doppler frequency analysis, the transmission ultrasonic pulse generated by the wave and flow Time-varying data of sea level measured centrally by a velocity fluctuation measuring means that measures time-varying data of water particle velocity in the beam axis direction and multiple points Wave direction spectrum, wave height, period, etc. are calculated using the frequency spectrum calculated using time-varying data of water particle velocity, the cross spectrum, and the transfer function of wave motion in the depth direction calculated from the wave theory of sea surface waves. A calculation means for calculating wave parameters such as wave direction,
The tidal current obtained by vector-synthesizing the flow velocity of the three-direction components (horizontal orthogonal two components / vertical components) and horizontal two orthogonal components, which are calculated using time-varying data of water particle velocities at multiple points in multiple layers ( It is configured to include a calculating means such as a current direction and a flow velocity), and a calculating means such as a tide level and a long-period wave obtained by time-averaging time-varying data of sea level.

【0027】[0027]

【実施例】次に、本発明に係る海象計の実施例をドップ
ラー波浪計を用いて説明する。
EXAMPLE Next, an example of the sea level meter according to the present invention will be described using a Doppler wave meter.

【0028】図1に示すように、このドップラー波浪計
は、海中に設置し、超音波パルスを送信する手段として
の送受波部1、陸上に設置し、海面変動測定手段として
の海面変動計測回路2A、流速変動測定手段としての流
速変動計測回路2B、信号処理回路2Cを含む計測部2
および方向スペクトル演算、波浪パラメータ演算を行う
方向スペクトル演算手段としての演算部3で構成され
る。
As shown in FIG. 1, this Doppler wavemeter is installed in the sea and is a wave transmitting / receiving unit 1 as a means for transmitting ultrasonic pulses, and is installed on land, and a sea level fluctuation measuring circuit as a sea level fluctuation measuring means. 2A, a flow velocity fluctuation measuring circuit 2B as a flow velocity fluctuation measuring means, and a measurement unit 2 including a signal processing circuit 2C.
And a calculation unit 3 as direction spectrum calculation means for performing the direction spectrum calculation and the wave parameter calculation.

【0029】送受波部1と計測部2は多芯シールドケー
ブルにて接続される。送受波部1は、送受波器10、海
面水位測定用送受信回路11、流速測定用送受信回路1
2および切替回路13で構成される。
The wave transmitting / receiving unit 1 and the measuring unit 2 are connected by a multi-core shielded cable. The wave transmitter / receiver unit 1 includes a wave transmitter / receiver 10, a sea level measuring transmitter / receiver circuit 11, and a flow velocity measuring transmitter / receiver circuit 1.
2 and the switching circuit 13.

【0030】送受波器10は、図2にも示すように全体
が略円筒状でステンレス製の水密筐体で形成されてお
り、ベース101と、回路収納部102と、振動子搭載
部103とで構成されている。この振動子搭載部103
の上面は略アール状に形成されており、海面水位測定用
振動子10aが水平面に対して超音波放射方向が鉛直と
なるZ軸方向に装着されている。
As shown in FIG. 2, the wave transmitter / receiver 10 is formed of a stainless steel watertight casing as a whole and has a base 101, a circuit housing portion 102, and a vibrator mounting portion 103. It is composed of. This oscillator mounting portion 103
Has a substantially R-shaped upper surface, and the sea-level water level measuring oscillator 10a is mounted in the Z-axis direction in which the ultrasonic radiation direction is perpendicular to the horizontal plane.

【0031】また、流速測定用振動子10b、10c、
10dは等分にβの角度で(本実施例では1200
差)3個配置され、放射角度は夫々天頂角αの所要角度
(本実施例では約300 )で固定されている。この送受
波器10の水密筐体内部の回路収納部102には図1に
示す海面水位測定用送受信回路11、流速測定用送受信
回路12、切替回路13などが収納されている。
Further, the flow velocity measuring oscillators 10b, 10c,
Three 10d are evenly arranged at an angle of β (120 0 intersections in this embodiment), and the radiation angles are fixed at the required angles of the zenith angle α (about 30 0 in this embodiment). The seawater level measuring transmitter / receiver circuit 11, the flow velocity measuring transmitter / receiver circuit 12, the switching circuit 13 and the like shown in FIG.

【0032】前記送受波器10は、海底等に設置される
が、該海底あるいは機器の設置架台等は水平であるとは
限らないため、内部に図示されていないが設置方位と傾
射角を測定する傾斜計と方位計とを含む計測器が内蔵さ
れている。これによって計測された測定信号は、図4で
示すような時分割コントロールを行うトリガーパルスT
1 に重畳された周波数信号として計測部2に伝送され
る。
Although the wave transmitter / receiver 10 is installed on the seabed or the like, the seabed or the installation base of the equipment is not always horizontal. Therefore, although not shown inside, the installation direction and the tilt angle are not shown. A measuring instrument including an inclinometer for measuring and an azimuth meter is built in. The measurement signal measured by this is a trigger pulse T for performing time division control as shown in FIG.
It is transmitted to the measuring unit 2 as a frequency signal superimposed on r 1 .

【0033】なお、図1は図3に示す流速測定用振動子
を4個、すなわちX方向およびY方向の直交2成分に配
置して測定する場合が示されている。これに対して、図
2の実施例では1200 交差の3個の流速測定用振動子
を天頂角約300 で配置しているが、測定原理上は2個
以上の振動子を用いて2方向以上の流速を測定すればよ
い。また振動子の取り付け天頂角も水平流速成分が検出
されればよく300 に限定されない。
FIG. 1 shows a case where four flow velocity measuring transducers shown in FIG. 3 are arranged, that is, two orthogonal components in the X direction and the Y direction are arranged for measurement. In contrast, although arranged three velocity measurement oscillator 120 0 cross at the zenith angle of about 30 0 in the example of FIG. 2, the measurement principle using two or more transducers 2 It suffices to measure the flow velocity above the direction. Also the horizontal velocity components mounted zenith angle of the vibrator is not limited to 30 0 only to be detected.

【0034】また、前記トリガーパルスTr1 は、図1
に示すようにマイクロコンピュータ等よりなる制御回路
(CTL)27から送受波部1に送られる。このパルス
間隔を波高用の海面変動計測信号H、流速変動計測信号
A,B,Cの順に夫々例えば実施例の如く125msと
すると、測定繰り返し時間は0.5sとなる。従って、
該信号により図2に示す振動子10a乃至10dが前記
切替タイミングにより切り替えられて駆動される。海面
変動計測信号H、流速変動計測信号A,B,Cの識別は
本実施例ではパルス幅により識別できるように構成され
ている。
Further, the trigger pulse Tr 1 is as shown in FIG.
As shown in FIG. 3, the signal is transmitted from the control circuit (CTL) 27 including a microcomputer to the wave transceiver 1. If the pulse interval is 125 ms in the order of the sea level fluctuation measurement signal H for wave height and the flow velocity fluctuation measurement signals A, B, C, respectively, as in the embodiment, the measurement repetition time becomes 0.5 s. Therefore,
The signals cause the vibrators 10a to 10d shown in FIG. 2 to be switched and driven at the switching timing. The sea level fluctuation measurement signal H and the flow velocity fluctuation measurement signals A, B, and C are discriminated according to the pulse width in this embodiment.

【0035】また、流速変動計測信号A,B,Cの測定
位置は、図1のZcで示すように任意に設定される。通
常、海面より約10m程度で測定されるが、該測定位置
は本実施例によれば任意に設定することができるので、
例えば流速変動計測信号A,B,Cを海面下の複数層、
例えば上層、中層、下層について演算計測することがで
きる。また、波浪状況により例えば波高が小さい時には
表層近くを測定し、波高が大きい時には測定層を深くす
るなどの自動制御を行うことにより、より精度の高い計
測を行うことも可能である。
Further, the measurement positions of the flow velocity fluctuation measurement signals A, B, C are arbitrarily set as indicated by Zc in FIG. Normally, it is measured at about 10 m from the sea level, but the measurement position can be set arbitrarily according to this embodiment,
For example, the flow velocity fluctuation measurement signals A, B, and C can be used for multiple layers below the sea surface
For example, arithmetic measurement can be performed on the upper layer, the middle layer, and the lower layer. Further, depending on the wave condition, for example, when the wave height is small, the vicinity of the surface layer is measured, and when the wave height is large, the measurement layer is deepened to perform automatic control.

【0036】流速測定用送受信回路12は、流速変動計
測回路2B内のクロック生成回路21、該クロック生成
回路によって生成されたクロックを分周する分周回路
(Div)22、発振回路(Osc)23、ゲート回路
(Gate)24、オートパワーコントロール回路(A
PC)25、パワーアンプ26からのトリガーパルスT
2 を受け、数百kHz(本実施例では500KHz)
の発振信号を作り該トリガーパルスに同期してトーンバ
ースト波を発生させる。この信号により流速測定用振動
子10b乃至10dを励振し、水中に超音波パルスを送
出する。また、受信されたドップラー信号は流速測定用
送受信回路12にて増幅され計測部2に伝送される。
The flow velocity measuring transmission / reception circuit 12 includes a clock generating circuit 21 in the flow velocity fluctuation measuring circuit 2B, a frequency dividing circuit (Div) 22 for dividing the clock generated by the clock generating circuit, and an oscillating circuit (Osc) 23. , Gate circuit (Gate) 24, auto power control circuit (A
PC) 25, trigger pulse T from power amplifier 26
Upon receiving r 2 , several hundreds of kHz (500 kHz in this embodiment)
To generate a tone burst wave in synchronization with the trigger pulse. The flow rate measuring transducers 10b to 10d are excited by this signal, and an ultrasonic pulse is transmitted into the water. Further, the received Doppler signal is amplified by the flow velocity measurement transmission / reception circuit 12 and transmitted to the measurement unit 2.

【0037】一方、海面水位測定用送受信回路11は海
面変動計測回路2AからのトリガーパルスTr3 を受
け、数百KHz(実施例では200KHz)の発振信号
を作り図2に示す海面水位測定用振動子10aを励振
し、海面に向けて超音波パルスを送出する。
On the other hand, the sea-level measuring transmitter / receiver circuit 11 receives the trigger pulse Tr 3 from the sea-level fluctuation measuring circuit 2A and produces an oscillation signal of several hundred KHz (200 KHz in the embodiment) to produce the sea-level measuring vibration shown in FIG. The child 10a is excited and an ultrasonic pulse is sent toward the sea surface.

【0038】受信した海面水位信号は海面水位測定用送
受信回路11にて増幅され海面変動計測回路2Aへ送信
されA/D変換器33に出力される。この海面水位信号
には、水圧信号を重畳して周波数変換して伝送される。
この水圧信号は、海面波による水中圧力の時間変動デー
タを送受波器10内に併設された水中圧力変動測定手段
としての水圧センサーで測定される。
The received sea level signal is amplified by the sea level measuring transmission / reception circuit 11 and transmitted to the sea level fluctuation measuring circuit 2A and output to the A / D converter 33. A water pressure signal is superimposed on this sea surface water level signal and the frequency is converted and transmitted.
This water pressure signal is measured by a water pressure sensor as an underwater pressure fluctuation measuring means provided side by side in the transmitter / receiver 10 for time fluctuation data of underwater pressure due to sea surface waves.

【0039】上記のように送受波部1では受信した海面
水位信号と水粒子散乱受波信号を時分割にて計測部2に
伝送する。また、送受波部1の設置方位と傾射角も測定
したトリガーパルス信号に重畳した周波数信号として計
測部2に伝送する。
As described above, the wave transmitting / receiving unit 1 transmits the received sea surface level signal and the water particle scattered wave receiving signal to the measuring unit 2 in a time division manner. Also, the installation direction and tilt angle of the wave transmission / reception unit 1 are transmitted to the measurement unit 2 as a frequency signal superimposed on the measured trigger pulse signal.

【0040】次に、水粒子散乱受波信号は切替回路1
3、流速測定用送受信回路12を介して計測部2に伝送
される。この伝送された水粒子散乱受波信号は、タイム
バリアブルゲイン回路(TVG)28およびオートゲイ
ン回路(AGC)29を経て混合器(Mix)30に入
る。前記タイムバリアブルゲイン回路(TVG)28
は、送受波器10から反射された反射信号の強度を補正
する回路である。
Next, the received signal of the water particle scattering is sent to the switching circuit 1
3. The data is transmitted to the measurement unit 2 via the flow velocity measurement transmission / reception circuit 12. The transmitted water particle scattered wave reception signal enters the mixer (Mix) 30 via the time variable gain circuit (TVG) 28 and the auto gain circuit (AGC) 29. The time variable gain circuit (TVG) 28
Is a circuit that corrects the intensity of the reflected signal reflected from the transceiver 10.

【0041】混合器(Mix)30は、流速測定用送受
信回路12から発振される信号(本実施例では500K
Hz)と制御回路(CTL)27から発振される信号
(例えば480KHz)との掛け算を行う。これによっ
て得られた和と差の信号成分のうち、バンドパスフィル
タ(BPF)31を通して差の成分のみを取り出す。
The mixer (Mix) 30 is a signal oscillated from the flow velocity measuring transmission / reception circuit 12 (500 K in this embodiment).
Hz) and a signal oscillated from the control circuit (CTL) 27 (for example, 480 KHz) are multiplied. Of the sum and difference signal components obtained in this way, only the difference component is extracted through the bandpass filter (BPF) 31.

【0042】その結果、流速に応じたドップラー成分が
なければ基準周波数20KHzであるが、実際にはドッ
プラー成分の影響を受けるので20KHz±Δfの信号
が得られる。この変化分が信号処理回路2cのA/D変
換器33に入力される。
As a result, if there is no Doppler component according to the flow velocity, the reference frequency is 20 KHz, but since it is actually affected by the Doppler component, a signal of 20 KHz ± Δf can be obtained. This change is input to the A / D converter 33 of the signal processing circuit 2c.

【0043】つまり、500KHzの信号成分を低い周
波数成分である20KHzの基準信号に対するずれ分と
して検出する。
That is, the signal component of 500 KHz is detected as the shift amount with respect to the reference signal of 20 KHz which is a low frequency component.

【0044】このずれ分Δfが例えば約5KHzである
とすると、水粒子速度VrはVr=C/2×Δf/f
0 、ここでCは音速、f0 は500KHzで表わされる
ので1%のずれになる。+1%ずれている時は流速が手
前に来ていることになり、また−1%の時は遠ざかって
いる方向にずれていることになる。このようにして得ら
れた水粒子速度変動と海面変動計測回路2Aから出力さ
れた海面水位変動成分の信号は計測部内部の回路にて海
面変動および流速変動演算され、方向スペクトル演算、
波浪パラメータ演算を行う演算部3にGPIB36によ
りデジタル伝送されて方向スペクトル、波高・周期・波
向などの演算処理が行われる。
Assuming that the deviation Δf is, for example, about 5 KHz, the water particle velocity Vr is Vr = C / 2 × Δf / f.
0 , where C is the speed of sound and f 0 is 500 KHz, so there is a 1% shift. When it is deviated by + 1%, it means that the flow velocity is on the front side, and when it is -1%, it means that it is deviated in the direction of moving away. The water particle velocity fluctuation and the signal of the sea level fluctuation component output from the sea level fluctuation measuring circuit 2A thus obtained are subjected to sea level fluctuation and flow velocity fluctuation calculation in a circuit inside the measuring unit, and direction spectrum calculation,
The signal is digitally transmitted by the GPIB 36 to the calculation unit 3 that performs wave parameter calculation, and calculation processing of the direction spectrum, wave height, period, wave direction, etc. is performed.

【0045】この他、信号処理回路2cには、I/O回
路34、制御回路としてのCPU35、インターフェー
スとしてのGPIB36とで構成される。なお、図1に
も示すように制御回路27等とI/O回路34とは双方
向通信がなされ、また他の回路に対しても制御信号が出
力される。
In addition, the signal processing circuit 2c includes an I / O circuit 34, a CPU 35 as a control circuit, and a GPIB 36 as an interface. As shown in FIG. 1, the control circuit 27 and the like and the I / O circuit 34 perform bidirectional communication, and control signals are output to other circuits.

【0046】次に、上記のような構成よりなる本発明の
作用について説明する。
Next, the operation of the present invention having the above structure will be described.

【0047】図1に示すように計測部2の制御回路27
から送信を時分割コントロールするトリガーパルス信号
Tr1 が送受波部1に送られ、該信号により図2に示す
振動子10a乃至10dが前記切替タイミングにより切
り替えられて駆動される。
As shown in FIG. 1, the control circuit 27 of the measuring unit 2
Trigger signal Tr 1 for time-divisionally controlling transmission from the transmitter to the wave transmitter / receiver 1, and the signal causes the transducers 10a to 10d shown in FIG. 2 to be switched and driven at the switching timing.

【0048】流速測定用送受信回路12は、流速変動計
測回路2BからのトリガーパルスTr2 を受け、数百k
Hz(本実施例では500KHz)の発振信号を作り該
トリガーパルスに同期してトーンバースト波を発生させ
る。この信号により流速測定用振動子10b乃至10d
を励振し、水中に超音波パルスを送出する。受信された
ドップラー信号は流速測定用送受信回路12にて増幅さ
れ計測部2に伝送される。
The flow velocity measurement transmission / reception circuit 12 receives the trigger pulse Tr 2 from the flow velocity fluctuation measurement circuit 2B and receives several hundreds k
An oscillation signal of Hz (500 KHz in this embodiment) is generated and a tone burst wave is generated in synchronization with the trigger pulse. With this signal, the flow velocity measuring transducers 10b to 10d
Is excited and an ultrasonic pulse is transmitted into the water. The received Doppler signal is amplified by the flow velocity measurement transmission / reception circuit 12 and transmitted to the measurement unit 2.

【0049】一方、海面水位測定用送受信回路11は海
面変動計測回路2AからのトリガーパルスTr3 を受
け、数百KHz(実施例では200KHz)の発振信号
を作り図2に示す海面水位測定用振動子10aを励振
し、海面に向けて超音波パルスを送出する。受信した海
面水位信号は海面水位測定用送受信回路11にて増幅さ
れ海面変動計測回路2Aへ送信されA/D変換器33に
出力される。この海面水位信号には、水圧信号を重畳し
て周波数変換して伝送される。
On the other hand, the sea-level measuring transmitter / receiver circuit 11 receives the trigger pulse Tr 3 from the sea-level fluctuation measuring circuit 2A and generates an oscillation signal of several hundred KHz (200 KHz in the embodiment) to produce the sea-level measuring vibration shown in FIG. The child 10a is excited and an ultrasonic pulse is sent toward the sea surface. The received sea surface level signal is amplified by the sea level measuring transmitter / receiver circuit 11, transmitted to the sea surface fluctuation measuring circuit 2A, and output to the A / D converter 33. A water pressure signal is superimposed on this sea surface water level signal and the frequency is converted and transmitted.

【0050】上記のように送受波部1では受信した海面
水位信号と水粒子散乱受波信号を時分割にて計測部2に
伝送する。また、送受波部1の設置方位と傾射角も測定
したトリガーパルス信号に重畳した周波数信号として計
測部2に伝送する。
As described above, the wave transmitting / receiving unit 1 transmits the received sea surface level signal and the water particle scattered wave receiving signal to the measuring unit 2 in a time division manner. Also, the installation direction and tilt angle of the wave transmission / reception unit 1 are transmitted to the measurement unit 2 as a frequency signal superimposed on the measured trigger pulse signal.

【0051】上記水粒子散乱受波信号はタイムバリアブ
ルゲイン回路(TVG)28およびオートゲイン回路
(AGC)29を経て混合器(Mix)30に入る。
The water particle scattered received signal enters the mixer (Mix) 30 via the time variable gain circuit (TVG) 28 and the auto gain circuit (AGC) 29.

【0052】混合器(Mix)30は、流速測定用送受
信回路12から発振される信号(本実施例では500K
Hz)と制御回路(CTL)27から発振される信号
(例えば480KHz)との掛け算を行い、これによっ
て得られた和と差の信号成分のうち、バンドパスフィル
タ(BPF)31を通して差の成分のみを取り出す。
The mixer (Mix) 30 is a signal oscillated from the flow velocity measuring transmission / reception circuit 12 (500 K in this embodiment).
Hz) and a signal oscillated from the control circuit (CTL) 27 (for example, 480 KHz), and among the signal components of the sum and the difference obtained by this, only the difference component is passed through the bandpass filter (BPF) 31. Take out.

【0053】これによって得られた差の成分を20KH
zの基準信号に対するずれ分として検出し、このずれ分
をA/D変換器33でサンプリングする。
The difference component thus obtained is set to 20 KH
It is detected as a deviation of z from the reference signal, and this deviation is sampled by the A / D converter 33.

【0054】このようにして得られた水粒子速度変動と
海面変動計測回路2Aから出力された海面水位変動成分
の信号は計測部内部の回路にて海面変動および流速変動
演算され、方向スペクトル演算、波浪パラメータ演算を
行う演算部3にGPIB36によりデジタル伝送されて
方向スペクトル、波高・周期・波向などの演算処理が行
われる。
The signals of the water particle velocity fluctuation and the sea level fluctuation component output from the sea level fluctuation measuring circuit 2A thus obtained are subjected to sea level fluctuation and flow velocity fluctuation calculation in a circuit inside the measuring section, and direction spectrum calculation, The signal is digitally transmitted by the GPIB 36 to the calculation unit 3 that performs wave parameter calculation, and calculation processing of the direction spectrum, wave height, period, wave direction, etc. is performed.

【0055】ところで、本実施例に係るドップラー波浪
計は、従来の超音波流速計型波向計のように海面の波に
よって生じる海中の水粒子運動の水平方向流速成分を直
交2成分測定用センサを用いた超音波流速計で測定し、
同時に同一センサが装備された水圧計測センサで波によ
って生じる水中の圧力変動を測定し、波向あるいは波の
方向スペクトルを推定するに必要な複数の波動量を得る
ものに対して、海面水位信号と水粒子散乱受波信号を時
分割にて行うため、海面変動計測信号H、流速変動計測
信号A,B,Cの夫々の位相関係等の補正を行う必要が
ある。
By the way, the Doppler wavemeter according to the present embodiment is a sensor for measuring the two-component orthogonal flow velocity component of the horizontal flow velocity component of water particle motion in the sea caused by the waves on the sea surface like the conventional ultrasonic velocity meter type wave direction sensor. Measured with an ultrasonic velocity meter using
At the same time, a water pressure measurement sensor equipped with the same sensor measures the pressure fluctuation in the water caused by waves and obtains multiple wave quantities necessary to estimate the wave direction or the wave direction spectrum. Since the water particle scattered received signal is time-divided, it is necessary to correct the phase relationship of each of the sea surface fluctuation measurement signal H and the flow velocity fluctuation measurement signals A, B, and C.

【0056】通常、この方向スペクトル解析には、拡張
最尤法(EMLM)を用いている。即ち、ドップラー式
波浪計で観測される流速成分は、水中の特定点での水粒
子速度ではなく、ある幅を有する体積中の平均的水粒子
速度である。そこで、図1に示すようにr軸方向にΔr
の距離で積分して平均し、近似的な伝達関数を方向スペ
クトル解析に用いている。これを(5)式に示す。
Generally, the extended maximum likelihood method (EMLM) is used for this directional spectrum analysis. That is, the flow velocity component observed by the Doppler wavemeter is not the water particle velocity at a specific point in water, but the average water particle velocity in a volume having a certain width. Therefore, as shown in FIG.
An approximate transfer function is used for directional spectrum analysis by integrating and averaging at a distance of. This is shown in equation (5).

【数5】 上式を用いれば、EMLMの方向スペクトルの推定式は
(6)式に示す式で与えられる。
[Equation 5] If the above equation is used, the equation for estimating the directional spectrum of the EMLM is given by the equation (6).

【数6】 ここに、Hは(5)式で示す式で与えられる各波動量の
伝達関数から構成される行列、H*tはHの複素共役の転
値行列、φ-1は各波動量間のクロススペクトルφ
mn(f)から構成される行列φの逆行列、kは方向スペ
クトルのエネルギーを正規化するための定数である。
[Equation 6] Here, H is a matrix composed of transfer functions of respective wave quantities given by the equation (5), H * t is a complex conjugate transversion matrix of H, and φ −1 is a cross between the wave quantities. Spectrum φ
The inverse matrix of the matrix φ composed of mn (f), and k is a constant for normalizing the energy of the directional spectrum.

【0057】以上のように、計測部2の送受信制御信号
(例えば所要水深の水粒子速度を得るためのA/D変換
タイミング信号など)はすべてCPU35によってコン
トロールされる。また計測部2で演算される水粒子速度
や海面水位変動などCPU35によりすべてデジタル処
理される。演算結果はGPIB36により演算部3に伝
送され、方向スペクトルや波高・周期・波向などの計算
処理が行われる。計測部2より伝送された水粒子速度、
海面水位変動データを用いてEMLMにより演算部3で
は方向スペクトルや波浪パラメータなどの各種演算が行
われる。
As described above, the CPU 35 controls all the transmission / reception control signals of the measuring section 2 (for example, the A / D conversion timing signal for obtaining the water particle velocity at the required water depth). In addition, the CPU 35 digitally processes the water particle velocity calculated by the measuring unit 2 and the sea level fluctuation. The calculation result is transmitted to the calculation unit 3 by the GPIB 36, and calculation processing of the direction spectrum, wave height, period, wave direction, etc. is performed. Water particle velocity transmitted from the measuring unit 2,
The EMLM uses the sea level fluctuation data to perform various calculations such as the directional spectrum and the wave parameters in the calculator 3.

【0058】なお、本発明に係るドップラー波浪計を用
いることによって、流れ(3方向成分流速、潮流の流
向・流速等)の測定機能および潮位変動、長周期波
(津波・副振動等)の測定機能を有する装置として用い
ることができる。
By using the Doppler wave meter according to the present invention, the flow (three-direction component flow velocity, tidal current direction / velocity, etc.) measuring function and tide level fluctuation, long-period wave (tsunami, secondary vibration, etc.) measurement can be performed. It can be used as a device having a function.

【0059】流れの測定機能 このドップラー波浪計は、海面下の流れを複数層(3層
以上)について測定することができる。流れは、図2に
示す10b,10c,10dの3方向(以下、A,B,
Cで軸方向を示す。)の送受波器で測定される水粒子速
度を時間平均(通常約3分程度)したものであり、海面
下の複数層(例えば、上層、中層、下層)について演算
計測することができる。
Flow Measurement Function This Doppler wave meter can measure the flow below the sea level for a plurality of layers (three or more layers). The flow is in three directions 10b, 10c, and 10d shown in FIG. 2 (hereinafter, A, B,
C indicates the axial direction. ) Is a time average (usually about 3 minutes) of the water particle velocity measured by the wave transmitter / receiver, and can be calculated and measured for a plurality of layers below the sea surface (for example, upper layer, middle layer, lower layer).

【0060】この演算式は、(7)式で示される。This arithmetic expression is represented by the expression (7).

【数7】 であり、上記行列は、(8)式で示される。[Equation 7] And the above matrix is expressed by equation (8).

【数8】 ここで、Vx:流速の水平東西成分。東向き正。 Vy:流速の水平南北成分。北向き正。 Vz:流速の鉛直成分。上向き正。 VA ,VB ,VC :各々ビーム軸ABC方向の流速成分 cos(xi),cos(yi),cos(zi)(i
=A,B,C):各々A,B,Cビーム軸のx,y,z
に対する方向余弦である。上記演算式を用いることによ
り、海面下の複数層(例えば、上層、中層、下層)につ
いての流れ(流速)の測定を行うことができる。また、
潮流等の流向・流速は、上記水平2成分(Vx,Vy)
をベクトル合成することによって求められる。
[Equation 8] Here, Vx: horizontal east-west component of flow velocity. East facing positive. Vy: Horizontal north-south component of flow velocity. North facing positive. Vz: vertical component of flow velocity. Upward positive. V A , V B , V C : Flow velocity components in the beam axis ABC direction cos (xi), cos (yi), cos (zi) (i
= A, B, C): x, y, z of the A, B, C beam axes, respectively
Is the direction cosine for. By using the above arithmetic expression, the flow (velocity) of a plurality of layers below the sea surface (for example, upper layer, middle layer, lower layer) can be measured. Also,
The flow direction and velocity of tidal current, etc. are the above two horizontal components (Vx, Vy)
Is obtained by vector composition.

【0061】このドップラー波浪計の図2に示す実施例
ではビーム傾斜角、すなわち天頂角を約300 で120
0 交差のビーム軸からなる実施例では、ビーム軸方向
A,B,Cを各々方位00 ,1200 ,2400 とする
と、(10)式に示すようになる。
[0061] beam tilt angle in the embodiment shown in Figure 2 of the Doppler wave meter, i.e. the zenith angle of about 30 0 120
In the embodiment having the beam axis of 0- crossing, assuming that the beam axis directions A, B, and C are azimuths 0 0 , 120 0 , and 240 0 , respectively, it becomes as shown in equation (10).

【数10】 となる。これより、流速の各成分を求める演算式は、
(11)式となる。
[Equation 10] Becomes From this, the calculation formula for each component of the flow velocity is
Equation (11) is obtained.

【数11】 [Equation 11]

【0062】潮位変動等の測定機能 このドップラー波浪計は、海底に設置された送受波器か
ら発射された超音波パルスが海面で反射して再び送受波
器に受信されるまでのパルス伝播時間を測定することに
より海面水位を測定することができる。また、波浪のパ
ラメータや方向スペクトルを演算するための水位変動η
は(1)式で示すように海面水位の変動分だけを測定値
として用いるものであるが、測定原理上海面水位Hl
得られるのでこれを時間平均し平滑化処理して、例えば
毎正時値の測定値を計測して、この計測された値を潮位
変動を検出するための値として利用することができる。
また、時間平均・平滑化処理を所要のバンドパスフィル
タによって処理することにより、種々の長周期波(津波
・副振動等)を測定することができる。
Measurement function of tide level fluctuation, etc. This Doppler wavemeter measures the pulse propagation time until an ultrasonic pulse emitted from a transducer installed on the seabed is reflected on the sea surface and received again by the transducer. The sea level can be measured by measuring. In addition, the water level fluctuation η for calculating the wave parameters and direction spectrum
As shown in the equation (1), only the fluctuation of the sea level is used as the measurement value. However, since the measurement principle Shanghai level H 1 is also obtained, this is time-averaged and smoothed, and for example, every positive It is possible to measure the measured value of the hourly value and use this measured value as a value for detecting the tidal level fluctuation.
Further, various long-period waves (tsunami, secondary vibration, etc.) can be measured by processing the time averaging / smoothing processing with a required bandpass filter.

【0063】 海面水位Hl (すなわち潮位H
l )とパルス伝播時間との関係は(9)式に示される。
Sea level H l (ie tide level H
The relationship between l ) and the pulse transit time is shown in equation (9).

【数9】 ここでHl :海面水位(m) C :音速 t :パルス伝播時間(s) である。[Equation 9] Here, H 1 is the sea level (m), C is the speed of sound, t is the pulse transit time (s).

【0064】[0064]

【発明の効果】以上説明したように、本発明によれば、
従来は困難であった沿岸大水深海域における波の方向ス
ペクトル、波高・周期・波向などの波浪パラメータを1
個のセンサ(一体型の送受波部)によって測定すること
が可能となり、比較的簡単な回路で構成される計測・演
算部からなる波浪計を実現できると共に、本発明によれ
ば波動量のうち海面の波による水中の水粒子運動の流速
変動をドップラー効果を応用した測定手法を用いて、現
象の減衰が小さい海面付近で得ることができる効果があ
る。このことにより、従来の超音波式波向計においては
水深20m程度を限界とした波向の測定が、水深50m
を標準とする沿岸大水深域においても可能となる。ま
た、本発明によれば、海面下の複数層(例えば、上層、
中層、下層)について流れの測定を行うことができる。
更に、本発明によれば、海面水位を用いてこれを時間平
均し平滑化あるいはバンドパス処理して、沿岸沖合いに
おける潮位測定(従来の測定は接岸地点に限られてい
た)および種々の長周期波(津波・副振動等)の測定を
行うことができる。このように複数の沿岸海象事象を、
同一測点において同時に測定し得ることは、相互に密接
不可分な関係を有する現象の測定・解析を行ううえで、
本質的には必須条件とされながら、現実の問題として従
来不可能視されてきた技術であり、本発明によって沿岸
海象の実態が初めて明らかにされ、海洋性施設・構築物
の計画・設計、沿岸防災、災害原因の究明をはじめ、多
様な海洋環境調査の基礎資料として、従来未知・未解決
であった沿岸海象事象の解明および統計解析に、有効・
適切な観測データを定常的に取得・提供することを可能
とするものである。
As described above, according to the present invention,
Wave direction parameters such as wave direction spectrum, wave height, period, wave direction, etc. in coastal deep water, which were difficult in the past, were set to 1
Since it is possible to perform measurement with a single sensor (integrated transmission / reception unit), it is possible to realize a wave meter including a measurement / calculation unit configured by a relatively simple circuit, and according to the present invention, There is an effect that the velocity fluctuation of water particle motion in water due to waves on the sea surface can be obtained near the sea surface where the attenuation of the phenomenon is small by using the measurement method applying the Doppler effect. As a result, in the conventional ultrasonic wave direction meter, the measurement of the wave direction at a water depth of about 20 m is limited to a water depth of 50 m.
It becomes possible even in the coastal deep water area where is standard. Also, according to the present invention, a plurality of layers below the sea level (for example, the upper layer,
Flow measurements can be made for the middle and lower layers.
Further, according to the present invention, the sea level is used for time averaging and smoothing or band pass processing to measure the tide level off the coast (conventional measurement was limited to berths) and various long periods. Waves (tsunami, secondary vibration, etc.) can be measured. In this way, multiple coastal oceanographic events
Being able to measure at the same measuring point at the same time is important for measuring and analyzing phenomena that are inextricably linked to each other.
Although it is an essential condition, it is a technology that has been regarded as impossible in the past, and the present invention makes it possible to clarify the actual condition of coastal sea conditions for the first time, to plan and design marine facilities and structures, and to prevent coastal disasters. Effective as a basic data for various marine environment surveys including investigation of causes of disasters, for elucidation and statistical analysis of previously unknown and unsolved coastal oceanographic events.
This makes it possible to constantly acquire and provide appropriate observation data.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明に係る海象計(ドップラー波浪
計)の回路図である。
FIG. 1 is a circuit diagram of a sea level meter (Doppler wave meter) according to the present invention.

【図2】図2(a)は、図1に示す送受波器の平面図で
あり、図2(b)は図2(a)におけるA−O−A断面
図である。
2 (a) is a plan view of the wave transmitter / receiver shown in FIG. 1, and FIG. 2 (b) is a sectional view taken along the line AA in FIG. 2 (a).

【図3】図3は、図1に示す送受波器の他の実施例を示
す平面図である。
FIG. 3 is a plan view showing another embodiment of the wave transceiver shown in FIG.

【図4】図4は、図1に示すトリガーパルスTr1 を示
す図である。
FIG. 4 is a diagram showing a trigger pulse Tr 1 shown in FIG.

【図5】図5は、アナログ回路による複素信号の発生を
示す説明図である。
FIG. 5 is an explanatory diagram showing generation of a complex signal by an analog circuit.

【符号の説明】[Explanation of symbols]

1 送受波部 2 計測部 2A 海面変動計測回路 2B 流速変動計測回路 2C 信号処理回路 3 演算部 10 送受波器 11 海面水位測定用送受信回路 12 流速測定用送受信回路 13 切替回路 DESCRIPTION OF SYMBOLS 1 Wave transmitting / receiving section 2 Measuring section 2A Sea level fluctuation measuring circuit 2B Flow velocity fluctuation measuring circuit 2C Signal processing circuit 3 Computing section 10 Transducer 11 Sea level measuring transceiver circuit 12 Velocity measuring transceiver circuit 13 Switching circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 紀彦 神奈川県横須賀市長瀬3−1−1 運輸省 港湾技術研究所内 (72)発明者 橋本 典明 神奈川県横須賀市長瀬3−1−1 運輸省 港湾技術研究所内 (72)発明者 高橋 智晴 東京都中央区日本橋小伝馬町14番12号岩並 ビル3F 社団法人海洋調査協会内 (72)発明者 佐々木 弘 東京都羽村市栄町3−1−5 株式会社カ イジョー内 (72)発明者 伊藤 芳樹 東京都羽村市栄町3−1−5 株式会社カ イジョー内 (72)発明者 磯部 憲雄 東京都羽村市栄町3−1−5 株式会社カ イジョー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norihiko Nagai 3-1-1, Nagase, Yokosuka City, Kanagawa Prefecture, Ministry of Transport, Research Institute for Port Technology (72) Inventor, Noriaki Hashimoto 3-1-1, Nagase, Yokosuka City, Kanagawa Prefecture, Port of Transportation Technical Research Institute (72) Inventor Tomoharu Takahashi 14-12 Nihonbashi Kodenmacho, Chuo-ku, Tokyo Iwanami Building 3F Incorporated Association for Ocean Research (72) Inventor Hiroshi Sasaki 3-1-5 Sakaemachi, Hamura-shi, Tokyo In kaijo (72) Inventor Yoshiki Ito 3-1-5 Sakaemachi, Hamura-shi, Tokyo Inside kaijo Co., Ltd. (72) Inventor Norio Isobe 3-1-5 Sakaemachi, Hamura-shi, Tokyo Inside kaijo Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 海底または海中に設置したセンサーから
海面に向けて3つ以上の複数方向に超音波パルスを送信
する手段と、該超音波パルスのうち鉛直方向に送信され
た超音波パルスの海面エコーを受信して送信から受信ま
でに要する時間を求める操作から、海面水位の時間変動
(海面波形)データを測定する海面変動測定手段と、該
超音波パルスのうちその送信ビーム軸を鉛直から所要角
度傾けて送信された超音波パルスの後方散乱波を受信し
てドップラー周波数解析によって所定散乱層内の流速を
求める操作から、波動ならびに流動によって生じる送信
超音波パルスのビーム軸方向の水粒子速度の時間変動デ
ータを測定する流速変動測定手段とによって、一元的に
測定された海面水位の時間変動データと複数点の水粒子
速度の時間変動データを用いて計算される周波数スペク
トル、クロススペクトルおよび海面波の波動理論から計
算される水深方向への波動運動の伝達関数を用いて、波
の方向スペクトル、波高・周期・波向などの波浪パラメ
ータを算出する演算手段と、複数層における各複数点の
水粒子速度の時間変動データを用いて計算される各層の
3方向成分(水平直交2成分・鉛直成分)の流速および
水平直交2成分をベクトル合成して求められる潮流(流
向・流速)等の演算手段、また、海面水位の時間変動デ
ータを時間平均して求められる潮位、長周期波等の演算
手段とを備えたことを特徴とする海象計。
1. A means for transmitting an ultrasonic pulse from a sensor installed on the seabed or in the sea to the sea surface in three or more directions, and a sea surface of the ultrasonic pulse transmitted in the vertical direction among the ultrasonic pulses. From the operation of calculating the time required to receive echoes from transmission to reception, the sea level fluctuation measuring means for measuring the time fluctuation (sea level waveform) data of sea level and the transmission beam axis of the ultrasonic pulse from the vertical are required. From the operation of receiving the backscattered wave of the ultrasonic pulse transmitted at an angle and obtaining the flow velocity in the predetermined scattering layer by Doppler frequency analysis, the water particle velocity in the beam axis direction of the transmitted ultrasonic pulse generated by the wave and flow is calculated. The time-varying data of sea level and the time-varying data of water particle velocities measured at multiple points are collectively measured by the flow velocity fluctuation measuring means that measures the time-varying data. Wave parameters such as wave direction spectrum, wave height, period, and wave direction using the transfer function of the wave motion in the depth direction calculated from the frequency spectrum, cross spectrum, and wave theory of sea surface waves calculated using And the flow velocity and horizontal orthogonal two components of the three-direction components (horizontal orthogonal component / vertical component) of each layer calculated by using the time variation data of the water particle velocities at each plural point in the plural layers. A sea elephant characterized by comprising a calculating means such as a tidal current (current direction / velocity) obtained by synthesis, and a calculating means such as a tide level and a long period wave obtained by time averaging time-varying data of sea level. Total.
【請求項2】 前記超音波パルスを送信する手段は、超
音波パルスのうち鉛直方向に送信される超音波パルス
と、送信ビーム軸を鉛直から所要角度傾けて送信される
超音波パルスとを時分割で短時間間隔で順次繰り返し行
うようにしたことを特徴とする請求項1記載の海象計。
2. The means for transmitting the ultrasonic pulse includes: an ultrasonic pulse transmitted in the vertical direction among the ultrasonic pulses; and an ultrasonic pulse transmitted with the transmission beam axis inclined at a required angle from the vertical. 2. The sea condition meter according to claim 1, wherein the sea level meter is configured to be repeatedly and sequentially divided at short intervals.
【請求項3】 海面水位の時間変動で代表される鉛直方
向の波動運動測定手段として、海面波による水中圧力の
時間変動データを送受波部に設けられた水中圧力変動測
定手段を具備したことを特徴とする請求項1又は請求項
2記載の海象計。
3. An underwater pressure fluctuation measuring means provided in a transmitting / receiving section for time fluctuation data of underwater pressure due to sea surface waves is provided as vertical wave motion measuring means represented by time fluctuation of sea surface water level. The sea condition meter according to claim 1 or 2, which is characterized.
【請求項4】 水粒子速度の時間変動データを測定する
流速変動測定手段として、超音波パルスの送信ビーム軸
方向を鉛直から所要角度傾けて平面座標上に異なる方向
に配置したことを特徴とする請求項1又は請求項2記載
の海象計。
4. The flow velocity fluctuation measuring means for measuring time fluctuation data of water particle velocity is characterized in that the transmission beam axis direction of the ultrasonic pulse is tilted by a required angle from the vertical and arranged in different directions on a plane coordinate. The sea condition meter according to claim 1 or 2.
【請求項5】 水粒子速度の時間変動データを測定する
流速変動測定手段として、超音波パルスの送信ビーム軸
方向を鉛直から所要角度傾けて平面座標上に120度の
等間隔で3点に配置したことを特徴とする請求項1又は
請求項2記載の海象計。
5. As a flow velocity fluctuation measuring means for measuring time fluctuation data of water particle velocity, the transmission beam axis direction of the ultrasonic pulse is inclined at a required angle from the vertical and arranged at three points at equal intervals of 120 degrees on the plane coordinate. The sea condition meter according to claim 1 or 2, wherein
【請求項6】 水粒子速度の時間変動データを測定する
流速変動測定手段として、超音波パルスの送信ビーム軸
方向を鉛直から所要角度傾けて平面座標上に直交する方
向に配置したことを特徴とする請求項1又は請求項2記
載の海象計。
6. As a flow velocity fluctuation measuring means for measuring time fluctuation data of water particle velocity, the transmission beam axis direction of the ultrasonic pulse is tilted by a required angle from the vertical and arranged in a direction orthogonal to the plane coordinates. The sea condition meter according to claim 1 or 2.
【請求項7】 前記流速変動測定手段により測定された
ビーム軸方向の水粒子速度から水平成分および鉛直成分
を求め、時間平均することによって海面下の複数層の流
速を演算し、潮流および上昇流を計測できるようにした
ことを特徴とする請求項1又は請求項2記載の海象計。
7. A horizontal component and a vertical component are obtained from the water particle velocity in the beam axis direction measured by the flow velocity fluctuation measuring means, and the velocity of a plurality of layers below the sea surface is calculated by time averaging to calculate a tidal current and an ascending current. The sea condition meter according to claim 1 or 2, characterized in that the sea level can be measured.
【請求項8】 前記海面変動測定手段により測定された
海面水位を時間平均して平滑化処理を行い、この平滑化
処理された測定値を計測することによって潮位変動およ
び長周期波(津波・副振動等)を検出することができる
ようにしたことを特徴とする請求項1又は請求項2記載
の海象計。
8. The sea level measured by the sea level fluctuation measuring means is time-averaged to perform a smoothing process, and the smoothed measured value is measured to measure a tide level fluctuation and a long period wave (tsunami / sub-wave). The sea level meter according to claim 1 or 2, wherein the vibration can be detected.
JP6085924A 1993-04-01 1994-03-31 Oceanographic meter Expired - Lifetime JP2948472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6085924A JP2948472B2 (en) 1993-04-01 1994-03-31 Oceanographic meter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9650793 1993-04-01
JP5-96507 1993-04-01
JP6085924A JP2948472B2 (en) 1993-04-01 1994-03-31 Oceanographic meter

Publications (2)

Publication Number Publication Date
JPH07218254A true JPH07218254A (en) 1995-08-18
JP2948472B2 JP2948472B2 (en) 1999-09-13

Family

ID=26426931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6085924A Expired - Lifetime JP2948472B2 (en) 1993-04-01 1994-03-31 Oceanographic meter

Country Status (1)

Country Link
JP (1) JP2948472B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006209712A (en) * 2005-01-25 2006-08-10 Kaiyo Chosa Kyokai Tsunami detection device
US7317660B2 (en) * 1998-08-04 2008-01-08 Teledyne Rd Instruments, Inc. System and method for measuring wave directional spectrum and wave height
JP2008544228A (en) * 2005-06-20 2008-12-04 ウインドビッドコ ピーティーワイ エルティーデー Observation of lower atmosphere soda
US7847925B2 (en) 2007-06-18 2010-12-07 Teledyne Rd Instruments, Inc. System and method of acoustic doppler beamforming
JP2011033529A (en) * 2009-08-04 2011-02-17 Japan Radio Co Ltd Radar ocean wave analysis device
US8254208B2 (en) 2008-12-08 2012-08-28 Teledyne Rd Instruments, Inc. Multi-state beamforming array
US8654607B2 (en) 2009-05-27 2014-02-18 Teledyne Rd Instruments, Inc. System and method for determining wave characteristics from a moving platform
WO2014192326A1 (en) * 2013-05-31 2014-12-04 三菱電機株式会社 Tsunami monitoring system
JP2017150917A (en) * 2016-02-24 2017-08-31 国際航業株式会社 Tsunami detector using ocean radar, tsunami detection program using ocean radar, and performance verification method for ocean radar
JP2017166880A (en) * 2016-03-15 2017-09-21 フュージョン有限会社 Acoustic measuring device, acoustic measuring method, multi-beam acoustic measuring device, and synthetic aperture sonar
WO2017158659A1 (en) * 2016-03-15 2017-09-21 フュージョン有限会社 Acoustic measurement device, acoustic measurement method, shaking component detection device, shaking component detection method, multi-beam acoustic measurement device, and synthetic aperture sonar
JP2018010006A (en) * 2017-09-11 2018-01-18 株式会社AquaFusion Echo sounder, echo sounding method, and multi-beam echo sounder
JP2018009853A (en) * 2016-07-13 2018-01-18 株式会社AquaFusion Echo sounder, echo sounding method, and multi-beam echo sounder
JP2019124703A (en) * 2019-04-05 2019-07-25 株式会社AquaFusion Echo-sounding device and multi-beam echo-sounding device
CN110077548A (en) * 2019-06-04 2019-08-02 中国人民解放军海军大连舰艇学院 A kind of subaqueous survey device and dynamic draft measuring instrument
DE102021214323B3 (en) 2021-12-14 2023-03-23 Fehrmann Gmbh Water hammer load measuring device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007555B2 (en) 2004-03-15 2006-03-07 Teledyne Rd Instruments, Inc. System and method of horizontal wave measurement
US7542374B2 (en) 2006-09-28 2009-06-02 Teledyne Rd Instruments, Inc. System and method for acoustic Doppler velocity processing with a phased array transducer including applying correction factors to velocities orthogonal to the transducer face
US7539082B2 (en) 2006-09-28 2009-05-26 Teledyne Rd Instruments, Inc. System and method for acoustic Doppler velocity processing with a phased array transducer including using a wide bandwidth pulse transmission to resolve ambiguity in a narrow bandwidth velocity estimate

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317660B2 (en) * 1998-08-04 2008-01-08 Teledyne Rd Instruments, Inc. System and method for measuring wave directional spectrum and wave height
JP2006209712A (en) * 2005-01-25 2006-08-10 Kaiyo Chosa Kyokai Tsunami detection device
JP4534200B2 (en) * 2005-01-25 2010-09-01 社団法人海洋調査協会 Tsunami detector
JP2008544228A (en) * 2005-06-20 2008-12-04 ウインドビッドコ ピーティーワイ エルティーデー Observation of lower atmosphere soda
US7847925B2 (en) 2007-06-18 2010-12-07 Teledyne Rd Instruments, Inc. System and method of acoustic doppler beamforming
USRE45823E1 (en) 2007-06-18 2015-12-22 Teledyne Rd Instruments, Inc. System and method of acoustic doppler beamforming
US8254208B2 (en) 2008-12-08 2012-08-28 Teledyne Rd Instruments, Inc. Multi-state beamforming array
US8514659B2 (en) 2008-12-08 2013-08-20 Teledyne Rd Instruments, Inc. Multi-state beamforming array
US8654607B2 (en) 2009-05-27 2014-02-18 Teledyne Rd Instruments, Inc. System and method for determining wave characteristics from a moving platform
US9739882B2 (en) 2009-05-27 2017-08-22 Teledyne Instruments, Inc. System and method for determining wave characteristics from a moving platform
JP2011033529A (en) * 2009-08-04 2011-02-17 Japan Radio Co Ltd Radar ocean wave analysis device
US9544748B2 (en) 2013-05-31 2017-01-10 Mitsubishi Electric Corporation Tsunami monitoring radar system including transmitting antenna for radiating transmission signal for detecting tsunami as radio wave toward sea
JPWO2014192326A1 (en) * 2013-05-31 2017-02-23 三菱電機株式会社 Tsunami monitoring system
WO2014192326A1 (en) * 2013-05-31 2014-12-04 三菱電機株式会社 Tsunami monitoring system
JP5905646B2 (en) * 2013-05-31 2016-04-20 三菱電機株式会社 Tsunami monitoring system
JP2017150917A (en) * 2016-02-24 2017-08-31 国際航業株式会社 Tsunami detector using ocean radar, tsunami detection program using ocean radar, and performance verification method for ocean radar
US10718858B2 (en) 2016-03-15 2020-07-21 AquaFusion, Ltd. Echo measuring apparatus, echo sounding apparatus, multibeam echo measuring apparatus, multibeam echo sounding apparatus and aperture synthetic sonar
JP2017166880A (en) * 2016-03-15 2017-09-21 フュージョン有限会社 Acoustic measuring device, acoustic measuring method, multi-beam acoustic measuring device, and synthetic aperture sonar
WO2017158659A1 (en) * 2016-03-15 2017-09-21 フュージョン有限会社 Acoustic measurement device, acoustic measurement method, shaking component detection device, shaking component detection method, multi-beam acoustic measurement device, and synthetic aperture sonar
JP2018009853A (en) * 2016-07-13 2018-01-18 株式会社AquaFusion Echo sounder, echo sounding method, and multi-beam echo sounder
JP2018010006A (en) * 2017-09-11 2018-01-18 株式会社AquaFusion Echo sounder, echo sounding method, and multi-beam echo sounder
JP2019124703A (en) * 2019-04-05 2019-07-25 株式会社AquaFusion Echo-sounding device and multi-beam echo-sounding device
CN110077548A (en) * 2019-06-04 2019-08-02 中国人民解放军海军大连舰艇学院 A kind of subaqueous survey device and dynamic draft measuring instrument
CN110077548B (en) * 2019-06-04 2023-10-24 中国人民解放军海军大连舰艇学院 Underwater measurer and dynamic draft measurer
DE102021214323B3 (en) 2021-12-14 2023-03-23 Fehrmann Gmbh Water hammer load measuring device

Also Published As

Publication number Publication date
JP2948472B2 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
JPH07218254A (en) Oceanographic meter
Kraus et al. New acoustic meter for measuring 3D laboratory flows
Zedel et al. Organized structures in subsurface bubble clouds: Langmuir circulation in the open ocean
Churchill et al. Near-surface measurements of quasi-Lagrangian velocities in open water
Smith Evolution of Langmuir circulation during a storm
Gordon et al. Principles of operation a practical primer
US20020018400A1 (en) System and method for measuring wave directional spectrum and wave height
Pinkel Doppler sonar observations of internal waves, wave-field structure
Neary et al. Field measurements at river and tidal current sites for hydrokinetic energy development: best practices manual
Pettigrew et al. Field evaluations of a bottom-mounted acoustic Doppler profiler and conventional current meter moorings
Johns Near-surface current measurements in the Gulf Stream using an upward-looking acoustic Doppler current profiler
Pettigrew et al. An evaluation of a bottom-mounted Doppler acoustic profiling current meter
Instruments Principles of operation a practical primer
Hammond et al. Field and flume comparisons of the modified and standard (Savonius-rotor) Aanderaa self-recording current meters
Evans et al. Coastal Ocean Dynamics Radar (CODAR): NOAA's surface current mapping system
McCullough Problems in measuring currents near the ocean surface
McCullough Survey of techniques for measuring currents near the ocean surface
Cabrera et al. Small scale laboratory flow measurements with the ADV-1
Griffiths Intercomparison of an acoustic Doppler current profiler with conventional instruments and a tidal flow model
Alkan Hydrographic Surveying without a Tide Gauge
Parson Beach and nearshore survey technology
Collar et al. Towards quality assessment of near-surface currents measured in continental shelf seas
Sundar et al. Coasts and Estuaries: Management and Engineering
Collar Measurement of surface currents
Draper INSTRUMENTS FOR MEASUREMENT OF WAVE HEIGHT AND DIRECTION IN AND AROUND HARBOURS.

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140702

Year of fee payment: 15

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term