JPH0721553B2 - Nuclear power plant drain equipment - Google Patents

Nuclear power plant drain equipment

Info

Publication number
JPH0721553B2
JPH0721553B2 JP1297431A JP29743189A JPH0721553B2 JP H0721553 B2 JPH0721553 B2 JP H0721553B2 JP 1297431 A JP1297431 A JP 1297431A JP 29743189 A JP29743189 A JP 29743189A JP H0721553 B2 JPH0721553 B2 JP H0721553B2
Authority
JP
Japan
Prior art keywords
drain
pump
condensate
power plant
nuclear power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1297431A
Other languages
Japanese (ja)
Other versions
JPH03158797A (en
Inventor
武美 笹室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1297431A priority Critical patent/JPH0721553B2/en
Publication of JPH03158797A publication Critical patent/JPH03158797A/en
Publication of JPH0721553B2 publication Critical patent/JPH0721553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子力発電所のドレン設備に係り、特に、運用
開始時の熱衝撃からドレン設備機器を保護する原子力発
電所のドレン設備に関する。
Description of the Invention [Object of the Invention] (Field of Industrial Application) The present invention relates to a drain facility of a nuclear power plant, and more particularly to a nuclear power plant that protects the drain facility equipment from thermal shock at the start of operation. Concerning drain equipment.

(従来の技術) 従来の原子力発電所のドレン設備を第3図について説明
する。
(Prior Art) A conventional drain facility of a nuclear power plant will be described with reference to FIG.

図に示すように蒸気タービン(図示せず)で仕事をした
蒸気は復水器(図示せず)で凝縮して復水1となり、復
水ポンプ2で昇圧され、低圧ヒーター群3,3,…で昇温
し、給水ポンプ4で再び昇圧し、高温ヒータ5,6で昇温
後、給水7として原子炉(図示せず)へ送水されるよう
に構成されている。
As shown in the figure, the steam that has worked in the steam turbine (not shown) is condensed in a condenser (not shown) to become condensate 1, which is pressurized by the condensate pump 2 and the low pressure heater groups 3, 3, The temperature is raised by ..., the pressure is raised again by the feed water pump 4, the temperature is raised by the high temperature heaters 5, 6, and then the feed water 7 is fed to a reactor (not shown).

ところで、前記低圧ヒータ群3,3,…及び高圧ヒータ5,6
の各ヒータで復水,給水と熱交換し凝縮したドレンは最
終的に復水中に集められ給水として使用される。すなわ
ち、高圧ヒータ5のドレンは高圧ヒータ6のドレン等も
含めドレンタンク11に集められ、ドレンポンプ12により
昇圧し給水ポンプ4の吸込側の注入点8に注入される。
なお、13は入口弁、14は逆止弁、15は出口弁、16はドレ
ンタンク水位調節弁、17はドレン調節弁、18はバイパス
ドレン系統である。
By the way, the low-pressure heater groups 3, 3, ... And the high-pressure heaters 5, 6
Drain condensed by condensing water with each heater of the heater and condensing water is finally collected in the condensate and used as water supply. That is, the drain of the high-pressure heater 5, including the drain of the high-pressure heater 6 and the like, is collected in the drain tank 11, increased in pressure by the drain pump 12, and injected into the injection point 8 on the suction side of the water supply pump 4.
In addition, 13 is an inlet valve, 14 is a check valve, 15 is an outlet valve, 16 is a drain tank water level control valve, 17 is a drain control valve, and 18 is a bypass drain system.

この様にドレンを直接腹水へ注入するので、注入点8よ
り上流側の復水流量は、注入点8より上流側の給水流量
より大幅に少ない。これにより低圧ヒータ群3,3…等を
構成する機器、設備が小形化でき、また高温のドレンを
直接回収するため熱効率もすぐれているという特徴を有
する。
Since the drain is directly injected into the ascites in this way, the condensate flow rate upstream of the injection point 8 is significantly smaller than the feed water flow rate upstream of the injection point 8. As a result, the equipment and facilities that compose the low-pressure heater group 3, 3, ... Can be downsized, and the high-temperature drain is directly recovered, so that the thermal efficiency is excellent.

したがって、ドレンポンプ12は給水ポンプ4の吸込腹水
の圧力に抗して注入する必要がある。すなわち、注入点
8の圧力は流量の少ない低出力側程高くなり、その特性
直線は第4図の曲線aの如くである。一方、ドレンポン
プ12の吸込側の圧力は低出力側程低くなり、高圧ヒータ
の器内圧力によって支配されるので、第4図の曲線bの
如くなる。かくして、ドレンポンプ12の揚程は、曲線
a、bの差H以上が必要となり、かつドレンポンプ12は
全運転範囲をカバーする仕様としなければならない。
Therefore, it is necessary for the drain pump 12 to inject against the suction ascites pressure of the water supply pump 4. That is, the pressure at the injection point 8 becomes higher on the low output side where the flow rate is smaller, and the characteristic straight line is as shown by the curve a in FIG. On the other hand, the pressure on the suction side of the drain pump 12 becomes lower on the low output side and is controlled by the internal pressure of the high-pressure heater, so that the curve b in FIG. 4 is obtained. Thus, the head of the drain pump 12 needs to be equal to or more than the difference H between the curves a and b, and the drain pump 12 must be designed to cover the entire operating range.

次に、ドレンポンプの仕様を第5図を参照して説明す
る。運転範囲R1からRまでのポンプ特性は曲線P1のよう
になり、また運転範囲R2からRまでのポンプ特性は、曲
線P2のようになる。P0は100%運転時の必要揚程であ
る。
Next, the specifications of the drain pump will be described with reference to FIG. The pump characteristic from the operating range R1 to R becomes like a curve P1, and the pump characteristic from the operating range R2 to R becomes like a curve P2. P0 is the required head for 100% operation.

したがって、発電所を100%出力で運転中は、S1、S2の
絞りすなわち動力損が発生する。従来技術では、この動
力損を出来るだけ少なくするために運転開始を50〜70%
出力に選定している。一方、ドレンポンプ12の運転開始
まではバイパスドレン系統18を用い、復水器へ回収して
いる。50%〜70%出力時のドレンタンク11のドレン温度
はおよそ150℃程度に上昇しているので、ドレンポンプ1
2を起動した瞬間150℃の高温水がドレンポンプ12内の停
滞している冷水中に流入することになる。
Therefore, when the power plant is operating at 100% output, throttling of S1 and S2, that is, power loss occurs. In the conventional technology, in order to reduce this power loss as much as possible, the operation start is 50-70%.
Selected for output. On the other hand, the bypass drain system 18 is used until the operation of the drain pump 12 is started, and the drain pump 12 collects it in the condenser. Since the drain temperature of the drain tank 11 at 50% to 70% output has risen to about 150 ° C, the drain pump 1
At the moment when 2 is activated, high-temperature water of 150 ° C. flows into the stagnant cold water in the drain pump 12.

またドレンポンプ12は、原子炉給水の一部を送水する重
要なポンプであり、通常予備機を設置し、運転中のポン
プが何等かの異常で停止した場合にバックアップ起動さ
せる様にしている。この場合は、約200℃近い高温水が
瞬時にドレンポンプ12内に流入する。
Further, the drain pump 12 is an important pump for supplying a part of the reactor feed water, and usually a standby machine is installed so that the backup pump can be started if the pump in operation stops due to some abnormality. In this case, high temperature water of about 200 ° C. instantly flows into the drain pump 12.

(発明が解決しようとする課題) 上述したように、従来の技術ではドレンポンプ12の運転
開始時には、高温のドレンが急速にドレンポンプ12内に
流入することとなる。
(Problems to be Solved by the Invention) As described above, in the related art, when the drain pump 12 starts to operate, the high-temperature drain rapidly flows into the drain pump 12.

ところで、ドレンポンプ12は立型の場合も、横型の場合
もケーシリング内には、運転に備えた注水や軸封水から
の流入水などの冷水が充満している。このため、ドレン
ポンプ12の運転開始時に高温水が流入すると、急激な温
度変化が発生し、ポンプ回転体の中心位置や隙間の変化
が発生し、運転上支障が生じるという問題があった。
By the way, regardless of whether the drain pump 12 is a vertical type or a horizontal type, the casing is filled with cold water such as water injected for operation and inflow water from shaft sealing water. Therefore, when hot water flows in at the start of operation of the drain pump 12, there is a problem in that a sudden temperature change occurs, the center position of the pump rotating body and the gap change, and an operational problem occurs.

本発明は、上記問題点を解消するためになされたもの
で、その目的は、待機中のドレンポンプ内の流体温度を
発電所出力の上昇と共に上昇させ、ドレンポンプの起動
時に熱衝撃を防止するようにした原子力発電所のドレン
設備を提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to increase the fluid temperature in a drain pump in standby mode together with an increase in the output of a power plant and prevent thermal shock at the time of starting the drain pump. The purpose is to provide the drain equipment for the nuclear power plant.

[発明の構成] (課題を解決するための手段) 本発明は上記目的を達成するために、蒸気タービンで凝
縮した復水を加熱・昇圧して原子炉へ送水する復水給水
系統の途中にドレン注入点を設け、給水加熱器などのド
レンをドレンポンプにより昇圧して前記ドレン注入点よ
り復水中へ注入する原子力発電所のドレン設備におい
て、前記ドレンポンプの出口側の逆止弁をバイパスする
バイパス回路を設け、運転開始時前記ドレン注入点より
復水を前記バイパス回路に流入させて、前記ドレンポン
プ内を正常時とは逆に流通するように構成したことを特
徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention is provided in the middle of a condensate water supply system that heats / pressurizes condensate condensed by a steam turbine and sends it to a reactor. In a drain installation of a nuclear power plant, where a drain injection point is provided and the drain of a feed water heater or the like is pressurized by a drain pump and injected into condensate from the drain injection point, the check valve on the outlet side of the drain pump is bypassed. A bypass circuit is provided, and condensate is introduced into the bypass circuit from the drain injection point at the start of operation so that the condensate flows through the drain pump in the opposite direction from the normal time.

(作 用) 本発明によれば、復水の温度は発電所出力の増加と共に
上昇し、高圧ヒータドレンとの温度差は高々40℃程度と
なる。したがって、ドレンポンプ運転開始前にこの復水
を流す事によりドレンポンプ内金属の温度は復水温度ま
で上昇させるため、起動時の熱衝撃はなくなる。
(Operation) According to the present invention, the temperature of the condensate rises as the output of the power plant increases, and the temperature difference between the condensate and the high-pressure heater drain is about 40 ° C at most. Therefore, the temperature of the metal in the drain pump rises to the condensate temperature by flowing the condensate before the drain pump starts operating, so that there is no thermal shock at the time of startup.

また、ドレンポンプ1台起動後は、運転中のドレンポン
プ吐出弁から待機中のドレンポンプに逆流させることに
よって暖機されるので、温度差がほとんどなくなり、起
動時の熱衝撃はなくなる。
In addition, after one drain pump is started up, it is warmed up by backflowing from the operating drain pump discharge valve to the standby drain pump, so there is almost no temperature difference and there is no thermal shock at startup.

(実施例) 本発明の実施例を図面を参照して説明する。(Example) The Example of this invention is described with reference to drawings.

第1図は本発明の一実施例の系統図である。なお、既に
説明した第3図と同一箇所は同一符号を付して説明す
る。
FIG. 1 is a system diagram of an embodiment of the present invention. The same parts as those in FIG. 3 which have already been described will be designated by the same reference numerals.

図に示すように、蒸気タービン(図示せず)で仕事をし
た蒸気は復水器(図示せず)で凝縮して復水1となり、
復水ポンプ2で昇圧され、低圧ヒーター群3,3,…で昇温
し、給水ポンプ4で再び昇圧し、高温ヒータ5,6で昇温
後、給水7として原子炉(図示せず)へ送水される。
As shown in the figure, steam that has worked in a steam turbine (not shown) is condensed in a condenser (not shown) to form condensate 1,
The pressure is raised by the condensate pump 2, the temperature is raised by the low pressure heater groups 3, 3, ..., The pressure is raised again by the feed water pump 4, the temperature is raised by the high temperature heaters 5, 6, and then the feed water 7 is sent to the reactor (not shown). Water is sent.

また、前記低圧ヒータ群3,3,…及び高圧ヒータ5,6の各
ヒータで復水,給水と熱交換し凝縮したドレンは、ドレ
ンタンク11に集められ、さらに入口弁13を経てドレンポ
ンプ12により昇圧し、逆止弁14,出口弁15およびドレン
タンク水位調節弁16を経て給水ポンプ4の吸込側の注入
点8に注入される。17はドレン調節弁、18はバイパスド
レン系統である。
Further, the drains which have been condensed by condensing and condensing the condensed water and the feed water by the heaters of the low pressure heater group 3, 3, ... And the high pressure heaters 5 and 6 are collected in the drain tank 11 and further passed through the inlet valve 13 to the drain pump 12 The pressure is increased by means of the check valve 14, the outlet valve 15, and the drain tank water level control valve 16, and is injected into the injection point 8 on the suction side of the water supply pump 4. 17 is a drain control valve and 18 is a bypass drain system.

さらに、本実施例ではドレンポンプ吐出逆止弁14をバイ
パスするバイパス回路20を設置している。このバイパス
回路20には流量制御装置21、逆止弁22、止メ弁23を設け
ている。またドレンタンク水位調節弁16には第2図に示
すように、ドレンポンプ12が1台も運転していない場合
緩機が実施されると、暖機に必要な復水を逆流可能な開
度に制限する論理回路を設けている。
Further, in this embodiment, a bypass circuit 20 that bypasses the drain pump discharge check valve 14 is installed. The bypass circuit 20 is provided with a flow control device 21, a check valve 22, and a stop valve 23. Also, as shown in FIG. 2, the drain tank water level control valve 16 has an opening that allows condensate necessary for warm-up to flow back when the drain pump 12 is not operated and a slowdown is performed. There is a logic circuit that limits

次に、本実施例の作用を説明する。Next, the operation of this embodiment will be described.

緩機開始と共にドレンタンク水位調節弁16は徴開とな
り、復水は逆流を始めバイパス回路20の流量制限装置21
により必要な緩機流量に制限され、ドレンポンプ12内に
流入し緩機を開始する。さらにこの復水は入口弁13及び
17を通り、バイパスドレン系統18に回収される。
The drain tank water level control valve 16 is opened with the start of the slackening operation, and the condensate starts backflowing and the flow restrictor 21
Due to this, the flow rate is limited to the required slow machine flow rate, and it flows into the drain pump 12 to start the slow machine. Furthermore, this condensate is
It passes through 17 and is collected in the bypass drain system 18.

なお、バイパスドレン調節弁17は、ドレンタンク11の水
位を自動的に制御することにより、暖機流体も含め、高
圧ヒータ5のドレン制御を行うため制御上の問題はな
い。
Since the bypass drain control valve 17 automatically controls the water level in the drain tank 11 to control the drain of the high-pressure heater 5 including the warm-up fluid, there is no control problem.

ドレンポンプ12の1台目が起動されると、ドレンタンク
水位調節弁16は自動制御となり、ドレンタンク水位に応
じた開度になり、バイパスドレン調節弁17は閉じる。こ
の状態になると、残りのドレンポンプには、起動したド
レンポンプ12の吐出流体が逆流し、暖機し、循環する。
When the first drain pump 12 is activated, the drain tank water level control valve 16 is automatically controlled to have an opening degree according to the drain tank water level, and the bypass drain control valve 17 is closed. In this state, the discharged fluid of the activated drain pump 12 flows backward to the remaining drain pumps, warms up, and circulates.

したがって、ドレンポンプ12の起動時の温度差は最大で
も約40℃程度であり、熱衝撃の問題はなくなる。
Therefore, the temperature difference at the time of starting the drain pump 12 is about 40 ° C. at the maximum, and the problem of thermal shock is eliminated.

上記実施例のバイパス回路の他の例としては、ドレンタ
ンク水位調節弁16に、バイパス開路を設け、復水を逆流
させるような構成にしてもよい。また、逆止弁14のみで
なく出口弁15もバイパスさせるバイパス回路を設けても
よい。これらのバイパス回路を構成する弁を遠隔操作可
能の弁とし、暖機開始、終了により自動的に開閉させる
ような構成にすることもできる。
As another example of the bypass circuit of the above embodiment, the drain tank water level control valve 16 may be provided with a bypass open circuit so that the condensate flows backward. In addition, a bypass circuit that bypasses not only the check valve 14 but also the outlet valve 15 may be provided. The valves forming these bypass circuits may be remote-operable valves and may be configured to be automatically opened / closed at the start and end of warm-up.

[発明の効果] 以上説明したように、本発明によれば、高揚程で複雑な
構成のドレンポンプの信頼性を損なうことなく、運転開
始、バックアップ起動ができるので、信頼性の高い原子
力発電所のドレン設備を提供することができる。
[Effects of the Invention] As described above, according to the present invention, since a drain pump having a high head and a complicated configuration can be started and backed up without impairing the reliability, a highly reliable nuclear power plant The drain equipment can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の系統図、第2図は第1図の
ドレンタンク水位調節弁制御の論理回路図、第3図は従
来の原子力発電所のドレン設備の系統図、第4図は第3
図のドレン注入点の発電所出力と圧力との関係を示す
図、第5図は第3図のドレンポンプの必要揚程を説明す
る図である。 1……復水、2……復水ポンプ 3……低圧ヒータ、4……給水ポンプ 5,6……高圧ヒータ、7……給水 8……注入点、11……ドレンタンク 12……ドレンポンプ、13……入口弁 14……逆止弁、15……出口弁 16……ドレンタンク水位調節弁 17……ドレン調節弁 18……バイパスドレン系統 20……バイパス回路 21……流量制限装置 22……逆止弁、23……止メ弁
FIG. 1 is a system diagram of an embodiment of the present invention, FIG. 2 is a logic circuit diagram of the drain tank water level control valve control of FIG. 1, and FIG. 3 is a system diagram of a conventional drain facility of a nuclear power plant. 4 is the third
The figure which shows the relationship between the power plant output of the drain injection point of a figure, and pressure, FIG. 5 is a figure explaining the required head of the drain pump of FIG. 1 ... Condensate, 2 ... Condensate pump 3 ... Low pressure heater, 4 ... Water pump 5,6 ... High pressure heater, 7 ... Water supply 8 ... Injection point, 11 ... Drain tank 12 ... Drain Pump, 13 …… Inlet valve 14 …… Check valve, 15 …… Outlet valve 16 …… Drain tank water level control valve 17 …… Drain control valve 18 …… Bypass drain system 20 …… Bypass circuit 21 …… Flow restriction device 22 …… Check valve, 23 …… Stop valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】蒸気タービンで凝縮した復水を加熱・昇圧
して原子炉へ送水する復水給水系統の途中にドレン注入
点を設け、給水加熱器などのドレンをドレンポンプによ
り昇圧して前記ドレン注入点より復水中へ注入する原子
力発電所のドレン設備において、前記ドレンポンプの出
口側の逆止弁をバイパスするバイパス回路を設け、運転
開始時前記ドレン注入点より復水を前記バイパス回路に
流入させて、前記ドレンポンプ内を正常時とは逆に流通
するように構成したことを特徴とする原子力発電所のド
レン設備。
1. A drain injection point is provided in the middle of a condensate water supply system that heats and boosts condensed water condensed by a steam turbine and sends it to a nuclear reactor, and the drain of a feed water heater or the like is pressurized by a drain pump. In a nuclear power plant drain facility that injects condensate from the drain injection point, a bypass circuit that bypasses the check valve on the outlet side of the drain pump is provided, and condensate is fed from the drain injection point to the bypass circuit at the start of operation. A drain facility for a nuclear power plant, which is configured to flow in and flow through the drain pump in an opposite direction to a normal state.
JP1297431A 1989-11-17 1989-11-17 Nuclear power plant drain equipment Expired - Lifetime JPH0721553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1297431A JPH0721553B2 (en) 1989-11-17 1989-11-17 Nuclear power plant drain equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1297431A JPH0721553B2 (en) 1989-11-17 1989-11-17 Nuclear power plant drain equipment

Publications (2)

Publication Number Publication Date
JPH03158797A JPH03158797A (en) 1991-07-08
JPH0721553B2 true JPH0721553B2 (en) 1995-03-08

Family

ID=17846428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1297431A Expired - Lifetime JPH0721553B2 (en) 1989-11-17 1989-11-17 Nuclear power plant drain equipment

Country Status (1)

Country Link
JP (1) JPH0721553B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942194B1 (en) * 2007-12-18 2010-02-11 한전케이피에스 주식회사 Apparatus for draining of RCS and the method there for

Also Published As

Publication number Publication date
JPH03158797A (en) 1991-07-08

Similar Documents

Publication Publication Date Title
KR890002916B1 (en) Steam turbine plant having a turbine bypass system
US10955145B2 (en) Heat exchange system and method of controlling the alternation and redundancy between heat exchangers therein
JPH0721553B2 (en) Nuclear power plant drain equipment
US4713209A (en) Drain recovery system for condensate feedwater system of nuclear power plant
JPS62106207A (en) Feedwater supply system in steam turbine plant
JP2796201B2 (en) Drain pump warming device in power plant
JP2614350B2 (en) Feed water heater drain pump up system
JP2934984B2 (en) Steam motor plant
JP2752226B2 (en) Drain pump warming device
JP2001091689A (en) Starting method for supercritical pressure light water- cooled reactor
JP2509631B2 (en) Pump controller
JP2522477B2 (en) Boiler feed pump shaft seal water control system
JP2003021305A (en) Boiler feed water supply system
JPH11190797A (en) Shaft sealing water feed device of feed water pump
JPH0610620A (en) Protecting method for exhaust heat recovery boiler
JP3044159B2 (en) High-speed standby operation device of fast reactor
JP2799060B2 (en) Feed water heater drain pump up device
JP3611252B2 (en) Power plant
JPS5827211Y2 (en) High pressure feed water heater cooling system
JP2679980B2 (en) Control device for water supply drain pump up system
JPH0949606A (en) Variable pressure once-through boiler
JPS6093205A (en) Method and device for controlling dry heater system of generating plant
JPS6191405A (en) Feedwater facility in thermal power plant
JPH11166481A (en) Discharge regulator of condensate pump
JPH04347305A (en) Cooling water filling device for feed water heater drain system