JPH0721546B2 - Reactor with integrated pressure vessel structure - Google Patents

Reactor with integrated pressure vessel structure

Info

Publication number
JPH0721546B2
JPH0721546B2 JP1065117A JP6511789A JPH0721546B2 JP H0721546 B2 JPH0721546 B2 JP H0721546B2 JP 1065117 A JP1065117 A JP 1065117A JP 6511789 A JP6511789 A JP 6511789A JP H0721546 B2 JPH0721546 B2 JP H0721546B2
Authority
JP
Japan
Prior art keywords
moderator
coolant
heavy water
pressure vessel
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1065117A
Other languages
Japanese (ja)
Other versions
JPH02243996A (en
Inventor
徳夫 川太
Original Assignee
動力炉・核燃料開発事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 動力炉・核燃料開発事業団 filed Critical 動力炉・核燃料開発事業団
Priority to JP1065117A priority Critical patent/JPH0721546B2/en
Publication of JPH02243996A publication Critical patent/JPH02243996A/en
Publication of JPH0721546B2 publication Critical patent/JPH0721546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、重水減速材を内包したカランドリアタンクを
貫通するように多数の圧力管が配設され、該カランドリ
アタンクの外側を圧力容器が取り囲み、重水減速材と分
離されている圧力容器内の冷却材を再循環ポンプによっ
て圧力管を通して循環させる一体型圧力容器構造の原子
炉に関するものである。この原子炉では重水減速材と冷
却材とが圧力管壁のみで仕切られており、それを利用し
て減速材系に緊急炉心冷却装置(ECCS)の機能を持たせ
ている。これによって減速材系と冷却材系とがそれぞれ
炉心崩壊熱レベル以上の熱除去を行うことが可能とな
り、信頼性と安全性が向上する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention has a large number of pressure pipes arranged so as to penetrate through a calandria tank containing a heavy water moderator, and a pressure vessel is provided outside the calandria tank. The present invention relates to a reactor having an integrated pressure vessel structure in which a coolant in a pressure vessel which is surrounded by and is separated from a heavy water moderator is circulated through a pressure pipe by a recirculation pump. In this reactor, the heavy water moderator and the coolant are separated only by the pressure pipe wall, and the moderator system is provided with the function of the emergency core cooling system (ECCS) by utilizing this partition. This makes it possible for the moderator system and the coolant system to perform heat removal above the core collapse heat level, respectively, and reliability and safety are improved.

[従来の技術] 減速材と冷却材を分離した原子炉の一形式として、減速
材に重水を、冷却材に軽水を用いた重水減速・軽水冷却
圧力管型原子炉(新型転換炉:ATR)がある。この種の原
子炉では、重水減速材を内包するカランドリアタンクを
多数の圧力管が貫通し、その圧力管の内部に燃料集合体
が装荷され冷却材が流通する。
[Prior art] As a type of reactor in which a moderator and a coolant are separated, a heavy water moderator / light water cooling pressure tube reactor (new conversion reactor: ATR) using heavy water as moderator and light water as coolant There is. In this type of nuclear reactor, a number of pressure pipes penetrate a calandria tank containing a heavy water moderator, and a fuel assembly is loaded inside the pressure pipes and a coolant flows.

第4図に従来の炉心燃料格子断面モデル図を示す。ここ
では燃料集合体10が正方格子状に配列されている。各燃
料集合体10は圧力管12内に装荷され、圧力管12はカラン
ドリア管14内に挿入される。重水減速材はカランドリア
管14の外側を満たし、圧力管12の内部は冷却材が流通す
る。圧力管12内の冷却材は圧力約70at,温度約280℃で運
転され、それに対してカランドリアタンク内の重水減速
材は圧力約0at,温度約50℃である。そこで断熱のために
圧力管12とカランドリア管14との間隙16に炭酸ガスを充
填している。従って燃料集合体10からの除熱は主として
冷却材によって行われる。
FIG. 4 shows a cross-sectional model diagram of a conventional core fuel lattice. Here, the fuel assemblies 10 are arranged in a square lattice. Each fuel assembly 10 is loaded into a pressure tube 12, which is inserted into a calandria tube 14. The heavy water moderator fills the outside of the calandria pipe 14, and the coolant flows inside the pressure pipe 12. The coolant in the pressure tube 12 operates at a pressure of about 70 at and a temperature of about 280 ° C, while the heavy water moderator in the calandria tank has a pressure of about 0 at and a temperature of about 50 ° C. Therefore, carbon dioxide is filled in the gap 16 between the pressure pipe 12 and the calandria pipe 14 for heat insulation. Therefore, the heat removal from the fuel assembly 10 is mainly performed by the coolant.

ところで原子炉では、万一事故が発生した時に炉心の崩
壊熱による過熱を防止するため緊急炉心冷却装置が設置
される。従来技術ではこの緊急炉心冷却装置は別系統で
あり冷却材系に接続され、通常運転時は停止しており、
非常時のみポンプを起動し弁開放を行い、炉心に軽水を
注入する動作を行う。
By the way, in a nuclear reactor, an emergency core cooling device is installed in order to prevent overheating due to core decay heat in the event of an accident. In the prior art, this emergency core cooling device is a separate system and is connected to the coolant system, and is stopped during normal operation.
Only in an emergency, the pump is started and the valve is opened to inject light water into the core.

[発明が解決しようとする課題] 緊急炉心冷却装置は作動信号により動作を開始する。従
って信号系の故障により作動信号を検出できなかった
り、ポンプの起動に失敗することも想定し、それらの対
策を盛り込まねばならない。このため建設費用が増大す
るし、その上、信頼性の点でも問題がある。
[Problems to be Solved by the Invention] The emergency core cooling device starts its operation in response to an operation signal. Therefore, it is necessary to incorporate measures against them, assuming that the operation signal cannot be detected due to a failure in the signal system or the pump fails to start. As a result, the construction cost increases, and there is a problem in reliability.

本発明の目的は、減速材系に緊急炉心冷却機能を持たせ
ることにより別個に緊急炉心冷却装置を装備する必要が
なく、構成が単純化され、また通常運転時に使用してい
る減速材系で非常時の炉心冷却を行うようにして起動失
敗の想定を不要とし、飛躍的な安全性の向上を図ること
ができるようにした一体型圧力容器構造の原子炉を提供
することにある。
An object of the present invention is to provide a moderator system with an emergency core cooling function so that it is not necessary to separately provide an emergency core cooling device, the configuration is simplified, and a moderator system used during normal operation is used. An object of the present invention is to provide a reactor with an integrated pressure vessel structure, which can cool the reactor core in an emergency and eliminate the need for assumption of failure of start-up and achieve a dramatic improvement in safety.

[課題を解決するための手段] 本発明に係る原子炉は、重水減速材を内包したカランド
リアタンクと、それを貫通するように設けられ内部に燃
料集合体が装荷される多数の圧力管を備え、重水減速材
と冷却材を分離した一体型圧力容器構造であり、圧力管
の出入口配管を一体化し合理化している。つまり前記カ
ランドリアタンクの外側を圧力容器が取り囲み、圧力容
器内の冷却材を再循環ポンプによって圧力管を通して循
環させる。
[Means for Solving the Problems] A nuclear reactor according to the present invention comprises a calandria tank containing a heavy water moderator, and a large number of pressure pipes penetrating therethrough and loaded with fuel assemblies therein. It has an integrated pressure vessel structure in which the heavy water moderator and the coolant are separated, and the inlet and outlet pipes of the pressure pipe are integrated and rationalized. That is, the pressure vessel surrounds the outside of the calandria tank, and the coolant in the pressure vessel is circulated through the pressure pipe by the recirculation pump.

本発明の原子炉では減速材系も高温・高圧化する。従っ
てカランドリア管を使用して重水減速材と冷却材との間
に断熱層を設ける必要はない。そこで本発明では重水減
速材と冷却材とは圧力管壁のみによって仕切られてい
る。そのため燃料集合体から冷却材を通し重水減速材へ
の熱移行が容易となり、事故時の炉心からの熱除去に冷
却材系以外にも減速材系を使用することが可能となる。
本発明はこの点に着目してなされたものである。
In the reactor of the present invention, the moderator system also has a high temperature and high pressure. Therefore, it is not necessary to use a calandria tube to provide a heat insulating layer between the heavy water moderator and the coolant. Therefore, in the present invention, the heavy water moderator and the coolant are separated only by the pressure pipe wall. Therefore, the heat transfer from the fuel assembly to the heavy water moderator through the coolant becomes easy, and the moderator system other than the coolant system can be used for heat removal from the core in the event of an accident.
The present invention has been made paying attention to this point.

更に本発明では、炉心下方に炉水保持プールが設けら
れ、冷却材系には急速注入系が、また減速材系には重水
冷却系がそれぞれ設けられている。
Further, in the present invention, a reactor water holding pool is provided below the core, a rapid injection system is provided in the coolant system, and a heavy water cooling system is provided in the moderator system.

ここで重水冷却系は、圧力容器に供給される冷却材を加
熱する主熱交換器と外部流体で冷却される補助熱交換器
とを有し、事故時に主熱交換器による給水加熱から補助
熱交換器による補機冷へ除熱モードを切り換え、減速材
系により崩壊熱除去を行うようにする。また圧力容器内
の上部に冷却材系と減速材系とを仕切るラプチャーディ
スクを設け、その破損開放により重水減速材を冷却材系
へ流入させ、減速材系による炉心冷却を始動させる。
Here, the heavy water cooling system has a main heat exchanger that heats the coolant supplied to the pressure vessel and an auxiliary heat exchanger that is cooled by an external fluid. The heat removal mode is switched to the auxiliary cooling by the exchanger, and the decay heat is removed by the moderator system. Further, a rupture disk for partitioning the coolant system and the moderator system is provided in the upper part of the pressure vessel, and when the damage is released, the heavy water moderator is introduced into the coolant system to start core cooling by the moderator system.

従って本発明は従来技術のように緊急炉心冷却装置を別
個に設ける必要はない。
Therefore, the present invention does not require a separate emergency core cooling device as in the prior art.

[作用] 事故時には冷却材系と減速材系の両方が互いに独立に炉
心冷却動作を行う。減速材系では重水冷却系が作動す
る。例えば重水冷却系において主熱交換器による給水加
熱から補助熱交換器により補機冷へ除熱モードを切り換
え崩壊熱除去を行う。また冷却材流出事故のような場合
は、圧力容器内の上部に設けた冷却材系と減速材系とを
仕切るラプチャーディスクが一次系減圧により破損開放
し、重水減速材が冷却材系へ流入し蒸気となって燃料集
合体を冷却する。それによって減速材系による炉心冷却
が始動する。
[Operation] In the event of an accident, both the coolant system and moderator system perform core cooling operations independently of each other. A heavy water cooling system operates in the moderator system. For example, in the heavy water cooling system, the heat removal mode is switched from the heating of the feed water by the main heat exchanger to the cooling of the auxiliary equipment by the auxiliary heat exchanger to remove decay heat. Also, in the event of a coolant spill accident, the rupture disk that separates the coolant system and the moderator system in the upper part of the pressure vessel is broken and opened due to the primary system decompression, and the heavy water moderator flows into the coolant system. It becomes vapor and cools the fuel assembly. This starts the core cooling by the moderator system.

[実施例] 本発明に係る原子炉は一体型圧力容器構造である。炉心
燃料格子断面モデル図を第3図に示す。ここでは燃料集
合体10が三角格子状に配列されている。燃料集合体10は
圧力管12内に装荷される。圧力管12の外側には従来技術
のようなカランドリア管や断熱用の炭酸ガス層はなく、
圧力管12の外面が直接カランドリアタンク内の重水減速
材に接している。このため重水減速材は通常状態では冷
却材系とほぼ同じ条件(圧力約70〜80at,温度約250℃)
で運転される。従って減速材系の温度を調整すれば燃料
集合体10からの除熱を実現できる。特に事故時、炉心か
らの崩壊熱レベルの除熱は減速材系で十分行なえる。
[Example] The nuclear reactor according to the present invention has an integrated pressure vessel structure. FIG. 3 shows a cross-sectional model diagram of the core fuel lattice. Here, the fuel assemblies 10 are arranged in a triangular lattice pattern. The fuel assembly 10 is loaded in the pressure pipe 12. There is no calandria tube or carbon dioxide layer for heat insulation like the conventional technology on the outside of the pressure tube 12,
The outer surface of the pressure pipe 12 directly contacts the heavy water moderator in the calandria tank. For this reason, the heavy water moderator under normal conditions is almost the same as the coolant system (pressure about 70-80 at, temperature about 250 ° C).
Be driven in. Therefore, heat removal from the fuel assembly 10 can be realized by adjusting the temperature of the moderator system. Especially in the event of an accident, the moderator system can sufficiently remove the decay heat level from the core.

第1図に本発明に係る一体型圧力容器構造の原子炉の一
実施例を示す。この原子炉の基本構造は、重水減速材を
内包したカランドリアタンク22と、それを貫通するよう
に設けられる多数の圧力管を備え、該圧力管の内部に燃
料集合体が装荷され、カランドリアタンク内の重水減速
材と圧力管内を通る冷却材を分離した構造である。特に
本発明では、重水減速材と冷却材とは圧力管壁のみによ
って(間に断熱層を介することなく)仕切られており
(前記第3図参照)、前記カランドリアタンク22の外側
は圧力容器24が取り囲み、圧力容器24内の冷却材を圧力
管を通して再循環ポンプ26によって循環させる。
FIG. 1 shows an embodiment of a reactor having an integrated pressure vessel structure according to the present invention. The basic structure of this nuclear reactor is provided with a calandria tank 22 containing a heavy water moderator, and a number of pressure pipes provided so as to penetrate through the calandria tank 22. This is a structure in which the heavy water moderator in the tank and the coolant passing through the pressure pipe are separated. In particular, in the present invention, the heavy water moderator and the coolant are separated only by the pressure pipe wall (without a heat insulating layer therebetween) (see FIG. 3), and the outside of the calandria tank 22 is a pressure vessel. Surrounded by 24, the coolant in the pressure vessel 24 is circulated by a recirculation pump 26 through the pressure tube.

そして炉心下方には炉水保持プール28が設けられ、冷却
材系には急速注入系30が、また減速材系には重水冷却系
32がそれぞれ2系統設けられている。冷却材系と減速材
系とは独立しているが差圧制御が行われる。
A reactor water holding pool 28 is provided below the core, a rapid injection system 30 is provided for the coolant system, and a heavy water cooling system is provided for the moderator system.
There are two systems of 32 each. Although the coolant system and the moderator system are independent, differential pressure control is performed.

更に原子炉容器34内にはスプレイヘッダ36が設けられ、
蒸気放出プール38との間に蒸気放出プール冷却系40が設
けられる。
Furthermore, a spray header 36 is provided in the reactor vessel 34,
A steam discharge pool cooling system 40 is provided between the steam discharge pool 38 and the steam discharge pool 38.

ここで重水冷却系32は、圧力容器24に供給する冷却材を
加熱する主熱交換器42と外部流体で冷却される補助熱交
換器44とを有する。また圧力容器24内の上部には冷却材
系と減速材系とを仕切るラプチャーディスク46が設けら
れる。
Here, the heavy water cooling system 32 has a main heat exchanger 42 that heats a coolant supplied to the pressure vessel 24 and an auxiliary heat exchanger 44 that is cooled by an external fluid. A rupture disk 46 for partitioning the coolant system and the moderator system is provided in the upper part of the pressure vessel 24.

その他、復水貯蔵槽50及び2系統の高圧炉心補給水系52
なども設けられる。
In addition, condensate storage tank 50 and high pressure core makeup water system 52 of two systems
And so on.

通常動作時、冷却材は給水系54を通って供給され、主熱
交換器42で重水減速材により加熱されて(逆に重水減速
材は冷却される)圧力容器12内に入る。この冷却材は再
循環ポンプ26により圧力管内を通って燃料集合体を除熱
し、加熱されて蒸気となって主蒸気系56から送り出され
る。
During normal operation, the coolant is supplied through the water supply system 54, heated by the heavy water moderator in the main heat exchanger 42 (conversely the heavy water moderator is cooled) and enters the pressure vessel 12. This coolant passes through the pressure pipe by the recirculation pump 26 to remove heat from the fuel assembly and is heated to become steam and is sent out from the main steam system 56.

万一冷却材流出事故等が発生したとすると、冷却材系が
急減圧して大きな差圧がつき、ラプチャーディスク46が
破損開放する。すると重水減速材は冷却材系へ入り、燃
料集合体の冷却を行いつつ炉外に放出される。これによ
って減速材系による炉心冷却が始まる。減速材系は通常
運転時に炉のr加熱量(〜150MWth)を冷却材系の昇温
に使用しているが、冷却材系による炉心冷却が不能とな
った場合、主熱交換器42による給水加熱から補助熱交換
器44による補給冷へ除熱モードが切り換わり、減速材系
により崩壊熱除去を行う。
Should a coolant outflow accident occur, the coolant system suddenly decompresses and a large differential pressure is applied, and the rupture disc 46 breaks and opens. Then, the heavy water moderator enters the coolant system and is discharged to the outside of the reactor while cooling the fuel assembly. This starts the core cooling by the moderator system. The moderator system uses the amount of r-heating (up to 150 MWth) of the furnace during normal operation to raise the temperature of the coolant system. However, when core cooling by the coolant system becomes impossible, water is supplied by the main heat exchanger 42. The heat removal mode is switched from heating to supplementary cooling by the auxiliary heat exchanger 44, and decay heat is removed by the moderator system.

事故時における減速材系の機能の一例を第2図に示す。
これは再循環ポンプ(RCP)の脱落による冷却材流出事
故(LOCA)を想定したものである。
An example of the function of the moderator system at the time of an accident is shown in FIG.
This assumes a coolant outflow accident (LOCA) due to the loss of the recirculation pump (RCP).

再循環ポンプ(RCP)26が脱落したとする。すると炉水
水位が低下し、炉圧が急激に低下し、炉心下方の炉水保
持プール28の水位が増加する。原子炉は停止し(スクラ
ム)、冷却材系には急速注入系30により注水が行われ再
冠水する。冷却材系の減圧によりラプチャーディスク46
が破損開放し、重水減速材は蒸気となって燃料集合体を
冷却しつつ圧力容器24外に放出される。炉水の回復と共
に圧力は低下し減速材系による冷却が行われる。この
時、重水冷却系では通常の主熱交換器42による給水加熱
から補助熱交換器44による補機冷へ除熱モードが切り換
わり、それによって崩壊熱は系外へ出る。
It is assumed that the recirculation pump (RCP) 26 has fallen off. Then, the reactor water level drops, the reactor pressure drops sharply, and the water level in the reactor water holding pool 28 below the core increases. The reactor is shut down (scrum), and the coolant system is injected with water by the rapid injection system 30 and re-submerged. Rupture disk 46 due to depressurization of the coolant system
Is released and the heavy water moderator becomes vapor and is discharged to the outside of the pressure vessel 24 while cooling the fuel assembly. As the reactor water recovers, the pressure drops and the moderator system cools it. At this time, in the heavy water cooling system, the heat removal mode is switched from the normal feed water heating by the main heat exchanger 42 to the auxiliary cooling by the auxiliary heat exchanger 44, whereby the decay heat goes out of the system.

重水冷却系のポンプ等は常時運転しているものであるか
ら、従来の緊急炉心冷却装置(ECCS)のポンプのような
起動失敗を考慮する必要はなく、極めて安全性並びに信
頼性の高いシステムとなる。
Since the pumps of the heavy water cooling system are always in operation, it is not necessary to consider the start-up failure like the pump of the conventional emergency core cooling system (ECCS), and the system is extremely safe and reliable. Become.

[発明の効果] 本発明は上記のように、冷却材と重水減速材とが圧力管
壁のみで仕切られており、燃料集合体から冷却材を通し
て重水減速材への熱移行が容易であることを利用し、冷
却材系と減速材系との両方に事故時の炉心冷却機能を持
たせたから、緊急炉心冷却装置を別個に設ける必要がな
くなり、減速材系の強化を考慮しても数十億円の建設費
用の削減が可能で経済性に富むものとなる。
[Advantages of the Invention] As described above, in the present invention, the coolant and the heavy water moderator are partitioned by only the pressure pipe wall, and the heat transfer from the fuel assembly to the heavy water moderator through the coolant is easy. Since both of the coolant system and the moderator system are provided with the core cooling function in the event of an accident by utilizing the above, there is no need to separately provide an emergency core cooling device, and even if the moderator system is strengthened It will be possible to reduce the construction cost by 100 million yen and be highly economical.

本発明では常時運転している減速材系により非常時の炉
心冷却を行うため、ポンプの起動失敗などの問題は全く
なく、信頼度が飛躍的に増加する。また非常用ディーゼ
ル装置等の容量削減が可能である。冷却材流出事故時の
減速材系による炉心冷却はラプチャーディスク破損とい
う物理法則に従ったパッシブな動作で始動するから、作
動信号の検出失敗等を考慮する必要がなく、極めて安全
性並びに信頼性が高い。
In the present invention, since the core material is cooled in an emergency by the moderator system that is constantly operating, there is no problem such as failure of starting the pump, and reliability is dramatically increased. It is also possible to reduce the capacity of emergency diesel equipment. Since the core cooling by the moderator system at the time of a coolant spill accident starts by passive operation according to the physical law of rupture disk damage, it is not necessary to consider failure of detection of operation signal, etc., and it is extremely safe and reliable. high.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る一体型圧力容器構造の原子炉の一
実施例を示す概略構成図、第2図はその冷却材流出事故
モードを示す説明図、第3図は一体型圧力容器構造の原
子炉の炉心燃料格子断面モデルの一例を示す説明図、第
4図は従来の原子炉の炉心燃料格子断面モデルの一例を
示す説明図である。 10……燃料集合体、12……圧力管、24……圧力容器、26
……再循環ポンプ、28……炉水保持プール、30……急速
注入系、42……主熱交換器、44……補助熱交換器、46…
…ラプチャーディスク。
FIG. 1 is a schematic configuration diagram showing an embodiment of a reactor having an integrated pressure vessel structure according to the present invention, FIG. 2 is an explanatory diagram showing its coolant outflow accident mode, and FIG. 3 is an integrated pressure vessel structure. FIG. 4 is an explanatory view showing an example of a core fuel lattice cross-sectional model of a nuclear reactor, and FIG. 4 is an explanatory view showing an example of a conventional core fuel lattice cross-sectional model of a nuclear reactor. 10 ... Fuel assembly, 12 ... Pressure tube, 24 ... Pressure vessel, 26
…… Recirculation pump, 28 …… Reactor water holding pool, 30 …… Rapid injection system, 42 …… Main heat exchanger, 44 …… Auxiliary heat exchanger, 46…
… Rupture disc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重水減速材を内包したカランドリアタンク
と、それを貫通するように設けられ内部に燃料集合体が
装荷され冷却材が流通する多数の圧力管を備え、重水減
速材と冷却材を分離した構造の原子炉において、重水減
速材と冷却材とは圧力管壁のみで仕切られており、前記
カランドリアタンクの外側を取り囲む圧力容器と、前記
圧力管を通して圧力容器内の冷却材を循環させる再循環
ポンプとを備え、炉心下方には炉水保持プールが設置さ
れ、冷却材系には急速注入系が、また減速材系には重水
冷却系が設けられることを特徴とする一体型圧力容器構
造の原子炉。
1. A calandria tank containing a heavy water moderator, and a large number of pressure pipes penetrating the tank to load a fuel assembly therein and through which the coolant flows, the heavy water moderator and the coolant. In the reactor having a structure in which the heavy water moderator and the coolant are separated only by the pressure pipe wall, the pressure vessel surrounding the outside of the calandria tank and the coolant in the pressure vessel through the pressure pipe are separated from each other. It is equipped with a recirculation pump for circulation, a reactor water holding pool is installed below the core, a rapid injection system is provided for the coolant system, and a heavy water cooling system is provided for the moderator system. Reactor with pressure vessel structure.
【請求項2】重水冷却系は、圧力容器に供給される冷却
材を加熱する主熱交換器と外部流体で冷却される補助熱
交換器とを有し、事故時に主熱交換器による給水加熱か
ら補助熱交換器による補機冷へ除熱モードを切り換え、
減速材系により崩壊熱除去を行う請求項1記載の原子
炉。
2. A heavy water cooling system has a main heat exchanger that heats a coolant supplied to a pressure vessel and an auxiliary heat exchanger that is cooled by an external fluid, and feed water heating by the main heat exchanger in the event of an accident. From heat removal mode to auxiliary cooling with auxiliary heat exchanger,
The nuclear reactor according to claim 1, wherein decay heat is removed by a moderator system.
【請求項3】圧力容器内の上部に冷却材系と減速材系と
を仕切るラプチャーディスクを設け、その破損開放によ
り重水減速材を冷却材系へ流入させ、減速材系による炉
心冷却を始動させる請求項1記載の原子炉。
3. A rupture disk for partitioning a coolant system and a moderator system is provided in the upper part of the pressure vessel, and the heavy water moderator is caused to flow into the coolant system when the breakage is opened to start core cooling by the moderator system. The nuclear reactor according to claim 1.
JP1065117A 1989-03-16 1989-03-16 Reactor with integrated pressure vessel structure Expired - Fee Related JPH0721546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1065117A JPH0721546B2 (en) 1989-03-16 1989-03-16 Reactor with integrated pressure vessel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1065117A JPH0721546B2 (en) 1989-03-16 1989-03-16 Reactor with integrated pressure vessel structure

Publications (2)

Publication Number Publication Date
JPH02243996A JPH02243996A (en) 1990-09-28
JPH0721546B2 true JPH0721546B2 (en) 1995-03-08

Family

ID=13277625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1065117A Expired - Fee Related JPH0721546B2 (en) 1989-03-16 1989-03-16 Reactor with integrated pressure vessel structure

Country Status (1)

Country Link
JP (1) JPH0721546B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087270B2 (en) * 1989-09-20 1996-01-29 株式会社日立製作所 Pressure tube reactor
JP5595672B2 (en) * 2009-04-13 2014-09-24 一般財団法人電力中央研究所 Reactor
CN106910537A (en) * 2017-04-26 2017-06-30 上海核工程研究设计院 A kind of protection device for protecting out-pile trap
CN111383782B (en) * 2018-12-28 2022-12-23 国家电投集团科学技术研究院有限公司 Passive safety system and pressurized water reactor with same

Also Published As

Publication number Publication date
JPH02243996A (en) 1990-09-28

Similar Documents

Publication Publication Date Title
EP0232186B1 (en) Passive safety system for a pressurized water nuclear reactor
US4367194A (en) Emergency core cooling system
US3859166A (en) Combined storage tank and sump for nuclear reactor
US4587079A (en) System for the emergency cooling of a pressurized water nuclear reactor core
US3528884A (en) Safety cooling system for a nuclear reactor
JPH04125495A (en) Nuclear reactor facility
JPH0666985A (en) Method for reducing leakage from heat-transfer pipe of pressurized water reactor and steam generator
US5045274A (en) Water cooled nuclear reactors
US5349616A (en) Reactor cooling system for boiling water reactors
US5828714A (en) Enhanced passive safety system for a nuclear pressurized water reactor
US4046626A (en) Pressurized-water reactor emergency core cooling system
JPH0721546B2 (en) Reactor with integrated pressure vessel structure
US4812286A (en) Shroud tank and fill pipe for a boiling water nuclear reactor
US3702281A (en) Removal of heat from a nuclear reactor under emergency conditions
US5145638A (en) Rpv housed atws poison tank
KR101456575B1 (en) In vessel boron injection system
JPS6375691A (en) Natural circulation type reactor
JP3028842B2 (en) Reactor containment vessel
JP3477271B2 (en) Boric acid water injection equipment for pressurized water reactor
JPS61243397A (en) Emergency core cooling device for nuclear reactor
JPS60259994A (en) Emergency core cooling device
JPS5945116B2 (en) Emergency reactor cooling system
JPS5968695A (en) Reactor
JPH0227295A (en) Reactor emergency core cooling system
JPH08292284A (en) Pressure pipe type heavy water reactor facility

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees