JPH0721513B2 - Optical electric field measuring method and apparatus - Google Patents

Optical electric field measuring method and apparatus

Info

Publication number
JPH0721513B2
JPH0721513B2 JP1179855A JP17985589A JPH0721513B2 JP H0721513 B2 JPH0721513 B2 JP H0721513B2 JP 1179855 A JP1179855 A JP 1179855A JP 17985589 A JP17985589 A JP 17985589A JP H0721513 B2 JPH0721513 B2 JP H0721513B2
Authority
JP
Japan
Prior art keywords
light
pockels element
electric field
optical
pockels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1179855A
Other languages
Japanese (ja)
Other versions
JPH0344563A (en
Inventor
義成 小塚
雄一 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1179855A priority Critical patent/JPH0721513B2/en
Priority to US07/550,978 priority patent/US5111135A/en
Publication of JPH0344563A publication Critical patent/JPH0344563A/en
Publication of JPH0721513B2 publication Critical patent/JPH0721513B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は、ポッケルス効果による光の変調作用を利用し
て交流電界若しくはその交流電界を発生する交流電圧を
測定する新規な光電界測定方法並びにそのための装置に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a novel optical electric field measuring method and apparatus for measuring an AC electric field or an AC voltage generating the AC electric field by utilizing the modulation effect of light by the Pockels effect. It is about.

(背景技術) 電力分野における送電線や配電線等の電界(電圧)測定
手法として、近年、優れた絶縁信頼性や耐電磁誘導性等
が得られることから、ポッケルス効果による光の変調作
用を利用した光電界測定手法が注目されている。
(Background Art) In recent years, as a method of measuring electric field (voltage) of power transmission lines and distribution lines in the electric power field, excellent insulation reliability and electromagnetic induction resistance have been obtained. Therefore, the light modulation effect by the Pockels effect is used. The optical field measurement method has attracted attention.

而して、ポッケルス効果を利用して交流電界(電圧)を
測定する場合、従来にあっては、ポッケルス効果を有す
るポッケルス素子の光透過方向の前後に偏光子と検光子
とを直列に配置して、該ポッケルス素子に作用する電界
にて透過光が変調せしめられるように構成したセンサ部
に、受光部から出射された光を透過せしめて、受光した
光に対応した信号を出力する受光部にて、該センサ部を
透過した透過光を受光させ、その受光部の出力信号か
ら、その信号の直流成分(EDC)と、ポッケルス素子に
作用する交流電界と同一角周波数の信号成分(Eω)と
を取り出して、それらの相対比(Eω/EDC)から、測定
対象とする交流電界、すなわちポッケルス素子に作用す
る交流電界若しくはそれを発生する光電圧を求めること
が行なわれていた。
Thus, when measuring an AC electric field (voltage) using the Pockels effect, in the past, a polarizer and an analyzer were arranged in series before and after the light transmission direction of the Pockels element having the Pockels effect. The transmitted light is modulated by the electric field that acts on the Pockels element, and the light emitted from the light receiving portion is transmitted to the light receiving portion that outputs a signal corresponding to the received light. Then, the transmitted light transmitted through the sensor unit is received, and from the output signal of the light receiving unit, the DC component (E DC ) of the signal and the signal component (E ω) having the same angular frequency as the AC electric field acting on the Pockels element are received. It has been practiced to take out and from the relative ratio (Eω / E DC ) of them to obtain the AC electric field to be measured, that is, the AC electric field acting on the Pockels element or the photovoltage generating the AC electric field.

そして、そのために、かかるポッケルス効果を利用した
従来の光電界測定手法にあっては、光ファイバー等を用
いて、発光部から出射された光だけを受光部で受光させ
るようにした光伝搬方式を採用した場合には問題はない
ものの、太陽光や照明光などの背景光が存在する空間を
光伝搬路として利用する光伝搬方式を採用した場合に
は、その光伝搬空間の背景光が発光部からの出射光と共
に受光部で受光されることに起因して、交流電界(電
圧)の測定結果に誤差が生じるといった不具合があっ
た。
For that reason, in the conventional optical electric field measurement method utilizing the Pockels effect, an optical propagation method is adopted in which only the light emitted from the light emitting portion is received by the light receiving portion by using an optical fiber or the like. Although there is no problem in case of doing, when the light propagation method that uses the space where background light such as sunlight or illumination light exists as the light propagation path, the background light of the light propagation space is emitted from the light emitting unit. There is a problem that an error occurs in the measurement result of the AC electric field (voltage) due to the fact that the light is received by the light receiving unit together with the emitted light.

一方、上述のような光電界測定手法を採用する従来の光
電界測定装置では、被測定交流電界(電圧)を求めるた
めの関係式、すなわち受光部の出力信号の直流成分(E
DC)と交流成分(Eω)との相対比を表す関係式に、温
度依存性を有するポッケルス素子の半波長電圧:Vπが含
まれることから、ポッケルス素子の設置位置における環
境温度に起因して交流電界(電圧)の測定結果に誤差が
生じることが避けられないといった事情があり、かかる
不具合を解決するために、従来より種々の方式が検討さ
れてはいるものの、未だかかる問題を充分に解決するま
でには至っていないか、若しくはその問題を解決するた
めの方式が複雑となったり、装置が大掛かりとなったり
して、実用性に乏しいといった事情があった。
On the other hand, in the conventional optical electric field measuring apparatus that employs the optical electric field measuring method as described above, the relational expression for obtaining the measured AC electric field (voltage), that is, the DC component (E
Since the half-wave voltage: Vπ of the Pockels element that has temperature dependence is included in the relational expression that expresses the relative ratio of DC ) and the AC component (Eω), the AC caused by the environmental temperature at the installation position of the Pockels element There are circumstances in which it is inevitable that errors will occur in the electric field (voltage) measurement results, and various methods have been studied in the past in order to solve such problems, but these problems are still sufficiently solved. However, there is a situation in which it is not practical because the method for solving the problem is complicated or the device becomes large in size.

(解決課題) ここにおいて、本発明は、以上のような事情を背景とし
て為されたものであり、その解決すべき課題とするとこ
ろは、たとえ背景光の存在する空間を光の伝搬路として
移用する光伝搬方式を採用した場合にあっても、その光
伝搬空間の背景光によって測定結果が殆ど影響を受ける
ことのない光電界測定手法及び装置を提供することにあ
り、またたとえポッケルス素子の設置位置における環境
温度が変化しても、その環境温度の変化による測定誤差
を良好に抑制して、精度の高い測定結果を安定して得る
ことのできる光電界測定方法及び装置を提供することに
ある。
(Problem to be Solved) Here, the present invention has been made in view of the above circumstances, and the problem to be solved is that even if a space where background light exists is moved as a light propagation path. To provide an optical electric field measurement method and device in which the measurement result is hardly influenced by the background light in the light propagation space even when the optical propagation method used is adopted. To provide an optical electric field measurement method and device capable of stably suppressing a measurement error due to a change in the environmental temperature even when the environmental temperature at the installation position changes and stably obtaining a highly accurate measurement result. is there.

(解決手段) そして、かかる課題を解決するために、本発明にあって
は、ポッケルス素子の光透過方向の前後に偏光子と検光
子とを直列に配置して、該ポッケルス素子に作用する電
界にて透過光が変調せしめられるように構成したセンサ
部に、発光部から出射された光を透過せしめて、受光し
た光に対応した信号を出力する受光部にて、該センサ部
を透過した透過光を受光させ、その受光部の出力信号か
ら、前記ポッケルス素子に作用する交流電界と同一角周
波数の信号成分(Eω)及び2倍の角周波数の信号成分
(E2ω)を取り出して、それらの相対比を求め、その相
対比から、該ポッケルス素子に作用する交流電界若しく
は該交流電界を発生する交流電圧を求めるようにしたの
である。
(Solution) In order to solve such a problem, in the present invention, a polarizer and an analyzer are arranged in series before and after the light transmission direction of the Pockels element, and an electric field acting on the Pockels element is arranged. The transmitted light is transmitted through the sensor unit, which transmits the light emitted from the light emitting unit to the sensor unit configured to modulate the transmitted light and outputs a signal corresponding to the received light. Light is received, and a signal component (Eω) having the same angular frequency as the AC electric field acting on the Pockels element and a signal component (E 2 ω) having double the angular frequency are extracted from the output signal of the light receiving unit, Is calculated, and the AC electric field acting on the Pockels element or the AC voltage generating the AC electric field is calculated from the relative ratio.

また、前記課題を解決するために、本発明装置にあって
は、(i)ポッケルス素子と、該ポッケルス素子の光透
過方向の前後に直列に配置された偏光子と検光子とを含
み、該ポッケルス素子に作用する電界にて透過光が変調
せしめられるように構成されたセンサ部と、(ii)該セ
ンサ部に透過させるための光を出射する発光部と、(ii
i)該センサ部を透過した透過光を受光する、受光した
光に対応した信号を出力する受光部と、(iv)該受光部
の出力信号から、前記ポッケルス素子に作用する交流電
界と同一角周波数の信号成分(Eω)を取り出す第一の
取出手段と、(v)該受光部の出力信号から、前記ポッ
ケルス素子に作用する交流電界の2倍の角周波数の信号
成分(E2ω)を取り出す第二の取出手段と、(vi)それ
ら第一及び第二の取出手段にて取り出した信号成分の相
対比を求める相対比検出手段とを、含むこととしたので
ある。
In order to solve the above problems, the device of the present invention includes (i) a Pockels element, a polarizer and an analyzer that are arranged in series before and after the light transmission direction of the Pockels element, and A sensor unit configured so that transmitted light is modulated by an electric field acting on the Pockels element; (ii) a light emitting unit that emits light to be transmitted to the sensor unit;
i) a light receiving portion that receives the transmitted light that has passed through the sensor portion and outputs a signal corresponding to the received light; and (iv) the same angle as the AC electric field that acts on the Pockels element from the output signal of the light receiving portion. First extraction means for extracting a frequency signal component (Eω), and (v) a signal component (E 2 ω) having an angular frequency twice that of the AC electric field acting on the Pockels element from the output signal of the light receiving unit. The second extraction means for extraction and (vi) the relative ratio detection means for obtaining the relative ratio of the signal components extracted by the first and second extraction means are included.

なお、上記本発明手法および装置において、センサ部の
偏光子と検光子との間に、下記の式を満たす光学バイア
ス:ψを与える位相子をポッケルス素子と直列に設けれ
ば、環境温度に拘わらず、精度の高い測定結果を安定し
て得ることが可能となる。
In the above-described method and apparatus of the present invention, if a phaser that gives an optical bias: ψ that satisfies the following formula is provided in series with the Pockels element between the polarizer of the sensor unit and the analyzer, regardless of the ambient temperature. Therefore, it is possible to stably obtain a highly accurate measurement result.

〔但し、Vπ:ポッケルス素子の半波長電圧 Vπ0:ポッケルス素子の室温での半波長電圧 ψ0:位相子による室温での光学バイアス (具体的構成・実施例) 以下、本発明の幾つかの実施例を示す図面を参照しつ
つ、本発明をより一層具体的に明らかにすることとす
る。
[However, Vπ: half-wavelength voltage of Pockels element Vπ 0 : half-wavelength voltage of Pockels element at room temperature ψ 0 : Optical bias by retarder at room temperature (Specific Configuration / Examples) The present invention will be more specifically clarified below with reference to the drawings showing some examples of the present invention.

先ず、第1図は、本発明に従う光電界測定装置の一例を
示すものであるが、そこにおいて、10は、測定部として
のセンサヘッド部であって、光の透過方向において互い
に直列に配置されたポッケルス素子12と位相子(位相差
素子)13の前後に偏光子14と検光子16が直列に配置され
ると共に、それら偏光子14と検光子16の更に前後に位置
して、ファイバーコリメータ18,20が直列に配置された
構造を有している。そして、かかるセンサヘッド部10の
前方側のファイバーコリメータ18に光ファイバー22を介
して発光部24が接続されて、該発光部24から出射された
光が光ファイバー22でファイバーコリメータ18に導かれ
るようになっており、かかるファイバーコリメータ18か
らセンサヘッド部10内に入射された光が、偏光子14,ポ
ッケルス素子12,位相子13及び検光子16を順に透過され
て、ファイバーコリメータ20から出射されるようになっ
ている。このことから明らかなように、ここでは、発光
部2から出射された光だけがポッケルス素子12に透過さ
れ、かかるポッケルス素子12を透過した光だけが、ファ
イバーコリメータ20から出射されるようになっているの
である。
First, FIG. 1 shows an example of the optical electric field measuring device according to the present invention, in which 10 is a sensor head part as a measuring part, which are arranged in series in the light transmitting direction. The polarizer 14 and the analyzer 16 are arranged in series before and after the Pockels element 12 and the phaser (phase difference element) 13, and the fiber collimator 18 is disposed before and after the polarizer 14 and the analyzer 16. , 20 are arranged in series. Then, the light emitting section 24 is connected to the fiber collimator 18 on the front side of the sensor head section 10 via the optical fiber 22, and the light emitted from the light emitting section 24 is guided to the fiber collimator 18 by the optical fiber 22. The light that has entered the sensor head portion 10 from the fiber collimator 18 is sequentially transmitted through the polarizer 14, the Pockels element 12, the phase shifter 13 and the analyzer 16, and is emitted from the fiber collimator 20. Has become. As is apparent from this, here, only the light emitted from the light emitting unit 2 is transmitted to the Pockels element 12, and only the light transmitted through the Pockels element 12 is emitted from the fiber collimator 20. Is there.

なお、上記ポッケルス素子12には、LiNbO3,LiTaO3,Bi12
SiO20,Bi12GeO20,CdMnTe等の、ポッケルス効果を有する
種々の光学材料からなるものを、また位相子13には、水
晶,Bi12SiO20,Bi12GeO20等の、複屈折性を有する種々の
光学材料からなるものを、それぞれ採用することが可能
である。
The Pockels element 12 contains LiNbO 3 , LiTaO 3 , and Bi 12
SiO 20 , Bi 12 GeO 20 , CdMnTe, etc. made of various optical materials having a Pockels effect, and the phase shifter 13 has a birefringence such as quartz, Bi 12 SiO 20 , Bi 12 GeO 20. It is possible to adopt each of various kinds of optical materials that are possessed.

また、第1図において、25は、ポッケルス素子12の相対
向する面に配設された電極27,27に接続されて、ポッケ
ルス素子12に被測定交流電圧を印加するための被測定交
流電圧印加手段である。
Further, in FIG. 1, 25 is connected to electrodes 27, 27 arranged on the opposite surfaces of the Pockels element 12 to apply a measured AC voltage to the Pockels element 12 for applying an AC voltage to be measured. It is a means.

上記センサヘッド部10を透過した光を出射するファイバ
ーコリメータ20には、光ファイバー26が接続されてお
り、ファイバーコリメータ20を通じてセンサヘッド部10
から出射された透過光は、かかる光ファイバー26を通じ
て、フォトダイオード等からなる受光部28に導かれるよ
うになっている。そして、受光部28は、その光ファイバ
ー26を通じて受光した光の強度:Pに応じた電気信号:Eを
出力するようになっており、かかる電気信号:Eを、同一
角周波数成分検出器30及び2倍角周波数成分検出器32に
それぞれ供給するようになっている。
An optical fiber 26 is connected to the fiber collimator 20 that emits the light that has passed through the sensor head unit 10, and the sensor head unit 10 is connected through the fiber collimator 20.
The transmitted light emitted from the optical fiber is guided to the light receiving unit 28 including a photodiode through the optical fiber 26. Then, the light receiving section 28 outputs an electric signal: E corresponding to the intensity: P of the light received through the optical fiber 26, and the electric signal: E is supplied to the same angular frequency component detectors 30 and 2. Each of them is supplied to the double angle frequency component detector 32.

同一角周波数成分検出器30は、前記被測定交流電圧印加
手段25によってポッケルス素子12に印加される被測定交
流電圧:Vと同じ角周波数:ωの信号成分:Eωを、受光部
28の出力信号:Eから取り出すためのものであって、電気
的フィルタや位相検波回路等から構成されており、受光
部28の電気信号:Eから被測定交流電圧:Vと同じ角周波
数:ωの信号成分:Eωを検出して、その検出した信号成
分:Eωを除算器34に供給するようになっている。また、
2倍角周波数成分検出器32では、被測定交流電圧:Vの2
倍の角周波数:2ωの信号成分:E2ωを取り出すためのも
のであって、同一角周波数成分検出器30と同様に、電気
的フィルタや位相検波回路等から構成されており、受光
部28の出力信号:Eから被測定交流電圧:Vの2倍の角周波
数:2ωの信号成分:E2ωを検出して、その検出した信号
成分:E2ωを除算器34に供給するようになっている。そ
して、除算器34は、2倍角周波数成分検出器32からの信
号成分:E2ωを同一角周波数成分検出器30からの信号成
分:Eωで除算して、その除算信号:ET(=E2ω/Eω)を
出力するようになっており、ここでは、かかる除算信
号:ETから前記被測定交流電圧:Vが測定されるようにな
っている。
The same angular frequency component detector 30 detects the signal component: Eω having the same angular frequency: ω as the measured AC voltage: V applied to the Pockels element 12 by the measured AC voltage applying means 25, the light receiving unit.
The output signal of 28 is to be taken out from E, and is composed of an electric filter and a phase detection circuit. Is detected, and the detected signal component: Eω is supplied to the divider 34. Also,
In the double frequency component detector 32, the measured AC voltage: V 2
Double angular frequency: for extracting a 2ω signal component: E 2 ω, and like the same angular frequency component detector 30, it is composed of an electrical filter, a phase detection circuit, etc. Output signal: E from the measured AC voltage: V twice the angular frequency: 2ω, the signal component: E 2 ω is detected, and the detected signal component: E 2 ω is supplied to the divider 34. Has become. Then, the divider 34 divides the signal component: E 2 ω from the double angular frequency component detector 32 by the signal component: E ω from the same angular frequency component detector 30, and the division signal: E T (= E 2 ω / Eω) is adapted to output, in this case, such a division signal: from said E T measured AC voltage: so that the V is measured.

なお、上述の説明から明らかなように、ここでは、同一
角周波数成分検出器30及び2倍角周波数成分検出器32が
それぞれ第一の取出手段及び第二の取出手段を構成して
いるのであり、また除算器34が相対比検出手段を構成し
ているのである。
In addition, as is apparent from the above description, here, the same angular frequency component detector 30 and the double angular frequency component detector 32 respectively constitute the first extracting means and the second extracting means, Further, the divider 34 constitutes the relative ratio detecting means.

次に、かかる装置の被測定交流電圧:Vの測定原理につい
て説明する。
Next, the principle of measuring the measured AC voltage: V of such a device will be described.

すなわち、上述の装置において、偏光子14と検光子16の
相対角度:θを0゜とすると、被測定交流電圧印加手段
25にて印加される被測定交流電圧:Vによってポッケルス
素子12の透過光に惹起される光学的位相差:φは、下記
(1)式のように与えられる。
That is, in the above-mentioned device, when the relative angle θ between the polarizer 14 and the analyzer 16 is 0 °, the measured AC voltage applying means is
An optical phase difference: φ induced in the transmitted light of the Pockels element 12 by the measured AC voltage: V applied at 25 is given by the following equation (1).

φ=(π/Vπ)・V ・・・(1) 〔但し、Vπ:ポッケルス素子12の半波長電圧〕 ここで、受光部28で受光される光は、前述の説明から明
らかなように、発光部24から出射された光だけであるた
め、受光部28で受光される光の強度:Pは、下記(2)式
のように与えられ、受光部28から出力される電気信号:E
は、下記(3)式のように与えられることとなる。
φ = (π / Vπ) · V (1) [where Vπ: half-wavelength voltage of Pockels element 12] Here, the light received by the light receiving unit 28 is, as is clear from the above description, Since only the light emitted from the light emitting unit 24, the intensity of light received by the light receiving unit 28: P is given by the following equation (2), and the electric signal output from the light receiving unit 28: E
Is given by the following equation (3).

〔但し、c:比例定数 P0:発光部24からの出射光強度 ψ:位相子13による光学バイアス V0:被測定交流電圧(V)の振幅 ω:被測定交流電圧(V)の角周波数 t:時間 A=(π/Vπ)・V0〔ただし、E0:電気信号(E)の振幅〕 ここで、同一角周波数成分検出器30で取り出される信号
成分:Eω及び2倍角周波数成分検出器32で取り出される
信号成分:E2ωは、上記(3)式で表される受光部28か
らの電気信号:Eがベッセル関数を用いて下記(4)式の
ように展開されるところから、それぞれ、下記(5),
(6)式のように表わされ、従って、除算器34からは、
下記(7)式で表される除算記号:ETが出力されること
となる。
[However, c: proportional constant P 0 : intensity of light emitted from the light emitting section 24 ψ: optical bias due to the phase shifter V 0 : amplitude of the measured AC voltage (V) ω: angular frequency of the measured AC voltage (V) t: time A = (π / Vπ) · V 0 ] [However, E 0 : Amplitude of electric signal (E)] Here, the signal component: Eω extracted by the same angular frequency component detector 30 and the signal component: E 2 ω extracted by the double angular frequency component detector 32 are Since the electric signal: E from the light receiving unit 28 represented by the above equation (3) is expanded as the following equation (4) using the Bessel function, the following (5),
It is expressed as in the equation (6). Therefore, from the divider 34,
(7) below division sign represented by the formula: so that the E T is output.

Eω=−E0・J1(A)・sinψ ・・・(5) E2ω=E0・J2(A)・cosψ ・・・(6) ここで、A{=(π/Vπ)・V0}が1に比べて小さい場
合、上記(7)式は下記(8)式のように整理される。
Eω = −E 0 · J 1 (A) · sin ψ ··· (5) E 2 ω = E 0 · J 2 (A) · cos ψ ··· (6) Here, when A {= (π / Vπ) · V 0 } is smaller than 1, the above equation (7) is rearranged as the following equation (8).

つまり、除算器34から出力される除算信号:ETは、かか
る(8)式から明らかなように、被測定交流電圧:Vの振
幅:V0に比例した値となるのであり、それ故、第1図の
装置によれば、従来の光電界測定装置と同様に、すなわ
ち受光部28の出力信号(E)から直流成分(BDC)と、
被測定交流電圧(V)と同一の角周波数成分(Eω)を
取り出して、それらの相対比(Eω/EDC)から被測定交
流電圧(V)の振幅(V0)を求めるようにした光電界測
定装置と同様に、その除算信号:ETから、前記ポッケル
ス素子12に印加される被測定交流電圧:V(振幅:V0)を
求めることができるのであり、またその振幅:V0からポ
ッケルス素子12に印加される電界強度を求めることがで
きるのである。
That is, the division signal output from the divider 34: E T is such (8) As is clear from the equation, the measured AC voltage: V amplitude: is than a value proportional to V 0, therefore, According to the apparatus of FIG. 1, as in the conventional optical electric field measuring apparatus, that is, the output signal (E) of the light receiving unit 28 and the direct current component (B DC ),
Photoelectric device that takes out the same angular frequency component (Eω) as the measured AC voltage (V) and obtains the amplitude (V 0 ) of the measured AC voltage (V) from their relative ratio (Eω / E DC ). Similar to the field measuring device, the measured AC voltage applied to the Pockels element 12: V (amplitude: V 0 ) can be obtained from the division signal: E T , and the amplitude: V 0 The electric field strength applied to the Pockels element 12 can be obtained.

なお、ここでは、上記(8)式から明らかなように、除
算信号:ETが、発光部24における発光光量や、光伝搬路
の伝送損失、或いは受光部28の検出感度に応じて変動す
る電気信号:Eの振幅:E0を含まないことから、それら発
光部24の発光光量や、光伝搬路の伝送損失、或いは受光
部28の検出感度の変動に起因する測定誤差を生じないと
いった特長も有している。
Here, as is clear from equation (8), dividing the signal: E T is, and the light emission amount of the light emitting section 24, transmission loss of the optical propagation path, or varies in accordance with the detection sensitivity of the light receiving portion 28 Since the amplitude of the electric signal: E: E 0 is not included, the amount of light emitted from the light emitting section 24, the transmission loss of the optical propagation path, or the measurement error due to the fluctuation of the detection sensitivity of the light receiving section 28 does not occur. I also have.

ところで、上例の光電界測定装置においては、センサ部
を構成する偏光子14,ポッケルス素子12,位相子13および
検光子16に発光部24からの出射光だけが透過され、且つ
その透過光だけが受光部28で受光されるようになってい
たため、受光部28で受光される光の強度:Pは前記(2)
式のように表され、従って、受光部28から出力される電
気信号:Eも前記(3)式のように表されていたが、第2
図に示す装置のように、光伝搬路として背景光が存在す
る空間、例えば屋外の空間や照明のある室内空間が採用
されている場合には、受光部28で受光される光の強度:P
は、その光伝搬空間の背景光の影響を受けて、下記
(2)′式のように表され、従って受光部28から出力さ
れる電気信号:Eも下記(3)′式のように表されること
となる。
By the way, in the optical electric field measurement apparatus of the above example, only the light emitted from the light emitting section 24 is transmitted to the polarizer 14, the Pockels element 12, the phaser 13 and the analyzer 16 which constitute the sensor section, and only the transmitted light thereof. Since the light is received by the light receiving unit 28, the intensity of light received by the light receiving unit 28: P is (2) above.
Therefore, the electric signal: E output from the light receiving unit 28 is also expressed by the equation (3).
As in the device shown in the figure, when a space where background light exists as a light propagation path, for example, when an outdoor space or an indoor space with illumination is adopted, the intensity of light received by the light receiving unit 28: P
Is expressed by the following equation (2) ′ under the influence of background light in the light propagation space, and therefore the electric signal E output from the light receiving unit 28 is also expressed by the following equation (3) ′. Will be done.

〔但し、PB:受光部28で受光される背景光の強度〕 〔但し、EB:背景光強度(PB)に対応した電気信号〕 ここで、背景光強度:PBに対応した電気信号:EBは直流成
分と見做すことができるため、かかる(3)′式をベッ
セル関数を用いて展開すると、下記(4)′式のように
表され、同一角周波数成分検出器30及び2倍角周波数成
分検出器32で取り出される被測定交流電圧:Vと同一角周
波数の信号成分:Eω及び2倍の角周波数の信号成分:E2
ωは、その(4)′式から明らかなように、前記第1図
の装置の場合と同様、それぞれ前記(5),(6)式で
表わされることとなる。従って、除算器34から出力され
る除算信号:ET(=E2ω/Eω)も、前記第1図の装置と
同様に、前記(8)式で表されることとなり、背景光強
度:PBに対応した電気信号:EBを含まない関係式で表され
ることとなる。
[However, P B : intensity of background light received by the light receiving unit 28] (However, E B : electrical signal corresponding to background light intensity (P B )) Here, since the electrical signal corresponding to background light intensity: P B : E B can be regarded as a DC component, When the expression 3) 'is expanded using the Bessel function, it is expressed as the following expression (4)', and the measured AC voltage: V which is extracted by the same angular frequency component detector 30 and the double angular frequency component detector 32 Same angular frequency signal component: Eω and double angular frequency signal component: E 2
As is apparent from the equation (4) ′, ω is represented by the equations (5) and (6), respectively, as in the case of the apparatus shown in FIG. Therefore, the division signal: E T (= E 2 ω / Eω) output from the divider 34 is also represented by the equation (8) as in the device of FIG. 1, and the background light intensity: An electrical signal corresponding to P B : It is represented by a relational expression that does not include E B.

つまり、光伝搬空間の背景光が、発光部24からの出射光
と共にたとえ受光部28で受光されても、その光伝搬空間
の背景光が被測定交流電圧:V(振幅:V0)の測定結果に
影響を及ぼすことがないのであり、それ故、背景光に起
因する誤差のない、精度の高い測定結果を、安定して得
ることができるのである。
That is, even if the background light in the light propagating space is received by the light receiving unit 28 together with the light emitted from the light emitting unit 24, the background light in the light propagating space measures the measured AC voltage: V (amplitude: V 0 ). This does not affect the result, and therefore, it is possible to stably obtain a highly accurate measurement result without an error caused by the background light.

因に、背景光の存在する空間を光の伝搬路として利用し
た従来の光電界測定装置においては、受光部28の出力信
号:Eから取り出される直流成分:EDCが下記(9)式のよ
うに表され、また被測定交流電界:Vと同一の角周波数成
分:Eωが下記(5)′式のように表されることから、下
記(10)式のように、それらの相対比:Eω/EDCを表す関
係式にも、背景光の強度:PBに対応した電気信号:EBが含
まれるのであり、それ故、被測定交流電圧:V(V0)の測
定結果に、光伝搬空間の背景光を要因とする誤差が生じ
ることが避けられなかったのである。
By the way, in the conventional optical electric field measurement apparatus that uses the space where the background light exists as a light propagation path, the output signal of the light receiving unit 28: DC component extracted from E: E DC is expressed by the following equation (9). And the angular frequency component: Eω that is the same as the AC electric field to be measured: V is expressed by the following equation (5) ′, the relative ratio of them: Eω is expressed by the following equation (10). The relational expression expressing / E DC also includes the electric signal: E B corresponding to the background light intensity: P B , and therefore the measurement result of the measured AC voltage: V (V 0 ) is It was inevitable that an error caused by the background light in the propagation space would occur.

なお、第2図の光電界測定装置においては、センサヘッ
ド部10が、光透過方向において直列に配置されたポッケ
ルス素子12及び位相子13と、位相子13の背後に設けられ
た反射鏡36とからなっており、ポッケルス素子12及び位
相子13と共にセンサ部を構成する偏光子14及び検光子16
は、発光部24及び受光部28が設けられた装置本体38に設
けられている。そして、第2図から明らかなように、発
光部24から出射された光は、偏光子14,ポッケルス素子1
2,位相子13を透過して反射鏡36で反射され、位相子13及
びポッケルス素子12を再び透過して、検光子16を介して
受光部28で受光されるようになっている。
In the optical electric field measuring apparatus of FIG. 2, the sensor head unit 10 includes a Pockels element 12 and a phaser 13 arranged in series in the light transmitting direction, and a reflecting mirror 36 provided behind the phaser 13. And a polarizer 14 and an analyzer 16 which together with the Pockels element 12 and the phaser 13 constitute a sensor section.
Is provided in the device main body 38 provided with the light emitting unit 24 and the light receiving unit 28. Then, as is clear from FIG. 2, the light emitted from the light emitting section 24 is generated by the polarizer 14 and the Pockels element 1.
2, The phase shifter 13 is transmitted and reflected by the reflecting mirror 36, the phase shifter 13 and the Pockels element 12 are transmitted again, and the light is received by the light receiving unit 28 via the analyzer 16.

次に、前記第1図に示した光電界測定装置において、下
記(11)式を満たすように位相子13による光学バイア
ス:ψを設定して、ポッケルス素子12の設置位置におけ
る環境温度の変化に拘わらず、被測定交流電圧:V(振
幅:V0)と常に高い精度をもって安定して測定できるよ
うにした場合の実施例について、そのような効果が得ら
れる理由について説明する。
Next, in the optical electric field measuring apparatus shown in FIG. 1, the optical bias: ψ by the phase shifter 13 is set so as to satisfy the following expression (11), and the environmental temperature change at the installation position of the Pockels element 12 is changed. Regardless of the example in which the measured AC voltage: V (amplitude: V 0 ) can always be stably measured with high accuracy, the reason why such an effect is obtained will be described.

ψ0:位相子13による室温での光学バイアス すなわち、位相子13による光学バイアス:ψ及びポッケ
ルス素子12の光学的位相差:φにおけるA{=(π/V
π)・V0}は、それぞれの温度特性を考慮すると、下記
(12)及び(13)式のように表すことができる。
ψ 0 : Optical bias at room temperature due to retarder 13 That is, A {= (π / V in the optical bias due to the phase shifter 13: ψ and the optical phase difference between the Pockels elements 12: φ
π) · V 0 } can be expressed by the following equations (12) and (13) in consideration of the respective temperature characteristics.

〔但し、ψ0:位相子13による室温での光学バイアス 〔但し、A0=(π/Vπ)・V0 Vπ0:ポッケルス素子12の室温での半波長電圧 従って、被測定交流電圧:Vと同一角周波数の信号成分:E
ωと2倍の角周波数の信号成分:E2ωとの相対比:ETを表
す前記(8)式は、それら位相子13による光学バイア
ス:ψとポッケルス素子12の光学的位相差:φにおける
Aの温度特性を考慮すると、下記(14)式のように表す
ことができる。
[However, ψ 0 : Optical bias by the retarder 13 at room temperature [However, A 0 = (π / Vπ 0 ) · V 00 : Half-wavelength voltage of the Pockels element 12 at room temperature Therefore, the measured AC voltage: V and the signal component of the same angular frequency as: E
The above equation (8) expressing the relative ratio of ω to the signal component of double angular frequency: E 2 ω: E T is the optical bias due to the phase shifter 13 ψ and the optical phase difference between the Pockels element 12: φ Considering the temperature characteristics of A in A, it can be expressed as in the following equation (14).

ここで、 であれば、かかる(14)式は、 のように表すことができ、かかる(15)式において、 とすれば、すなわち とすれば、かかる(15)式は更に、 のように整理することができる。 here, Then, equation (14) is Can be expressed as Then, ie Then, the equation (15) is Can be organized like.

そして、かかる(16)式における非線形項:(A2/24)
は、極めて小さな値となり、実質的に無視できることか
ら、前記(8)式、すなわち除算器34からの除算信号:E
Tは、下記(17)式のように表すことができる。
The nonlinear term in such (16): (A 2/24)
Becomes a very small value and can be substantially ignored. Therefore, the expression (8), that is, the division signal from the divider 34: E
T can be expressed by the following equation (17).

つまり、前記(11)式を満足するように、位相子13によ
る光学バイアス:ψを設定すれば、かかる(17)式から
明らかなように、除算器34からの除算信号:ETを表す関
係式は、ポッケルス素子12の設置位置の温度に実質的に
影響を受けない式となるのであり、それ故、光学バイア
スψが前記(11)式を満たすような位相子13をポッケル
ス素子12と検光子16との間に備えた光電界測定装置によ
れば、ポッケルス素子12の設置位置の環境温度に起因す
る誤差のない測定結果を安定して得ることができるので
あり、その構成自体も極めて簡単で済むのである。
That is, the (11) so as to satisfy the equation, optical by phase shifter 13 Bias: By setting [psi, such (17) As is apparent from the equation, the division signals from the divider 34: relationship representing the E T The equation is an equation that is not substantially affected by the temperature at the installation position of the Pockels element 12, and therefore, the phaser 13 such that the optical bias ψ satisfies the equation (11) is detected as the Pockels element 12. According to the optical electric field measurement device provided between the photon 16 and the photon 16, it is possible to stably obtain a measurement result without error due to the environmental temperature of the installation position of the Pockels element 12, and the configuration itself is also extremely simple. It's done.

なお、前記(11)式の左辺と右辺を完全に等しくするこ
とは実際には極めて難しいため、位相子13による光学バ
イアス:ψは、必ずしも前記(11)式を完全に満足させ
る大きさに設定する必要はないが、環境温度の変化によ
る測定誤差をできるだけ小さく設定する上で、下記(1
1)′式を満たすように、より好ましくは下記(11)″
式を満たすように、位相子13の光学バイアス:ψを設定
することが望ましい。ここで、下記(11)′式及び(1
1)″式を満たすように、位相子13による光学バイア
ス:ψを設定すれば、温度差が100℃あるような環境で
用いる場合において、環境温度による測定誤差を、それ
ぞれ、1%以下及び0.1%以下に抑えることができるの
である。
Since it is actually extremely difficult to make the left side and the right side of the equation (11) completely equal to each other, the optical bias: ψ by the phase shifter 13 is set to a value that completely satisfies the equation (11). Although it is not necessary to set the measurement error due to changes in environmental temperature as much as possible,
More preferably, the following (11) ″ is satisfied so as to satisfy the formula 1) ′.
It is desirable to set the optical bias: ψ of the phase shifter 13 so as to satisfy the expression. Here, the following equation (11) ′ and (1
If the optical bias: ψ by the phase shifter 13 is set so as to satisfy the formula 1) ″, the measurement error due to the environmental temperature is 1% or less and 0.1% or less when used in an environment where the temperature difference is 100 ° C. % Or less can be suppressed.

このように、ポッケルス素子12と検光子16との間におい
て、前記(11)式(実際的には、上記(11)′式)を満
たすような光学バイアス:ψを与える位相子13を介在さ
せるようにすれば、環境温度に起因する誤差を極めて良
好に抑制して、精度の高い測定結果を安定して得ること
が可能となるのであるが、このような効果は、偏光子14
とポッケルス素子12との間に同様の位相子13を介在させ
るようにしても、或いは光学バイアス:ψの総計が前記
(11)式を満たすように複数の位相子を偏光子14と検光
子16との間に互いに直列に配置するようにしても、享受
することが可能である。
In this way, between the Pockels element 12 and the analyzer 16, the phase shifter 13 that gives the optical bias ψ that satisfies the above formula (11) (actually, the above formula (11) ′) is interposed. By doing so, it is possible to suppress the error caused by the environmental temperature very well, and to obtain a highly accurate measurement result in a stable manner.
A similar retarder 13 may be interposed between the Pockels element 12 and the Pockels element 12 or a plurality of retarders 14 and an analyzer 16 may be used so that the total optical bias: ψ satisfies the above equation (11). Even if they are arranged in series with each other, they can be enjoyed.

また、上述の如き温度特性の補償効果を得るための構
成、即ち偏光子14と検光子16との間において、前記(1
1)式を満たす光学バイアス:ψを与える位相子を設置
する構成は、前記第2図の如き、背景光の存在する空間
を光の伝搬路として利用する光伝搬方式の光電界測定装
置に適用することも可能であるが、その場合には、ポッ
ケルス素子12と同じ温度環境下に位相子13を設置するこ
とが必要となる。
Further, in the configuration for obtaining the compensation effect of the temperature characteristics as described above, that is, between the polarizer 14 and the analyzer 16, (1
The configuration in which a phaser that gives an optical bias: ψ that satisfies the formula 1) is installed is applied to an optical field measuring apparatus of the optical propagation method that uses the space where the background light exists as the optical propagation path, as shown in FIG. However, in that case, it is necessary to install the phase shifter 13 under the same temperature environment as the Pockels element 12.

更に、以上の説明は、発光部24からの出射光が単一波長
の場合を前提とするものであるが、発光部24からの出射
光を広い波長域を持つ光、例えば白色光としても、本発
明によれば、以上と同様の論議による条件設定により、
単一波長の光源を用いる場合と同様の効果を得ることが
でき、従って、発光ダイオード(LED)やレーザダイオ
ード(LD)等の高価な単色光光源だけでなく、安価で光
量の大きな白色光光源等をも採用することが可能とな
る。つまり、白色光光源等の採用により、発光部24から
の出射光の光量の増大による測定精度の向上や、装置コ
ストの低域下を図り得るのである。
Further, the above description is premised on the case where the light emitted from the light emitting unit 24 has a single wavelength, but the light emitted from the light emitting unit 24 may be light having a wide wavelength range, for example, white light, According to the present invention, by setting conditions by the same discussion as above,
It is possible to obtain the same effect as when using a light source of a single wavelength. Therefore, not only an expensive monochromatic light source such as a light emitting diode (LED) or a laser diode (LD), but also an inexpensive white light source with a large light amount. It is also possible to adopt such as. That is, by adopting a white light source or the like, it is possible to improve the measurement accuracy due to an increase in the amount of light emitted from the light emitting section 24 and to lower the cost of the apparatus.

(発明の効果) 以上の説明から明からなように、本発明手法によれば、
背景光が存在する空間を光伝搬路として利用する光伝搬
方式を採用した場合にあっても、その光伝搬空間の背景
光が測定結果に及ぼす影響を極めて良好に抑制して、信
頼性の高い測定結果を安定して得ることができるのであ
り、またポッケルス素子の設置位置における環境温度の
変化に起因する測定誤差を、簡単な構成で良好に抑制す
ることができるのである。そして、本発明装置によれ
ば、それらの手法を好適に実施することができるのであ
る。
(Effects of the Invention) As is apparent from the above description, according to the method of the present invention,
Even when the light propagation method that uses the space where the background light exists as the light propagation path is adopted, the influence of the background light in the light propagation space on the measurement result is suppressed very well, and the reliability is high. The measurement result can be stably obtained, and the measurement error due to the change of the environmental temperature at the installation position of the Pockels element can be favorably suppressed with a simple configuration. Then, according to the device of the present invention, those methods can be suitably implemented.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は、それぞれ、本発明に従う光電界測
定装置の一例を示す系統図である。 10:センサヘッド部、12:ポッケルス素子 13:位相子、14:偏光子 16:検光子、22,26:光ファイバー 24:発光部、28:受光部 30:同一角周波数成分検出器 32:2倍角周波数成分検出器 34:除算器
1 and 2 are system diagrams showing an example of the optical electric field measuring apparatus according to the present invention. 10: Sensor head part, 12: Pockels element 13: Phaser, 14: Polarizer 16: Analyzer, 22, 26: Optical fiber 24: Light emitting part, 28: Light receiving part 30: Same angle frequency component detector 32: Double angle Frequency component detector 34: Divider

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ポッケルス素子の光透過方向の前後に偏光
子と検光子とを直列に配置して、該ポッケルス素子に作
用する電界にて透過光が変調せしめられるように構成し
たセンサ部に、発光部から出射された光を透過せしめ
て、受光した光に対応した信号を出力する受光部にて、
該センサ部を透過した透過光を受光させ、その受光部の
出力信号から、前記ポッケルス素子に作用する交流電界
と同一角周波数の信号成分(Eω)及び2倍の角周波数
の信号成分(E2ω)を取り出して、それらの相対比を求
め、その相対比から、該ポッケルス素子に作用する交流
電界若しくは該交流電界を発生する交流電圧を求めるこ
とを特徴とする光電界測定方法。
1. A sensor unit configured such that a polarizer and an analyzer are arranged in series before and after the light transmission direction of the Pockels element, and the transmitted light is modulated by an electric field acting on the Pockels element, In the light receiving part that transmits the light emitted from the light emitting part and outputs a signal corresponding to the received light,
To receive the light transmitted through the sensor unit, the output signal of the light receiving portion, the signal component of the AC electric field with the same corner frequency acting on the Pockels element (Eω) and twice the angular frequency of the signal component (E 2 ω) is taken out, their relative ratio is calculated, and the AC electric field acting on the Pockels element or the AC voltage generating the AC electric field is calculated from the relative ratio.
【請求項2】前記センサ部として、下記の式を満たす光
学バイアス:ψを与える位相子を、前記偏光子と検光子
との間において、前記ポッケルス素子と直列に設けてな
るものを用いる請求項(1)記載の光電界測定方法。 但し、Vπ:ポッケルス素子の半波長電圧 Vπ0:ポッケルス素子の室温での半波長電圧 ψ0:位相子による室温での光学バイアス
2. The sensor section is provided with a phaser for providing an optical bias: ψ satisfying the following expression, which is provided in series with the Pockels element between the polarizer and the analyzer. (1) The optical electric field measurement method as described above. Where Vπ: half-wave voltage of Pockels element Vπ 0 : half-wave voltage of Pockels element at room temperature ψ 0 : Optical bias by retarder at room temperature
【請求項3】ポッケルス素子と、該ポッケルス素子の光
透過方向の前後に直列に配置された偏光子と検光子とを
含み、該ポッケルス素子に作用する電界にて透過光が変
調せしめられるように構成されたセンサ部と、 該センサ部に透過させるための光を出射する発光部と、 該センサ部を透過した透過光を受光する、受光した光に
対応した信号を出力する受光部と、 該受光部の出力信号から、前記ポッケルス素子に作用す
る交流電界と同一角周波数の信号成分(Eω)を取り出
す第一の取出手段と、 該受光部の出力信号から、前記ポッケルス素子に作用す
る交流電界の2倍の角周波数の信号成分(E2ω)を取り
出す第二の取出手段と、 それら第一及び第二の取出手段にて取り出した信号成分
の相対比を求める相対比検出手段とを、 含むことを特徴とする光電界測定装置。
3. A Pockels element, a polarizer and an analyzer which are arranged in series in front of and behind the light transmission direction of the Pockels element, so that transmitted light is modulated by an electric field acting on the Pockels element. A configured sensor unit; a light emitting unit that emits light to be transmitted through the sensor unit; a light receiving unit that receives transmitted light that has passed through the sensor unit and that outputs a signal corresponding to the received light; First extracting means for extracting a signal component (Eω) having the same angular frequency as the AC electric field acting on the Pockels element from the output signal of the light receiving section, and an AC electric field acting on the Pockels element from the output signal of the light receiving section A second extracting means for extracting a signal component (E 2 ω) having an angular frequency twice as high as the above, and a relative ratio detecting means for obtaining a relative ratio of the signal components extracted by the first and second extracting means, To include Optical field measuring device according to symptoms.
【請求項4】前記センサ部が、前記偏光子と検光子との
間において、下記の式を満たす光学バイアス:ψを与え
る位相子を前記ポッケルス素子と直列に備えてなるもの
である請求項(3)記載の光電界測定装置。 但し、Vπ:ポッケルス素子の半波長電圧 Vπ0:ポッケルス素子の室温での半波長電圧 ψ0:位相子による室温での光学バイアス
4. The sensor section is provided with a phaser for providing an optical bias: ψ satisfying the following expression between the polarizer and the analyzer in series with the Pockels element. 3) The optical electric field measurement device described above. Where Vπ: half-wave voltage of Pockels element Vπ 0 : half-wave voltage of Pockels element at room temperature ψ 0 : Optical bias by retarder at room temperature
JP1179855A 1989-07-12 1989-07-12 Optical electric field measuring method and apparatus Expired - Lifetime JPH0721513B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1179855A JPH0721513B2 (en) 1989-07-12 1989-07-12 Optical electric field measuring method and apparatus
US07/550,978 US5111135A (en) 1989-07-12 1990-07-11 Method for optically measuring electric field and optical voltage/electric-field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1179855A JPH0721513B2 (en) 1989-07-12 1989-07-12 Optical electric field measuring method and apparatus

Publications (2)

Publication Number Publication Date
JPH0344563A JPH0344563A (en) 1991-02-26
JPH0721513B2 true JPH0721513B2 (en) 1995-03-08

Family

ID=16073096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1179855A Expired - Lifetime JPH0721513B2 (en) 1989-07-12 1989-07-12 Optical electric field measuring method and apparatus

Country Status (1)

Country Link
JP (1) JPH0721513B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692539B2 (en) 2006-11-30 2014-04-08 Powersense A/S Faraday effect current sensor
EP2479581A1 (en) 2011-01-21 2012-07-25 PowerSense A/S An AC or DC power transmission system and a method of measuring a voltage

Also Published As

Publication number Publication date
JPH0344563A (en) 1991-02-26

Similar Documents

Publication Publication Date Title
JP3677314B2 (en) Method and apparatus for optically determining physical quantities
US6122415A (en) In-line electro-optic voltage sensor
JP2818300B2 (en) Optical AC measurement method with temperature compensation and apparatus for implementing the method
US4933629A (en) Method and apparatus for optically measuring electric and magnetic quantities having an optical sensing head exhibiting the Pockel's and Faraday effects
US5656934A (en) Optical method of measuring an alternating electrical current, including temperature compensation, and a device for carrying out the method
JPH0670653B2 (en) Light temperature / electric quantity measuring device
US5731579A (en) Electro-optical voltage sensor head
US7046867B2 (en) Fiberoptic current sensor having a plurality of sensor heads
US6285182B1 (en) Electro-optic voltage sensor
US5939711A (en) Electro-optic voltage sensor head
US5111135A (en) Method for optically measuring electric field and optical voltage/electric-field sensor
GB2147695A (en) Balancing of interferometric optical fibre sensors
US6297625B1 (en) Method and device for measuring a magnetic field
JPH0721513B2 (en) Optical electric field measuring method and apparatus
US7038786B2 (en) Optical interferometric sensor with measureand compensation that may selectively be used for temperature compensation and long term life degradation
US6211982B1 (en) Remote sensor with waveguide optics telemetry
JPH0670654B2 (en) Optical magnetic field measuring method and apparatus
JPH077022B2 (en) Optical electric field measuring method and device
RU2194246C1 (en) Method for processing optical fiber gyroscope ring interferometer signal
JP4053677B2 (en) Photocurrent / voltage measuring device
JPH0373821B2 (en)
JPH01237477A (en) Optical fiber sensor
GB1570802A (en) Measuring apparatus employing an electro-optic transducer
SU1103092A1 (en) Optical electronic device for measuring temperature
JPH0231171A (en) Photocurrent/magnetic field sensor