JPH07211335A - Manufacture of solid electrolyte fuel cell - Google Patents

Manufacture of solid electrolyte fuel cell

Info

Publication number
JPH07211335A
JPH07211335A JP6006111A JP611194A JPH07211335A JP H07211335 A JPH07211335 A JP H07211335A JP 6006111 A JP6006111 A JP 6006111A JP 611194 A JP611194 A JP 611194A JP H07211335 A JPH07211335 A JP H07211335A
Authority
JP
Japan
Prior art keywords
gas supply
fuel cell
porous body
nickel
supply substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6006111A
Other languages
Japanese (ja)
Inventor
Shizuyasu Yoshida
静安 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6006111A priority Critical patent/JPH07211335A/en
Publication of JPH07211335A publication Critical patent/JPH07211335A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To prevent breakage of a cell and increase mechanical strength by producing a fuel gas supply plate by coating a ceramic porous body with metallic nickel. CONSTITUTION:A ceramic porous body is made of honeycomb or net-shaped completely stabilized zirconia obtained by adding yttria, calcia, magnesia, and ceria, or stabilized zirconia having an average pore size of 100mum, or a felt obtained from fibers of these ceramics. Since direct plating on the surface of the ceramics is impossible, the ceramic porous body is immersed in a 0.01wt.% palladium chloride solution for one minute, washed, dried, then nickel plating is conducted. A fuel cell is fabricated with a fuel gas supply plate 5, an oxidizing agent gas supply plate 6 made of La.Sr manganite in which Sr is doped, a gas separator 7, and a unit cell 4 comprising an anode 2, a solid electrolyte 1, and a cathode 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、固体電解質型燃料電
池の製造方法に係わり、特に燃料ガス供給基板の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid oxide fuel cell, and more particularly to a method for manufacturing a fuel gas supply substrate.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、電解質として
固体のジルコニアを用い、800〜1100℃の高温で
動作させる燃料電池であり、発電効率が高い上に、外部
に燃料改質器等が不要であり、また電解質が固体である
ために取り扱いが容易であるなどの特徴を有し、第三世
代の燃料電池として期待されている。
2. Description of the Related Art A solid oxide fuel cell is a fuel cell which uses solid zirconia as an electrolyte and is operated at a high temperature of 800 to 1100 ° C., which has high power generation efficiency and does not require an external fuel reformer or the like. In addition, since the electrolyte is solid, it is easy to handle, and is expected as a third-generation fuel cell.

【0003】図2は、従来の固体電解質型燃料電池を示
す分解斜視図である。この燃料電池はジルコニアからな
る固体電解質体1に、ニッケル−ジルコニアNi−Zr
2からなるアノード2とランタンストロンチウムマン
ガナイトLa( Sr)MnO 3 からなるカソード3を電
極として形成した単セル4をニッケルNiとジルコニア
ZrO2 からなる導電性多孔質の燃料ガス供給基板5と
La( Sr)MnO3からなる導電性多孔質の酸化剤ガ
ス供給基板6で挟持して構成され、燃料ガス供給板側に
燃料ガスとして水素または天然ガス、酸化剤ガス供給基
板に酸化剤ガスとして空気または酸素を供給する。
FIG. 2 shows a conventional solid oxide fuel cell.
FIG. This fuel cell is made of zirconia
The solid electrolyte body 1 containing nickel-zirconia Ni-Zr
O2Anode 2 consisting of and lanthanum strontium man
Gunite La (Sr) MnO 3The cathode 3 consisting of
The unit cell 4 formed as a pole is formed of nickel Ni and zirconia.
ZrO2A conductive porous fuel gas supply substrate 5 made of
La (Sr) MnO3Conductive porous oxidizer gas consisting of
It is configured to be sandwiched by the gas supply substrate 6 and is attached to the fuel gas supply plate side.
Hydrogen or natural gas as fuel gas, oxidant gas supply group
Air or oxygen is supplied to the plate as an oxidant gas.

【0004】固体電解質体1は、通常、安定化ジルコニ
アYSZの薄板が用いられ、燃料ガス供給基板5は、ニ
ッケル−ジルコニアNi−ZrO2 サーメット、酸化剤
ガス供給基板6は、ランタンストロンチウムマンガナイ
トLa( Sr)MnO3 、ランタンカルシウムマンガナ
イトLa( Ca)MnO3 またはランタンカルシウムク
ロマイトLa( Ca)CrO3 が用いられる。
A thin plate of stabilized zirconia YSZ is usually used as the solid electrolyte body 1, a fuel gas supply substrate 5 is a nickel-zirconia Ni-ZrO 2 cermet, and an oxidant gas supply substrate 6 is a lanthanum strontium manganite La. (Sr) MnO 3 , lanthanum calcium manganite La (Ca) MnO 3 or lanthanum calcium chromite La (Ca) CrO 3 is used.

【0005】図3は従来の固体電解質型燃料電池の製造
方法を示す工程図である。従来、燃料ガス供給基板5や
酸化剤ガス供給基板6は、それぞれ酸化ニッケル−ジル
コニアNiO−ZrO2 粉体、ランタンストロンチウム
マンガナイトLa( Sr)MnO3 粉体を造粒し、金型
により一軸加圧成型,シート成形,押し出し成型あるい
はCIP(Cold Isostatic Pressing ) などの成型を行
い、酸化雰囲気あるいは還元雰囲気中で、燒成して形成
される。通常、酸化雰囲気で燒成した燃料ガス供給基板
5は、作動時に燃料ガスを流すことによって、電池内部
にて還元を行い、ニッケル−ジルコニアNi−ZrO2
サーメットの導電性基板とする。またガスセパレータ7
を配置することにより、これら一対の単セルを積層し、
燃料電池スタックとしていた。
FIG. 3 is a process diagram showing a conventional method for manufacturing a solid oxide fuel cell. Conventionally, the fuel gas supply substrate 5 and the oxidant gas supply substrate 6 are granulated with nickel oxide-zirconia NiO-ZrO 2 powder and lanthanum strontium manganite La (Sr) MnO 3 powder, respectively, and uniaxially added by a mold. It is formed by pressure molding, sheet molding, extrusion molding or CIP (Cold Isostatic Pressing) and sintering in an oxidizing atmosphere or a reducing atmosphere. Normally, the fuel gas supply substrate 5 fired in an oxidizing atmosphere reduces the inside of the cell by flowing the fuel gas during operation, and the nickel-zirconia Ni-ZrO 2
Use a cermet conductive substrate. In addition, the gas separator 7
By arranging, a pair of these single cells are laminated,
It was a fuel cell stack.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、ニッケ
ル−ジルコニアNi−ZrO2 の燃料ガス供給基板は、
還元時に体積収縮を越こし割れが生じる。この割れは、
例えばニッケルの含有量が少ない30重量%の場合にお
いても起こり、燃料ガス供給基板の割れとともに強度も
低下した。
However, the fuel gas supply substrate of nickel-zirconia Ni-ZrO 2 has the following problems.
During reduction, cracking occurs through volume shrinkage. This crack is
For example, it occurred even when the nickel content was small and was 30% by weight, and the strength decreased with the crack of the fuel gas supply substrate.

【0007】また、燃料ガス供給基板は、燃料ガスを固
体電解質体に均一に供給するために、多孔質体でなけれ
ばならないが、NiOとZrO2 の粉末焼結によって得
られた多孔質体では、ニッケル−ジルコニアNi−Zr
2 の結合性が弱く、特に還元に際して基板のポロシテ
イが高くなるほど、強度の低下をきたし、組み立てや電
池作動時において、割れが発生し易いという問題があっ
た。
Further, the fuel gas supply substrate must be a porous body in order to uniformly supply the fuel gas to the solid electrolyte body. However, in the porous body obtained by powder sintering of NiO and ZrO 2 , , Nickel-zirconia Ni-Zr
There is a problem that the strength of O 2 is weak, and the strength of the substrate decreases as the porosity of the substrate increases during reduction, and cracks easily occur during assembly and battery operation.

【0008】さらに、燃料ガス供給基板5、酸化剤ガス
供給基板6、固体電解質体1、それぞれの熱膨張係数の
整合が完全に取れないために、熱歪により固体電解質体
1に割れが発生し、この割れによりガスリークが生じ、
電池出力が低下する。この発明は、上述の点を鑑みてな
され、その目的は、燃料ガス供給基板に割れや強度の低
下がなく、信頼性に優れる固体電解質型燃料電池の製造
方法を提供することにある。
Further, since the fuel gas supply substrate 5, the oxidant gas supply substrate 6, and the solid electrolyte body 1 cannot be perfectly matched in thermal expansion coefficient, cracks are generated in the solid electrolyte body 1 due to thermal strain. , This crack causes a gas leak,
Battery output drops. The present invention has been made in view of the above points, and an object thereof is to provide a method for manufacturing a solid oxide fuel cell, which is free from cracks and deterioration in strength of a fuel gas supply substrate and is excellent in reliability.

【0009】[0009]

【課題を解決するための手段】上述の目的はたの発明に
よれば単セルの両主面に燃料ガス供給基板と酸化剤ガス
供給基板の両反応ガス供給基板がそれぞれ配される固体
電解質型燃料電池の製造方法において、燃料ガス供給基
板はセラミックス多孔質体をニッケル金属コーティング
処理してなるとすることにより達成される。
According to another aspect of the present invention, there is provided a solid electrolyte type in which both reaction gas supply substrates of a fuel gas supply substrate and an oxidant gas supply substrate are arranged on both main surfaces of a single cell. In the method for manufacturing a fuel cell, the fuel gas supply substrate is achieved by coating the porous ceramic body with nickel metal.

【0010】また異なる発明によればセラミックス多孔
質体に対するニッケル金属コーティング処理は、無電解
ニッケルメッキであるとすることにより達成される。さ
らに異なる発明によれば、セラミックス多孔質体に対す
るニッケル金属コーティング処理は無電解ニッケルメッ
キに続く電解ニッケルメッキであるとすることにより達
成される。ここでセラミックス多孔質体とは、イットリ
ア、カルシア、マグネシア、セリアを添加した完全安定
化ジルコニアや部分安定化ジルコニアをセラミックスと
する気孔径50μm以上を有するハニカム状、網目状あ
るいはこれらのセラミックスファイバーをフェルト状と
したセラミックス多孔質体、あるいはアルミナを材料と
する前記の気孔径と形状を有するセラミックス多孔質体
である。
According to another aspect of the invention, the nickel metal coating treatment on the porous ceramic body is achieved by electroless nickel plating. According to a further different invention, the nickel metal coating treatment on the porous ceramic body is achieved by electroless nickel plating followed by electrolytic nickel plating. Here, the ceramics porous body means a honeycomb-like or mesh-like having a pore diameter of 50 μm or more or a ceramic fiber made of fully stabilized zirconia or partially stabilized zirconia added with yttria, calcia, magnesia, or ceria as a felt. Or a porous ceramic body made of alumina and having the above-described pore diameter and shape.

【0011】また、無電解ニッケルメッキは、リンまた
はボロンを含有する無電解のニッケルメッキで、無電解
ニッケルメッキは、セラミックス多孔質体に直接析出す
ることが困難であるため、ニッケルメッキ前に、塩化パ
ラジウムまたは塩化白金酸により活性化処理を行ってか
ら、ニッケルメッキを容易に行うことができる。
The electroless nickel plating is an electroless nickel plating containing phosphorus or boron, and the electroless nickel plating is difficult to deposit directly on the ceramic porous body. Nickel plating can be easily performed after the activation treatment with palladium chloride or chloroplatinic acid.

【0012】[0012]

【作用】セラミックス多孔質体をニッケル金属コーティ
ング処理すると、ニッケル金属コーティングはセラミッ
クス多孔質体の熱膨張率により伸縮する。燃料ガス供給
基板はセラミックス多孔質体をバルクとして用いる。ニ
ッケル金属コーティング処理として無電解ニッケルメッ
キを用いるとセラミックス多孔質体の内部に良く電解浴
が滲透する。
When the porous ceramic body is subjected to the nickel metal coating treatment, the nickel metal coating expands and contracts according to the coefficient of thermal expansion of the porous ceramic body. The fuel gas supply substrate uses a ceramic porous body as a bulk. When electroless nickel plating is used as the nickel metal coating treatment, the electrolytic bath penetrates well inside the porous ceramic body.

【0013】また、上記無電解ニッケルメッキに続いて
電解メッキを行うと、効率良くニッケル金属膜厚を増加
させることができる。
If electroless nickel plating is performed subsequently to the electroless nickel plating, the nickel metal film thickness can be efficiently increased.

【0014】[0014]

【実施例】次にこの発明の実施例を図面に基いて説明す
る。 実施例1 図1はこの発明の実施例に係る固体電解質型燃料電池の
製造方法を示す工程図である。セラミックス多孔質体は
イットリア,カルシア,マグネシア,セリアを添加した
完全安定化ジルコニアや部分安定化ジルコニアのいずか
の平均気孔径100μmを有するハニカム状、網目状あ
るいはこれらのセラミックスのファイバーをフエルト状
としたセラミックス多孔質体を用意する。
Embodiments of the present invention will now be described with reference to the drawings. Example 1 FIG. 1 is a process diagram showing a method for manufacturing a solid oxide fuel cell according to an example of the present invention. Porous ceramics are honeycomb-shaped, mesh-shaped, or felt-shaped fibers of these ceramics, which have an average pore diameter of 100 μm of either fully stabilized zirconia or partially stabilized zirconia added with yttria, calcia, magnesia, and ceria. The prepared porous ceramic body is prepared.

【0015】セラミックス表面に直接、メッキが付かな
いため、これら多孔質体を塩化パラジウムPdCl
2 0.01重量%溶液に1分間浸漬した後、水洗し11
0℃で乾燥させ、セラミックス多孔質体のポア表面をパ
ラジウムPdで活性化し、無電解ニッケルメッキが析出
し易いように前処理を行った。次にこれら前処理を行っ
た多孔質体を、90℃に加温しpHを調整したリン系無
電解ニッケルメッキ浴に浸漬し、1時間メッキを行っ
た。ニッケルの付着厚さは、約15μmで比抵抗は、約
50mΩ・cmである。
Since the surface of the ceramic is not directly plated, these porous bodies are made of palladium chloride PdCl.
2 Immerse in 0.01 wt% solution for 1 minute and wash with water 11
It was dried at 0 ° C., the pore surface of the ceramic porous body was activated with palladium Pd, and pretreatment was performed so that electroless nickel plating was easily deposited. Next, these pretreated porous bodies were immersed in a phosphorus-based electroless nickel plating bath heated to 90 ° C. and adjusted in pH, and plated for 1 hour. The adhesion thickness of nickel is about 15 μm and the specific resistance is about 50 mΩ · cm.

【0016】ボロン系無電解ニッケルメッキ浴も使用可
能である。しかし、ニッケルの析出速度が遅く、低抵抗
を得るための厚さを確保することが困難であるが1時間
メッキを行った結果、ニッケルの付着厚さは、約7μm
で比抵抗は、約150mΩ・cmであった。 実施例2 実施例1において、リン系無電解ニッケルメッキを行っ
たセラミックス多孔質体に、硫酸ニッケルを主成分とす
る電解ニッケルメッキ浴で、10A/dm2 の電流密度
で、10分間メッキし、さらに10〜15μmのニッケ
ル層を形成させた。この多孔質体へのニッケルの付着厚
さは、25〜30μmで、比抵抗は、約20mΩ・cm
である。
A boron-based electroless nickel plating bath can also be used. However, the nickel deposition rate is slow, and it is difficult to secure a thickness for obtaining low resistance, but as a result of plating for 1 hour, the nickel deposition thickness is about 7 μm.
The specific resistance was about 150 mΩ · cm. Example 2 In Example 1, the phosphorous electroless nickel-plated ceramics porous body was plated with an electrolytic nickel plating bath containing nickel sulfate as a main component at a current density of 10 A / dm 2 for 10 minutes, Further, a nickel layer having a thickness of 10 to 15 μm was formed. The adhesion thickness of nickel to this porous body is 25 to 30 μm, and the specific resistance is about 20 mΩ · cm.
Is.

【0017】ボロン系無電解ニッケルメッキを行ったセ
ラミックス多孔質体に、前記、電解ニッケルメッキ浴
で、10A/dm2 の電流密度で、15分間メッキし、
ニッケルの付着総厚さを、25〜30μmしたところ、
比抵抗が、約25mΩ・cmとなり、電解ニッケルメッ
キにより、メッキ層を厚くして抵抗化が図られる。実施
例のニッケルメッキを形成していないジルコニアの多孔
質体とニッケルメッキを形成した多孔質体およびニッケ
ルメッキ後、水素還元雰囲気中で1000℃×2h熱処
理したものを3mm×4mm×40mmの試験片とし、
三点曲げ強度試験を行ったところ、メッキ前の基板,実
施例1および実施例2の燃料ガス供給基板の強度は、い
ずれも40〜50MPsで還元雰囲気の熱処理による強
度低下も認められない。
A ceramic porous body plated with boron-based electroless nickel is plated with the electrolytic nickel plating bath at a current density of 10 A / dm 2 for 15 minutes,
When the total deposition thickness of nickel is 25 to 30 μm,
The specific resistance is about 25 mΩ · cm, and the electrolytic nickel plating thickens the plated layer to achieve resistance. A 3 mm x 4 mm x 40 mm test piece of a zirconia porous body without nickel plating, a nickel plated porous body of the example and a nickel plated porous body and heat-treated in a hydrogen reducing atmosphere at 1000 ° C for 2 hours. age,
When a three-point bending strength test was performed, the strength of the substrate before plating and the strength of the fuel gas supply substrates of Example 1 and Example 2 were 40 to 50 MPs, and no reduction in strength due to heat treatment in a reducing atmosphere was observed.

【0018】また、実施例の燃料ガス供給基板とストロ
ンチウムをドープしたランタンストロンチウムマンガナ
イトLa(Sr)MnO3 からなる酸化剤ガス供給基板
とにより図2に示す電池を製作し、燃料ガスとして水
素、酸化剤ガスとして空気を用い電池作動温度1000
℃における電池特性を測定した。その結果、開放時に電
圧1V、電流密度1A/cm2 時に電圧0.6Vを得
た。NiO−YSZを焼結したアノード電極板を用いた
特性と比較しても差は無いことが確認された。
Further, the battery shown in FIG. 2 was manufactured by using the fuel gas supply substrate of the embodiment and the oxidant gas supply substrate made of strontium-doped lanthanum strontium manganite La (Sr) MnO 3, and hydrogen was used as a fuel gas. Air is used as the oxidant gas and the battery operating temperature is 1000
The battery characteristics at ° C were measured. As a result, a voltage of 1 V was obtained when the circuit was opened, and a voltage of 0.6 V was obtained when the current density was 1 A / cm 2 . It was confirmed that there was no difference when compared with the characteristics using the anode electrode plate obtained by sintering NiO-YSZ.

【0019】また、焼結した燃料ガス供給基板のように
割れ等の発生は無く、かつ電池の起動、停止の熱サイク
ルにも耐え得るものであった。本実施例では、セラミッ
クス多孔質体としてジルコニアを用いて説明したが、ア
ルミナを材質とする多孔質体でも同様な、メッキ方法と
特性が得られ、ジルコニアより、熱膨張係数が低いもの
の、固体電解質体を適正にして価格的に低コスト化が図
れることがわかった。
Further, unlike the sintered fuel gas supply substrate, there was no occurrence of cracks and the like, and it could withstand the thermal cycle of starting and stopping the battery. In this example, zirconia was used as the ceramic porous body, but the same plating method and characteristics can be obtained with a porous body made of alumina. Although the thermal expansion coefficient is lower than that of zirconia, the solid electrolyte It was found that the body can be made proper and the cost can be reduced at a reasonable price.

【0020】燃料ガス供給基板上には単セルを直接的に
支持することも可能である。この場合は燃料ガス供給基
板の溝のない面に単セルが支持される。
It is also possible to directly support the unit cell on the fuel gas supply substrate. In this case, the unit cell is supported on the groove-free surface of the fuel gas supply substrate.

【0021】[0021]

【発明の効果】セラミックス多孔質体をニッケル金属コ
ーティング処理すると、ニッケル金属コーティングはセ
ラミックス多孔質体の熱膨張率により伸縮するので燃料
ガス供給板に割れが発生しない。また、燃料ガス供給基
板はセラミックス多孔質基体をバルクとして用いるた
め、基板の機械的強度はセラミックス多孔質基体により
左右されることとなり、機械的強度の高い燃料ガス供給
基板が得られる。
When the ceramic porous body is subjected to the nickel metal coating treatment, the nickel metal coating expands and contracts due to the coefficient of thermal expansion of the ceramic porous body, so that the fuel gas supply plate is not cracked. Further, since the fuel gas supply substrate uses the ceramic porous substrate as a bulk, the mechanical strength of the substrate depends on the ceramic porous substrate, so that the fuel gas supply substrate having high mechanical strength can be obtained.

【0022】機械的強度が向上すると、大面積で厚さの
薄い基板の製造も可能であり、さらに、セラミックス多
孔質体をジルコニアにすることにより、固体電解質体で
あるジルコニアと熱膨張係数を整合させ熱サイクルに強
い電池を製造することが可能となる。ニッケル金属コー
ティング処理として無電解ニッケルメッキを用いるとセ
ラミックス多孔質体の内部に良く電解浴が滲透する結
果、セラミックス多孔質体の内表面に容易に金属をコー
ティングすることができる。また製法が従来の方法より
工程短縮がなされ燃料電池のコストダウンができる。
If the mechanical strength is improved, it is possible to manufacture a substrate having a large area and a small thickness. Furthermore, by using zirconia as the ceramic porous body, the coefficient of thermal expansion is matched with that of the solid electrolyte body, zirconia. Thus, it becomes possible to manufacture a battery that is resistant to heat cycles. When electroless nickel plating is used as the nickel metal coating treatment, the electrolytic bath penetrates well into the inside of the ceramic porous body, and as a result, the metal can be easily coated on the inner surface of the ceramic porous body. Further, the manufacturing method is shorter than the conventional method, and the cost of the fuel cell can be reduced.

【0023】上記無電解ニッケルメッキに続いて電解メ
ッキを行うと、効率良くニッケル金属膜厚を増加させる
ことができ、電気伝導性の良好な燃料ガス供給基板が得
られる。
When electroless plating is performed after the electroless nickel plating, the nickel metal film thickness can be efficiently increased, and a fuel gas supply substrate having good electric conductivity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る固体電解質型燃料電池
の製造方法を示す工程図
FIG. 1 is a process chart showing a method for manufacturing a solid oxide fuel cell according to an embodiment of the present invention.

【図2】従来の固体電解質型燃料電池を示す分解斜視図FIG. 2 is an exploded perspective view showing a conventional solid oxide fuel cell.

【図3】従来の固体電解質型燃料電池の製造方法を示す
工程図
FIG. 3 is a process diagram showing a method for manufacturing a conventional solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1 固体電解質体 2 アノード 3 カソード 4 単セル 5 燃料ガス供給基板 6 酸化剤ガス供給基板 7 ガスセパレータ 1 Solid Electrolyte Body 2 Anode 3 Cathode 4 Single Cell 5 Fuel Gas Supply Substrate 6 Oxidant Gas Supply Substrate 7 Gas Separator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】単セルの両主面に燃料ガス供給基板と酸化
剤ガス供給基板の両反応ガス供給基板がそれぞれ配され
てなる固体電解質型燃料電池の製造方法において、燃料
ガス供給基板はセラミックス多孔質体をニッケル金属コ
ーティング処理してなることを特徴とする固体電解質型
燃料電池の製造方法。
1. A method for manufacturing a solid oxide fuel cell, comprising a reaction gas supply substrate of a fuel gas supply substrate and a reaction gas supply substrate of an oxidant gas supply substrate on both main surfaces of a single cell. A method for producing a solid oxide fuel cell, which comprises subjecting a porous body to a nickel metal coating treatment.
【請求項2】請求項1記載の製造方法において、ニッケ
ル金属コーティング処理は無電解ニッケルメッキである
ことを特徴とする固体電解質型燃料電池の製造方法。
2. The method for producing a solid oxide fuel cell according to claim 1, wherein the nickel metal coating treatment is electroless nickel plating.
【請求項3】請求項2記載の製造方法において、ニッケ
ル金属コーティング処理は無電解ニッケルメッキに続く
電解ニッケルメッキであることを特徴とする固体電解質
型燃料電池の製造方法。
3. The method for producing a solid oxide fuel cell according to claim 2, wherein the nickel metal coating treatment is electroless nickel plating followed by electrolytic nickel plating.
JP6006111A 1994-01-25 1994-01-25 Manufacture of solid electrolyte fuel cell Pending JPH07211335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6006111A JPH07211335A (en) 1994-01-25 1994-01-25 Manufacture of solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6006111A JPH07211335A (en) 1994-01-25 1994-01-25 Manufacture of solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH07211335A true JPH07211335A (en) 1995-08-11

Family

ID=11629400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6006111A Pending JPH07211335A (en) 1994-01-25 1994-01-25 Manufacture of solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH07211335A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207314B1 (en) * 1997-11-07 2001-03-27 Mitsubishi Heavy Industries, Ltd. Base material for a fuel battery
JP2003073847A (en) * 2001-08-29 2003-03-12 Araco Corp Method for manufacturing bilayer structural material with corrosion resistance
JP2007273430A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Solid oxide fuel cell and method of manufacturing same
WO2009122469A1 (en) * 2008-04-01 2009-10-08 三井金属鉱業株式会社 Sensor for the detection of molten metal level

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207314B1 (en) * 1997-11-07 2001-03-27 Mitsubishi Heavy Industries, Ltd. Base material for a fuel battery
JP2003073847A (en) * 2001-08-29 2003-03-12 Araco Corp Method for manufacturing bilayer structural material with corrosion resistance
JP2007273430A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Solid oxide fuel cell and method of manufacturing same
WO2009122469A1 (en) * 2008-04-01 2009-10-08 三井金属鉱業株式会社 Sensor for the detection of molten metal level
JP2009250641A (en) * 2008-04-01 2009-10-29 Mitsui Mining & Smelting Co Ltd Molten metal surface detection sensor

Similar Documents

Publication Publication Date Title
EP1472755B1 (en) Tubular solid oxide fuel cell stack
JP3756524B2 (en) Electrical interconnector for planar fuel cell
JP2005534152A (en) Metal supported tubular fuel cell
US7736772B2 (en) Tubular solid oxide fuel cell stack
US20030232230A1 (en) Solid oxide fuel cell with enhanced mechanical and electrical properties
JP2695641B2 (en) Method for manufacturing solid electrolyte fuel cell
JP4824916B2 (en) Current collector supported fuel cell
WO2006044313A2 (en) Preparation of solid oxide fuel cell electrodes by electrodeposition
JP2007172846A (en) Tube type electrochemical reactor cell and electrochemical reaction system composed by it
JP3978603B2 (en) Cell plate for solid oxide fuel cell and method for producing the same
KR20130042868A (en) Solid oxide fuel cell
JP2001351642A (en) Separator for fuel cell
KR101215418B1 (en) Method of unit cell for solid oxide fuel cell
JPH10172590A (en) Solid electrolyte type fuel cell
JPH07211335A (en) Manufacture of solid electrolyte fuel cell
JP2002367633A (en) Cell indirect connection method for solid oxide fuel cell
US20100112196A1 (en) Thin film MEA structures for fuel cell and method for fabrication
JP3339998B2 (en) Cylindrical fuel cell
JP2018032578A (en) Method for manufacturing electrochemical reaction cell
JPH11185780A (en) Cylindrical fuel cell with solid electrolyte
JP3257363B2 (en) Solid oxide fuel cell
JPH03238758A (en) Fuel cell of solid electrolyte type
JPH1040933A (en) Anode film forming method in fuel cell
WO2020261935A1 (en) Fuel electrode-solid electrolyte layer composite body, fuel electrode-solid electrolyte layer composite member, fuel cell and method for producing fuel cell
KR102037938B1 (en) Cathode current collector for solid oxide fuel cells and current collector method using the same