JPH07210257A - Temperature controller using heat flow path variable surface - Google Patents

Temperature controller using heat flow path variable surface

Info

Publication number
JPH07210257A
JPH07210257A JP294994A JP294994A JPH07210257A JP H07210257 A JPH07210257 A JP H07210257A JP 294994 A JP294994 A JP 294994A JP 294994 A JP294994 A JP 294994A JP H07210257 A JPH07210257 A JP H07210257A
Authority
JP
Japan
Prior art keywords
flow path
heat flow
heat
temperature
shape memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP294994A
Other languages
Japanese (ja)
Inventor
Yoichi Murai
洋一 村井
Muneo Mizumoto
宗男 水本
Eiichi Sato
栄一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP294994A priority Critical patent/JPH07210257A/en
Publication of JPH07210257A publication Critical patent/JPH07210257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Control Of Temperature (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To control the temperature within a range set for each working equipment by putting two different types of material sheets on each other to joining partly them together and changing the section area of a heat flow path by means of the difference of expansion caused between both sheets by the difference of linear expansion coefficients. CONSTITUTION:A heat flow path variable surface consists of a sheet material 1 having a specified linear expansion coefficient and a sheet material 2 which is partly joined or welded to the material 1 via a joint part 3. The linear expansion coefficient of the material 2 is set larger than that of the material 1. When the temperature rises, the contact area is reduced between both materials 1 and 2 and a heat flow path is narrowed. Thus the heat can not easily flow to the material 1 from the material 2 so that the heat of the material 2 is hardly transmitted to the material 1. When the temperature drops, the material 2 has a larger coefficient of contraction than the material 1 so that the spaces are generated between both materials 1 and 2 at the parts other than the part 3. As a result, the heat flow path is also narrowed and therefore the heat of the material 1 is hardly transmitted to the material 2. Thus the radiation of heat can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正常な動作を保証する
使用温度範囲等があり、厳密な温度制御が必要である機
器や恒温状態に保つ必要がある機器の表面及び周辺部表
面に適用する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to the surface and peripheral surface of equipment that has a working temperature range that guarantees normal operation and that requires strict temperature control or equipment that needs to be kept at a constant temperature. To do.

【0002】[0002]

【従来の技術】高温及び低温,高低温の温度サイクルに
曝される、精密電子部品を搭載している精密機器は、精
密電子部品が正常に動作するための使用温度範囲が設定
されており、この範囲を越えて使用していると、機器に
不具合等が起こってしまう。そのため、そのように温度
制御が必要な部品等を搭載した機器には、冷却装置や加
熱装置が付加されている。この冷却装置や加熱装置によ
って、精密電子部品を搭載した精密機器の温度は、使用
温度範囲内に制御されている。
2. Description of the Related Art Precision equipment equipped with precision electronic components that are exposed to high-temperature, low-temperature, and high-low temperature cycles have a temperature range within which the precision electronic components operate normally. If it is used beyond this range, the equipment may malfunction. For this reason, a cooling device and a heating device are added to the device in which the components that require temperature control are mounted. With this cooling device and heating device, the temperature of the precision equipment equipped with precision electronic components is controlled within the operating temperature range.

【0003】また、従来の装置は、特開昭60−104500号
公報に記載されたもののように形状記憶合金のばねの伸
縮を利用して、熱流路の断面積を変化させる装置も開発
されている。
Further, as a conventional device, a device for changing the cross-sectional area of the heat flow path by utilizing expansion and contraction of a shape memory alloy spring has been developed as described in JP-A-60-104500. There is.

【0004】[0004]

【発明が解決しようとする課題】高温下、また低温下,
高低温の温度サイクル環境下に置かれた、精密電子部品
を搭載した精密機器は正常に動作する使用温度範囲に、
機器の温度を制御する必要があり、従来、特別な冷却装
置や保温用の加熱装置を付加することによって、精密機
器の温度制御を行っている。しかし、この冷却装置や加
熱装置が使用するエネルギは、精密機器の消費するエネ
ルギのかなりの部分を占め、省エネルギの観点から問題
であった。特に、宇宙等の環境では、供給エネルギに限
度があり、省エネルギは重要な課題である。また、冷却
装置や加熱装置を機器より取り外せば、機器が正常に動
作する使用温度範囲をはずれてしまい、正常な動作を行
うことが不可能になるなどの課題がある。
Under the high temperature and the low temperature,
Precise equipment equipped with precision electronic parts placed under high and low temperature cycle environment is within the operating temperature range where it operates normally.
It is necessary to control the temperature of the equipment, and conventionally, the temperature of the precision equipment is controlled by adding a special cooling device or a heating device for keeping heat. However, the energy used by the cooling device and the heating device occupies a considerable part of the energy consumed by the precision equipment, which is a problem from the viewpoint of energy saving. Especially in an environment such as space, the energy supply is limited, and energy saving is an important issue. Further, if the cooling device and the heating device are removed from the equipment, there is a problem that the equipment is out of the operating temperature range in which the equipment normally operates, and normal operation becomes impossible.

【0005】また、該従来技術で紹介した形状記憶合金
を用いた熱流路可変機構は、機構の大きさ等などの制約
や複雑な機構による低信頼性のため、精密電子部品等を
搭載した精密機器の任意の表面、駆動部付近の任意形状
の面に容易に付加することが困難であるなどの課題があ
る。
In addition, the heat flow path variable mechanism using the shape memory alloy introduced in the prior art is a precision mechanism equipped with precision electronic parts, etc. due to restrictions such as size of mechanism and low reliability due to complicated mechanism. There is a problem that it is difficult to easily attach it to an arbitrary surface of the device or a surface having an arbitrary shape near the driving unit.

【0006】[0006]

【課題を解決するための手段】熱流路可変表面は、温度
により熱の流れる流路の長さ及び流路の断面積を変化さ
せる機構を持たせた表面である。この熱流路可変表面
を、精密電子部品等を搭載し、使用温度が制限される精
密機器の回りに被覆すると、熱流路可変表面の温度によ
り熱流路が変化して、外部から熱流路可変表面で密閉さ
れた内部の精密機器へ侵入する熱量や熱流路可変表面で
密閉された内部の精密機器から外部へ放熱される熱流量
を制御することが可能になる。これにより、熱流路可変
表面に囲まれた精密機器に入射する熱量や外部へ放射す
る熱量を制御して、機器の温度を正常に動作する使用温
度範囲内に保つことが可能になる。
The variable heat flow path surface is a surface provided with a mechanism for changing the length of the flow path of heat and the cross-sectional area of the flow path depending on the temperature. When this heat flow path variable surface is loaded with precision electronic parts and is coated around precision equipment whose operating temperature is limited, the heat flow path is changed by the temperature of the heat flow path variable surface, and It is possible to control the amount of heat entering the sealed precision equipment and the heat flow rate radiated to the outside from the precision equipment sealed inside by the variable heat flow path surface. This makes it possible to control the amount of heat that enters the precision equipment surrounded by the heat flow path variable surface and the amount of heat that radiates to the outside, so that the temperature of the equipment can be maintained within a normal operating temperature range.

【0007】[0007]

【作用】精密電子部品等を搭載した精密機器の回りを被
覆した熱流路可変表面は、温度により熱流路の断面積や
長さを変化させる機構を持つ表面であり、その機構は精
密機器へ侵入する熱量や精密機器から放熱される熱量を
制御するもので、精密機器の温度を制御する作用があ
る。ここで用いる機構とは、二種類の材料シートを重ね
て部分的に接合し、線膨張係数の差による各材料シート
の伸張差を利用して熱流路の断面積を変化させるもので
ある。また、他の機構では、熱流路に形状記憶合金を利
用して、熱流路の温度上昇に伴い形状記憶合金の切欠き
を動作させて、熱流路の断面積や長さを変化させるもの
である。
[Function] The variable heat flow path surface that covers the precision equipment equipped with precision electronic parts has a mechanism to change the cross-sectional area and length of the heat flow passage depending on the temperature. The mechanism penetrates into the precision equipment. It controls the amount of heat generated and the amount of heat radiated from precision equipment, and has the effect of controlling the temperature of precision equipment. The mechanism used here is one in which two types of material sheets are overlapped and partially bonded, and the cross-sectional area of the heat flow path is changed by utilizing the difference in expansion between the material sheets due to the difference in linear expansion coefficient. Further, in another mechanism, a shape memory alloy is used for the heat flow passage, and the notch of the shape memory alloy is operated as the temperature of the heat flow passage rises to change the cross-sectional area and length of the heat flow passage. .

【0008】[0008]

【実施例】以下、本発明の実施例を図1から図5を用い
て説明する。図1は、熱流路が絞られた状態の熱流路可
変表面である。熱流路可変表面は、線膨張係数ρのシー
ト状の材料1及び材料1と部分的に接合または溶接され
た、シート状の材料2から構成される。この材料2の線
膨張係数は材料1より大きいものとする。図3は、材料
1と材料2の接合状態を示す。この図に示すように材料
1と材料2の部分的な接合部3の形状は平面を充填でき
る形状、例えば、六角形や四角形,三角形等が望まし
い。また接合部3の形状は、同一の形状でなくてもよ
く、複数種類の形状を組み合わせてもよい。図2は熱流
路可変表面が熱流路を絞っていない状態を示す。温度の
変化がない場合、この図が示すように、材料1と材料2
が接合部3以外でも接し、このときの熱流路の断面積は
材料1と材料2の接触面積となる。熱の出入りは、この
接触面を介して行われる。この状態を熱流路を絞ってい
ない状態という。図4は、熱流路を絞っていないときの
熱流路可変表面の断面状態を示す。この状態から、熱流
路可変表面の温度が上昇するとそれぞれの材料1,2は
伸張する。特に、材料2は、材料1よりも線膨張係数が
大きいので、材料1よりも伸張量が大きくなる。しか
し、材料1と材料2は、接合部3によって、部分的に接
合されているので、材料2は材料1に拘束され、自由に
伸張することができず、材料1に対して材料2は接合部
3以外のところが持ち上がり、材料1との間に空間を設
ける。図5は、温度が上昇して材料1と材料2の間に空
間ができたときの熱流路可変表面の断面状態である。こ
れにより、材料1と材料2の接触面積が小さくなり、熱
の流路としての断面積が小さくなり、熱流路は絞られた
状態になる。すると、材料2から材料1へ熱が流れにく
くなり、熱の侵入を防ぐことが可能になる。また、温度
が低下した場合、材料2の方が収縮が大きいので、接合
部3以外で、材料1と材料2の間に空間ができる。これ
により、材料1と材料2の接触面積が小さくなり、熱流
路としての断面積が小さくなるので、やはり熱流路は絞
られた状態になる。すると、材料1から材料2へ熱が流
れにくくなり、熱の放射を防ぐことができる。また、図
1の熱流路可変表面は、2種類のシート状の材料で構成
されているが、複数種類のシート状の材料を重ねて、そ
れぞれのシート状の材料を部分的に接合することで、よ
り熱量を制御できる熱流路可変表面を構成することがで
きる。この表面を温度制御対象物の任意の表面に付加す
ることにより、温度制御対象物に侵入する熱及び放熱を
制御し、温度対象物を任意の温度や保温状態に保つこと
が可能になる。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5. FIG. 1 shows a heat flow path variable surface in which the heat flow path is narrowed. The variable heat flow path surface is composed of a sheet-shaped material 1 having a linear expansion coefficient ρ and a sheet-shaped material 2 partially bonded or welded to the material 1. The linear expansion coefficient of the material 2 is larger than that of the material 1. FIG. 3 shows a bonded state of the material 1 and the material 2. As shown in this figure, the shape of the partial joint 3 between the material 1 and the material 2 is preferably a shape capable of filling a flat surface, such as a hexagon, a quadrangle, or a triangle. Further, the shapes of the joint portions 3 do not have to be the same, and a plurality of types of shapes may be combined. FIG. 2 shows a state in which the heat flow path variable surface does not narrow the heat flow path. If there is no temperature change, as shown in this figure, material 1 and material 2
Are in contact with each other except the joint portion 3, and the cross-sectional area of the heat flow path at this time is the contact area between the material 1 and the material 2. Heat is transferred in and out through this contact surface. This state is called a state where the heat flow path is not narrowed. FIG. 4 shows a cross-sectional state of the heat flow path variable surface when the heat flow path is not narrowed. From this state, when the temperature of the heat flow path variable surface rises, the respective materials 1 and 2 expand. In particular, since the material 2 has a larger linear expansion coefficient than the material 1, the amount of expansion is larger than that of the material 1. However, since the material 1 and the material 2 are partially bonded by the bonding portion 3, the material 2 is constrained by the material 1 and cannot be freely stretched, and the material 2 is bonded to the material 1. The parts other than the part 3 are lifted, and a space is provided between the part 1 and the part 1. FIG. 5 is a cross-sectional state of the heat flow path variable surface when the temperature rises and a space is formed between the material 1 and the material 2. As a result, the contact area between the material 1 and the material 2 is reduced, the cross-sectional area of the heat flow passage is reduced, and the heat flow passage is in a narrowed state. Then, it becomes difficult for heat to flow from the material 2 to the material 1, and it becomes possible to prevent heat from entering. Further, when the temperature is lowered, the material 2 shrinks more, so that a space is formed between the material 1 and the material 2 other than the bonding portion 3. As a result, the contact area between the material 1 and the material 2 is reduced, and the cross-sectional area of the heat flow passage is reduced, so that the heat flow passage is also in a narrowed state. Then, it becomes difficult for heat to flow from the material 1 to the material 2, and the radiation of heat can be prevented. Further, the heat flow path variable surface of FIG. 1 is composed of two kinds of sheet-shaped materials. However, by stacking a plurality of kinds of sheet-shaped materials and partially joining the sheet-shaped materials, A heat flow path variable surface that can control the amount of heat can be configured. By adding this surface to an arbitrary surface of the temperature controlled object, it is possible to control heat and heat radiation that penetrates into the temperature controlled object, and to keep the temperature object at an arbitrary temperature or heat retention state.

【0009】以下、本発明の実施例を図6から図12を
用いて説明する。熱流路可変表面はシート状の形状記憶
合金4及び弾性を持つシート状の材料5,シート材料6
から構成される。この形状記憶合金4は、ある任意の設
定温度で、あらかじめ記憶させておいた形状に、変化す
るものである。シート材料6は弾性を持つ材料5の上に
接着され、弾性を持つ材料5とシート状の形状記憶合金
4は重ねられている。弾性を持つ材料5と形状記憶合金
4にはそれぞれ短冊状の切欠きがある。ただし、それぞ
れの切欠きの形状は、短冊状である必要はなく、以下に
述べる機能を満足すればどのような形状でもよい。図8
は形状記憶合金4の切欠きに記憶された形状を示す。形
状記憶合金4の切欠きは、ある設定温度で、この図のよ
うに形状記憶合金4に重ねられたシート材料6と弾性を
持つ材料5を持ち上げるような形状に記憶処理されてい
る。弾性を持つ材料5の切欠きは先端に溶接部7をも
ち、形状記憶合金4と接合または溶接されている。この
溶接部7は、形状記憶合金4の切欠き部分を除いた位置
に設けられる。図7は、熱流路可変表面が熱流路を絞っ
ていない状態を示す。形状記憶合金4の短冊状の記憶処
理部8は、形状記憶の設定温度以下では、形状記憶処理
部8以外の形状記憶合金と同じ形状であり、図のよう
に、シート状の形状記憶合金4と弾性を持つ材料5とは
接合部7以外でも接触している。このときの熱流路の断
面積は形状記憶合金4と弾性を持つ材料5の接触面積と
なる。熱の出入りは、この接触面を介して行われる。こ
の状態を熱流路を絞っていない状態という。図9は、熱
流路を絞っていないときの熱流路可変表面の断面状態を
示す。この状態から、温度が上昇し形状記憶した設定温
度以上になると、形状記憶合金4の形状記憶処理部8が
記憶した形状になり、シート材料6と弾性を持つ材料5
を形状記憶合金4から持ち上げる。すると、形状記憶合
金4と弾性を持つ材料5の間には空間ができる。図10
は、形状記憶合金4と弾性を持つ材料5との間に空間が
できたときの熱流路可変表面の断面状態を示す。これに
より、形状記憶合金4と弾性を持つ材料5との間の熱流
路は形状記憶合金4と弾性を持つ材料5のそれぞれの切
欠き部のみになり、熱の流路としての断面積が小さくな
り、熱流路長が長くなり、熱流路は絞られた状態にな
る。すると、弾性を持つ材料5から形状記憶合金4へ熱
が流れにくくなり、熱の侵入を防ぐことが可能になる。
また、弾性を持つ材料5の切欠きは溶接部7で形状記憶
合金4と接合されているので、シート材料6と弾性を持
つ材料5が形状記憶合金4から持ち上がると弾性を持つ
材料5の切欠き部は変形する。この変形により、シート
材料6と弾性を持つ材料5を形状記憶合金4に接触させ
ようとする復元力が発生する。この復元力は、温度が形
状記憶した設定温度より低下すると、形状記憶処理部8
の形状を変形させて、形状記憶合金4と弾性を持つ材料
5が接触した状態に復元するものである。ただし、弾性
を持つ材料5の切欠き部の変形は、弾性変形内に収まる
ものとし、この変形によって発生する弾性復元力は、記
憶設定温度以上に温度を上昇させた際の形状記憶処理部
9で記憶形状が再現されるときに発生する変形力よりも
小さく、記憶設定温度以下に温度が低下した際の形状記
憶処理部9の形状を変形するに十分な力であるものとす
る。図11と図12を用いて、復元力等について説明す
る。図11は形状記憶合金4の切欠き部の拡大図であ
り、図の12は弾性を持つ材料5の拡大図である。形状
記憶合金4の板厚をd4,切欠きの長さをL4,幅をW4
とし、切欠き回りの溝幅をδ4とする。溝幅δ4 は、切
欠きの動作性をよくするために、数1の条件を満足す
る。
An embodiment of the present invention will be described below with reference to FIGS. 6 to 12. The heat flow path variable surface is a sheet-shaped shape memory alloy 4 and an elastic sheet-shaped material 5, sheet material 6
Composed of. The shape memory alloy 4 changes to a shape stored in advance at a certain set temperature. The sheet material 6 is bonded onto the elastic material 5, and the elastic material 5 and the sheet-shaped shape memory alloy 4 are superposed. The elastic material 5 and the shape memory alloy 4 each have a rectangular cutout. However, the shape of each notch does not have to be a strip shape, and may be any shape as long as the functions described below are satisfied. Figure 8
Indicates the shape stored in the notch of the shape memory alloy 4. The notch of the shape memory alloy 4 is memorized at a certain set temperature so that the sheet material 6 and the elastic material 5 stacked on the shape memory alloy 4 are lifted as shown in this figure. The notch of the elastic material 5 has a welded portion 7 at its tip and is joined or welded to the shape memory alloy 4. The welded portion 7 is provided at a position excluding the cutout portion of the shape memory alloy 4. FIG. 7 shows a state in which the heat flow path variable surface does not narrow the heat flow path. The strip-shaped memory processing unit 8 of the shape-memory alloy 4 has the same shape as the shape-memory alloys other than the shape-memory processing unit 8 below the preset temperature for shape-memory, and as shown in the figure, the sheet-shaped shape-memory alloy 4 is used. The material 5 having elasticity is in contact with the material other than the joint 7. The cross-sectional area of the heat flow path at this time is the contact area between the shape memory alloy 4 and the elastic material 5. Heat is transferred in and out through this contact surface. This state is called a state where the heat flow path is not narrowed. FIG. 9 shows a cross-sectional state of the heat flow path variable surface when the heat flow path is not narrowed. From this state, when the temperature rises and becomes equal to or higher than the preset temperature stored in the shape memory, the shape becomes the shape stored in the shape memory processing unit 8 of the shape memory alloy 4, and the sheet material 6 and the material 5 having elasticity.
Is lifted from the shape memory alloy 4. Then, a space is formed between the shape memory alloy 4 and the elastic material 5. Figure 10
Shows a cross-sectional state of the heat flow path variable surface when a space is formed between the shape memory alloy 4 and the elastic material 5. As a result, the heat flow paths between the shape memory alloy 4 and the elastic material 5 are only the notches of the shape memory alloy 4 and the elastic material 5, respectively, and the cross-sectional area as a heat flow path is small. Therefore, the length of the heat flow path becomes longer, and the heat flow path is in a narrowed state. Then, it becomes difficult for heat to flow from the elastic material 5 to the shape memory alloy 4, and it is possible to prevent heat from entering.
Further, since the notch of the elastic material 5 is joined to the shape memory alloy 4 at the welding portion 7, when the sheet material 6 and the elastic material 5 are lifted from the shape memory alloy 4, the elastic material 5 is cut. The notch is deformed. Due to this deformation, a restoring force that causes the sheet material 6 and the elastic material 5 to come into contact with the shape memory alloy 4 is generated. This restoring force is obtained when the temperature becomes lower than the set temperature stored in the shape memory, the shape memory processing unit 8
The shape is deformed to restore the state in which the shape memory alloy 4 and the elastic material 5 are in contact with each other. However, the deformation of the cutout portion of the elastic material 5 is contained within the elastic deformation, and the elastic restoring force generated by this deformation is the shape memory processing unit 9 when the temperature is raised above the memory set temperature. It is assumed that the force is smaller than the deformation force generated when the memorized shape is reproduced, and is sufficient to deform the shape of the shape memory processing unit 9 when the temperature falls below the memory set temperature. The restoring force and the like will be described with reference to FIGS. 11 and 12. FIG. 11 is an enlarged view of the notch portion of the shape memory alloy 4, and 12 in the figure is an enlarged view of the elastic material 5. The thickness of shape memory alloy 4 is d4, the length of the notch is L4, and the width is W4.
And the groove width around the notch is δ4. The groove width δ4 satisfies the condition of Expression 1 in order to improve the operability of the notch.

【0010】[0010]

【数1】 [Equation 1]

【0011】また形状記憶合金4において、形状を記憶
させた設定温度以上の高温で記憶した形状に変形する際
に発生する力である形状回復応力をσ、設定温度以下の
低温で塑性変形に必要な力である変形応力をσ′とし、
形状記憶合金に与えることができ、確実な形状記憶動作
を保証できる歪み量である作動限界歪み量をεとする。
また、弾性を持つ材料5の板厚をd5 ,切欠きの長さを
L5 ,幅をW5 ,縦弾性係数をEとし、切欠き回りの溝
幅をδ5とする。この溝幅δ5は、切欠きの動作性をよく
するために、数2を満足する。
In the shape memory alloy 4, a shape recovery stress, which is a force generated when the shape is memorized at a high temperature higher than a set temperature, is required for plastic deformation at a low temperature σ, which is lower than the set temperature. Let σ ′ be the deformation stress that is
Let ε be an operation limit strain amount that is a strain amount that can be given to a shape memory alloy and can guarantee a reliable shape memory operation.
Further, the plate thickness of the elastic material 5 is d5, the length of the notch is L5, the width is W5, the longitudinal elastic modulus is E, and the groove width around the notch is δ5. The groove width δ5 satisfies the expression 2 in order to improve the operability of the notch.

【0012】[0012]

【数2】 [Equation 2]

【0013】形状記憶合金4の切欠きの弾性を持つ材料
5を持ち上げるために記憶させる形状の曲率半径をR4
とすれば、形状記憶合金4の形状記憶動作を確実にし、
熱流路可変表面の動作性をよくするために、曲率半径R
4 は、数3の条件を満足する。
The radius of curvature of the shape to be memorized in order to lift the material 5 having the elasticity of the notch of the shape memory alloy 4 is R4.
If so, the shape memory operation of the shape memory alloy 4 is ensured,
In order to improve the operability of the heat flow path variable surface, the radius of curvature R
4 satisfies the condition of Equation 3.

【0014】[0014]

【数3】 [Equation 3]

【0015】形状記憶合金4の切欠き部の記憶形状を確
実に動作させたり、記憶形状を元の形状に戻すための、
弾性を持つ材料5の切欠き部の寸法は、数4の関係を満
足する。
In order to surely operate the memory shape of the notch portion of the shape memory alloy 4 or to restore the memory shape to the original shape,
The size of the cutout portion of the material 5 having elasticity satisfies the relationship of Expression 4.

【0016】[0016]

【数4】 [Equation 4]

【0017】ただし、これは切欠き形状を矩形を例に行
ったものである。この表面を温度制御対象物の任意の表
面に付加することにより、温度制御対象物に侵入する熱
及び放熱を制御し、温度対象物を任意の温度や保温状態
に保つことが可能になる。
However, this is done by taking a rectangular notch shape as an example. By adding this surface to an arbitrary surface of the temperature controlled object, it is possible to control heat and heat radiation that penetrates into the temperature controlled object, and to keep the temperature object at an arbitrary temperature or heat retention state.

【0018】以下、本発明の実施例を図13から図17
を用いて説明する。熱流路可変表面はシート状の形状記
憶合金4及び弾性を持つシート状の材料5,シート材料
6から構成される。形状記憶合金4は、ある任意の設定
温度で、あらかじめ記憶させておいた形状に変化する。
シート材料6は弾性を持つ材料5の上に接着され、弾性
を持つ材料5とシート状の形状記憶合金4は重ねられて
いる。弾性を持つ材料5と形状記憶合金4にはそれぞれ
短冊状の切欠きがある。ただし、それぞれの切欠きの形
状は、短冊状である必要はなく、以下に述べる機能を満
足すればどのような形状でもよい。形状記憶合金4の切
欠きは、ある設定温度で、この図のように形状記憶合金
4に重ねられたシート材料6と弾性を持つ材料5を持ち
上げるような形状に記憶処理されている。弾性を持つ材
料5の切欠きは、形状記憶合金4と重なる面で段差を持
ち、その板厚は、切欠き以外の部分の板厚より小さくな
っている。切欠きは先端に溶接部7を持ち、形状記憶合
金4と接合または溶接されている。この溶接部7は、形
状記憶合金4の切欠き部分を除いた位置に設けられる。
図14は、熱流路可変表面が熱流路を絞っていない状態
を示す。形状記憶合金4の短冊状の記憶処理部8は、形
状記憶の設定温度以下では、形状記憶処理部8以外の形
状記憶合金と同じ形状であり、図のように、シート状の
形状記憶合金4と弾性を持つ材料5とは接合部7以外で
も接触している。このとき、弾性を持つ材料5の切欠き
は、段差により、形状記憶合金4と弾性を持つ材料5を
密着させようとする復元力を発生させるので、形状記憶
合金4と弾性を持つ材料5の間に密着性が増し、形状記
憶合金4と弾性を持つ材料5の接触面積は増大し、熱流
路の断面積は大きくなる。熱の出入りは、この接触面を
介して行われる。この状態を熱流路を絞っていない状態
という。ただし、弾性を持つ材料5の切欠き部の変形
は、弾性変形とする。図15は、熱流路を絞っていない
ときの熱流路可変表面の断面状態を示す。この状態か
ら、温度が上昇し形状記憶した設定温度以上になると、
形状記憶合金4の形状記憶処理部8が記憶した形状にな
り、シート材料6と弾性を持つ材料5を形状記憶合金4
から持ち上げる。すると、形状記憶合金4と弾性を持つ
材料5の間には空間ができる。図16は、形状記憶合金
4と弾性を持つ材料5との間に空間ができたときの熱流
路可変表面の断面状態を示す。これにより、形状記憶合
金4と弾性を持つ材料5との間の熱流路は形状記憶合金
4と弾性を持つ材料5のそれぞれの切欠き部のみにな
り、熱の流路としての断面積が小さく、熱流路が長くな
り、熱流路は絞られた状態になる。すると、弾性を持つ
材料5から形状記憶合金4へ熱が流れにくくなり、熱の
侵入を防ぐことが可能になる。また、弾性を持つ材料5
の切欠きは溶接部7で形状記憶合金4と接合されている
ので、シート材料6と弾性を持つ材料5が形状記憶合金
4から持ち上がると弾性を持つ材料5の切欠き部はさら
に変形する。この変形により、シート材料6と弾性を持
つ材料5を形状記憶合金4に接触させようとする復元力
が発生する。この復元力は、温度が形状記憶した設定温
度より低下すると、形状記憶処理部8の形状を変形させ
て、形状記憶合金4と弾性を持つ材料5が接触した状態
に復元する。ただし、弾性を持つ材料5の切欠き部の変
形は、弾性変形内に収まるものとし、この変形によって
発生する弾性復元力は、記憶設定温度以上に温度を上昇
させた際の形状記憶処理部9で記憶形状が再現されると
きに発生する変形力よりも小さく、記憶設定温度以下に
温度が低下した際の形状記憶処理部9の形状を変形する
に十分な力であるものとする。図11と図12を用い
て、復元力等の条件を説明する。図17を用いて、復元
力等について説明する。形状記憶合金4の切欠き部は図
11と同じであり、図の17は弾性を持つ材料5の拡大
図である。形状記憶合金4の板厚をd4 ,切欠きの長さ
をL4,幅をW4とし、切欠き回りの溝幅をδ4とする。
溝幅δ4は、切欠きの動作性をよくするために、数1の
条件を満足する。また形状記憶合金4において、形状を
記憶させた設定温度以上の高温で記憶した形状に変形す
る際に発生する力である形状回復応力をσ、設定温度以
下の低温で塑性変形に必要な力である変形応力をσ′と
し、形状記憶合金に与えることができ、確実な形状記憶
動作を保証できる歪み量である作動限界歪み量をεとす
る。また、弾性を持つ材料5の板厚をd′5,切欠きの
長さをL5,幅をW5,板厚をd4 ,縦弾性係数をEと
し、溶接部7の長さをs5,切欠き回りの溝幅をδ5とす
る。溝幅δ5は、切欠きの動作性をよくするために、数
2を満足する。形状記憶合金4の切欠きの弾性を持つ材
料5を持ち上げるために記憶させる形状の曲率半径をR
4 とすれば、形状記憶合金4の形状記憶動作を確実に
し、熱流路可変表面の動作性をよくするために、曲率半
径R4 は、数3の条件を満足する。形状記憶合金4の切
欠き部の記憶形状を確実に動作させたり、記憶形状を元
の形状に戻すための、弾性を持つ材料5の切欠き部の寸
法は、数5の関係を満足する。
Embodiments of the present invention will be described below with reference to FIGS.
Will be explained. The heat flow path variable surface is composed of a sheet-shaped shape memory alloy 4, an elastic sheet-shaped material 5, and a sheet material 6. The shape memory alloy 4 changes to a shape stored in advance at a certain set temperature.
The sheet material 6 is bonded onto the elastic material 5, and the elastic material 5 and the sheet-shaped shape memory alloy 4 are superposed. The elastic material 5 and the shape memory alloy 4 each have a rectangular cutout. However, the shape of each notch does not have to be a strip shape, and may be any shape as long as the functions described below are satisfied. The notch of the shape memory alloy 4 is memorized at a certain set temperature so that the sheet material 6 and the elastic material 5 stacked on the shape memory alloy 4 are lifted as shown in this figure. The notch of the elastic material 5 has a step on the surface overlapping the shape memory alloy 4, and the plate thickness thereof is smaller than the plate thickness of the portion other than the notch. The notch has a welded portion 7 at its tip and is joined or welded to the shape memory alloy 4. The welded portion 7 is provided at a position excluding the cutout portion of the shape memory alloy 4.
FIG. 14 shows a state in which the heat flow path variable surface does not narrow the heat flow path. The strip-shaped memory processing unit 8 of the shape-memory alloy 4 has the same shape as the shape-memory alloys other than the shape-memory processing unit 8 below the preset temperature for shape-memory, and as shown in the figure, the sheet-shaped shape-memory alloy 4 is used. The material 5 having elasticity is in contact with the material other than the joint 7. At this time, the notch of the elastic material 5 generates a restoring force to bring the shape memory alloy 4 and the elastic material 5 into close contact with each other due to the step difference. In the meantime, the adhesiveness increases, the contact area between the shape memory alloy 4 and the elastic material 5 increases, and the cross-sectional area of the heat flow path increases. Heat is transferred in and out through this contact surface. This state is called a state where the heat flow path is not narrowed. However, the deformation of the cutout portion of the elastic material 5 is elastic deformation. FIG. 15 shows a cross-sectional state of the heat flow path variable surface when the heat flow path is not narrowed. From this state, if the temperature rises and exceeds the set temperature stored in the shape memory,
The shape memory processing unit 8 of the shape memory alloy 4 has a shape stored in the shape memory alloy 4, and the sheet material 6 and the elastic material 5 are combined with each other.
Lift from. Then, a space is formed between the shape memory alloy 4 and the elastic material 5. FIG. 16 shows a cross-sectional state of the heat flow path variable surface when a space is formed between the shape memory alloy 4 and the elastic material 5. As a result, the heat flow paths between the shape memory alloy 4 and the elastic material 5 are only the notches of the shape memory alloy 4 and the elastic material 5, respectively, and the cross-sectional area as a heat flow path is small. The heat flow path becomes longer, and the heat flow path becomes narrowed. Then, it becomes difficult for heat to flow from the elastic material 5 to the shape memory alloy 4, and it is possible to prevent heat from entering. In addition, elastic material 5
Since the notch is joined to the shape memory alloy 4 at the welded portion 7, when the sheet material 6 and the elastic material 5 are lifted from the shape memory alloy 4, the notched portion of the elastic material 5 is further deformed. Due to this deformation, a restoring force that causes the sheet material 6 and the elastic material 5 to come into contact with the shape memory alloy 4 is generated. This restoring force deforms the shape of the shape memory processing unit 8 when the temperature falls below the set temperature stored in the shape memory, and restores the shape memory alloy 4 and the elastic material 5 in contact with each other. However, the deformation of the cutout portion of the elastic material 5 is contained within the elastic deformation, and the elastic restoring force generated by this deformation is the shape memory processing unit 9 when the temperature is raised above the memory set temperature. It is assumed that the force is smaller than the deformation force generated when the memorized shape is reproduced, and is sufficient to deform the shape of the shape memory processing unit 9 when the temperature falls below the memory set temperature. Conditions such as restoring force will be described with reference to FIGS. 11 and 12. The restoring force and the like will be described with reference to FIG. The notch of the shape memory alloy 4 is the same as that in FIG. 11, and 17 in the figure is an enlarged view of the elastic material 5. The thickness of the shape memory alloy 4 is d4, the length of the notch is L4, the width is W4, and the groove width around the notch is δ4.
The groove width δ4 satisfies the condition of Expression 1 in order to improve the operability of the notch. Further, in the shape memory alloy 4, the shape recovery stress, which is a force generated when the shape is memorized at a high temperature higher than the set temperature, is σ, and a force required for plastic deformation at a low temperature lower than the set temperature is σ. Let σ ′ be a certain deformation stress, and let ε be an operation limit strain amount that is a strain amount that can be applied to a shape memory alloy and can guarantee a reliable shape memory operation. Further, the plate thickness of the elastic material 5 is d'5, the length of the notch is L5, the width is W5, the plate thickness is d4, the longitudinal elastic modulus is E, the length of the welded portion 7 is s5, the notch. The surrounding groove width is δ5. The groove width δ5 satisfies the equation 2 in order to improve the operability of the notch. The radius of curvature of the shape to be memorized in order to lift the material 5 having the elasticity of the notch of the shape memory alloy 4 is R
If it is 4, the radius of curvature R4 satisfies the condition of the mathematical expression 3 in order to ensure the shape memory operation of the shape memory alloy 4 and improve the operability of the heat flow path variable surface. The size of the cutout portion of the elastic material 5 for surely operating the memorized shape of the cutout portion of the shape memory alloy 4 or returning the memorized shape to the original shape satisfies the relationship of Expression 5.

【0019】[0019]

【数5】 [Equation 5]

【0020】ただし、これは切欠き形状を矩形を例に行
ったものである。この表面を温度制御対象物の任意の表
面に付加することにより、温度制御対象物に侵入する熱
及び放熱を制御し、温度対象物を任意の温度や保温状態
に保つことが可能になる。
However, this is done by taking a rectangular notch as an example. By adding this surface to an arbitrary surface of the temperature controlled object, it is possible to control heat and heat radiation that penetrates into the temperature controlled object, and to keep the temperature object at an arbitrary temperature or heat retention state.

【0021】[0021]

【発明の効果】本発明は、高温、または低温、高低温の
温度サイクルを受ける精密電子部品を搭載した精密機器
において、機器表面または機器周辺部表面に熱流路可変
表面及び温度制御装置を設けることにより、精密機器の
温度上昇及び低下を抑え、機器の使用温度範囲内に温度
をコントロールし、機器を正常に動作させる。
According to the present invention, in a precision instrument equipped with precision electronic components that undergo high-temperature, low-temperature, and high-low-temperature temperature cycles, a variable heat flow path surface and a temperature control device are provided on the surface of the equipment or the peripheral surface of the equipment. This suppresses the temperature rise and fall of precision equipment, controls the temperature within the operating temperature range of equipment, and operates the equipment normally.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱流路可変機構の起動時の一実施例の
斜視図。
FIG. 1 is a perspective view of an embodiment of a heat flow path variable mechanism of the present invention at startup.

【図2】本発明の熱流路可変機構の非起動時の斜視図。FIG. 2 is a perspective view of the heat flow path variable mechanism of the present invention when it is not activated.

【図3】本発明の熱流路可変機構の接合状態を示した斜
視図。
FIG. 3 is a perspective view showing a joined state of the heat flow path variable mechanism of the present invention.

【図4】本発明の熱流路可変機構の非起動時の断面図。FIG. 4 is a cross-sectional view of the heat flow path variable mechanism of the present invention when not activated.

【図5】本発明の熱流路可変機構の起動時の断面図。FIG. 5 is a cross-sectional view of the heat flow path variable mechanism of the present invention at the time of startup.

【図6】本発明の熱流路可変機構の起動時の一実施例の
斜視図。
FIG. 6 is a perspective view of an embodiment of the heat flow path variable mechanism of the present invention at the time of startup.

【図7】本発明の熱流路可変機構の非起動時の斜視図。FIG. 7 is a perspective view of the heat flow path variable mechanism of the present invention when not activated.

【図8】本発明の熱流路可変機構の形状記憶状態を示す
斜視図。
FIG. 8 is a perspective view showing a shape memory state of the heat flow path variable mechanism of the present invention.

【図9】本発明の熱流路可変機構の非起動時の断面図。FIG. 9 is a cross-sectional view of the heat flow path variable mechanism of the present invention when not activated.

【図10】本発明の熱流路可変機構の起動時の断面図。FIG. 10 is a cross-sectional view of the heat flow path variable mechanism of the present invention at the time of startup.

【図11】本発明の熱流路可変機構の形状記憶合金の寸
法を示した斜視図。
FIG. 11 is a perspective view showing the dimensions of the shape memory alloy of the heat flow path variable mechanism of the present invention.

【図12】本発明の熱流路可変機構の板ばねの寸法を示
した斜視図。
FIG. 12 is a perspective view showing the dimensions of the leaf spring of the heat flow path variable mechanism of the present invention.

【図13】本発明の熱流路可変機構の起動時の一実施例
の斜視図。
FIG. 13 is a perspective view of an embodiment of the heat flow path variable mechanism of the present invention at the time of startup.

【図14】本発明の熱流路可変機構の非起動時の斜視
図。
FIG. 14 is a perspective view of the heat flow path variable mechanism of the present invention when not activated.

【図15】本発明の熱流路可変機構の非起動時の断面
図。
FIG. 15 is a cross-sectional view of the heat flow path variable mechanism of the present invention when not activated.

【図16】本発明の熱流路可変機構の非起動時の断面
図。
FIG. 16 is a cross-sectional view of the heat flow path variable mechanism of the present invention when not activated.

【図17】本発明の熱流路可変機構の板ばねの寸法を示
した斜視図。
FIG. 17 is a perspective view showing the dimensions of the leaf spring of the heat flow path variable mechanism of the present invention.

【符号の説明】[Explanation of symbols]

1…線膨張係数ρの材料、2…材料1より線膨張係数の
大きな材料、3…材料1と材料2の溶接部、4…形状記
憶合金、5…弾性を持つ材料、6…シート材料、7…材
料4と材料5の溶接部、8…形状記憶処理部、9…弾性
変形部。
1 ... Material having a linear expansion coefficient ρ, 2 ... Material having a larger linear expansion coefficient than Material 1, 3 ... Welded portion of Material 1 and Material 2, 4 ... Shape memory alloy, 5 ... Material having elasticity, 6 ... Sheet material, 7 ... Welded portion of material 4 and material 5, 8 ... Shape memory processing portion, 9 ... Elastic deformation portion.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C22K 1:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // C22K 1:00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】温度制御対象物に侵入してくる熱量及び放
熱される熱量に呼応して、熱の流路の断面積や長さが変
化する機構を持つ表面を温度制御対象物の回りに被覆す
ることによって、対象物の温度を制御することを特徴と
する熱流路可変表面を用いた温度制御装置。
1. A surface having a mechanism for changing the cross-sectional area and length of a heat flow path in response to the amount of heat entering the temperature controlled object and the amount of heat radiated, is provided around the temperature controlled object. A temperature control device using a variable heat flow path surface, characterized by controlling the temperature of an object by coating.
【請求項2】請求項1において、線膨張係数の異なる複
数種類のシート状の材料を重ね合わせ、部分的に材料同
士の接合をした機構を使用する熱流路可変表面を用いた
温度制御装置。
2. The temperature control device according to claim 1, wherein a plurality of types of sheet-shaped materials having different linear expansion coefficients are superposed and a mechanism in which the materials are partially bonded to each other is used.
【請求項3】請求項1において、形状記憶合金を用いた
機構を使用する熱流路可変表面を用いた温度制御装置。
3. The temperature control device according to claim 1, which uses a heat flow path variable surface using a mechanism using a shape memory alloy.
JP294994A 1994-01-17 1994-01-17 Temperature controller using heat flow path variable surface Pending JPH07210257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP294994A JPH07210257A (en) 1994-01-17 1994-01-17 Temperature controller using heat flow path variable surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP294994A JPH07210257A (en) 1994-01-17 1994-01-17 Temperature controller using heat flow path variable surface

Publications (1)

Publication Number Publication Date
JPH07210257A true JPH07210257A (en) 1995-08-11

Family

ID=11543630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP294994A Pending JPH07210257A (en) 1994-01-17 1994-01-17 Temperature controller using heat flow path variable surface

Country Status (1)

Country Link
JP (1) JPH07210257A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7778029B2 (en) 2007-02-23 2010-08-17 Nec Corporation System comprising heat-generator and cooler thereof, and disk array system
JP2013243365A (en) * 2012-05-22 2013-12-05 Boeing Co:The Heat dissipation switch
KR101982827B1 (en) * 2017-12-11 2019-09-03 한국과학기술연구원 Apparatus for flow rate control according to temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7778029B2 (en) 2007-02-23 2010-08-17 Nec Corporation System comprising heat-generator and cooler thereof, and disk array system
JP2013243365A (en) * 2012-05-22 2013-12-05 Boeing Co:The Heat dissipation switch
KR101982827B1 (en) * 2017-12-11 2019-09-03 한국과학기술연구원 Apparatus for flow rate control according to temperature

Similar Documents

Publication Publication Date Title
WO2004059597A3 (en) Touch-sensitive interface
US6008992A (en) Locking device
KR940016021A (en) Assembly and magnetic disk drive
US6980400B2 (en) Limiter for integral flexible circuit suspension assembly
EP0160533B1 (en) Shape memory effect actuator
WO2001015072A1 (en) Memory card
US11340725B2 (en) Load cell array for detection of force input to an electronic device enclosure
US5808837A (en) Disk drives
JPH08161989A (en) Thermostat
US9384436B2 (en) Card with built-in electronic component
WO2004006349A2 (en) Temperature compensating insert for a mechanically leveraged smart material actuator
JPH07210257A (en) Temperature controller using heat flow path variable surface
US9505608B2 (en) Microvalve having a reduced size and improved electrical performance
JP3040480B2 (en) Switch for detecting the presence of an electronic memory card in a read / write device
EP1561585A3 (en) Recording sheet package, correction information sheet for the same, and thermal printer for use therewith
JPS63292412A (en) Magnetic disk device
US7235317B2 (en) Module for supplying hydrogen to a fuel mini-cell with sequential control of pyrotechnic elements
US6435664B2 (en) Nozzle arrangement that includes a thermal actuator for an ink jet printhead
JPS6073179A (en) Thermostat for water-cooled engine
KR950015333A (en) Dual Voltage Servo System and Method
US11724384B2 (en) Artificial muscles comprising a strain sensor and artificial muscle assemblies comprising the same
US20230282991A1 (en) Artificial muscle assemblies comprising an electrical connection assembly for electrically coupling an electronic device to a power supply
JP2000182016A (en) Ic card
JPH0374023A (en) Temperature-depending pressure detection switch and liquid pressure control system using same pressure detection switch
US2989083A (en) Liquid expansion power element