JPH07209090A - Optical circuit evaluating method - Google Patents

Optical circuit evaluating method

Info

Publication number
JPH07209090A
JPH07209090A JP598994A JP598994A JPH07209090A JP H07209090 A JPH07209090 A JP H07209090A JP 598994 A JP598994 A JP 598994A JP 598994 A JP598994 A JP 598994A JP H07209090 A JPH07209090 A JP H07209090A
Authority
JP
Japan
Prior art keywords
optical
light
phase
optical path
path length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP598994A
Other languages
Japanese (ja)
Other versions
JP3339656B2 (en
Inventor
Kazumasa Takada
和正 高田
Yasuyuki Inoue
靖之 井上
Hiroaki Yamada
裕朗 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP598994A priority Critical patent/JP3339656B2/en
Publication of JPH07209090A publication Critical patent/JPH07209090A/en
Application granted granted Critical
Publication of JP3339656B2 publication Critical patent/JP3339656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide an optical circuit evaluating method, which can accurately measure phase change and optical power distribution quantity to be given to the light transmitting each optical wave guide path inside of an interference type optical circuit having optical wave guide paths at a different length from each other. CONSTITUTION:A testing interference type optical circuit is located inside an interferometer using a light source having a coherent length shorter than a difference of the optical path length between any two optical wave guide paths of the optical circuit to generate the separate beat signal (s1), and each beat signal is extracted as a function of a difference of optical path length (s2), and Fourie transformation is performed (s3) to obtain each phase and each amplitude. Phase and optical power distribution quantity in each optical wave guide path is thereby obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、干渉形光回路、特に長
さの異なる光導波路を有する干渉形光回路内の各光導波
路を伝搬する光が受ける位相変化及び光パワー分配量を
非破壊かつ高精度に測定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometric optical circuit, and more particularly to non-destructive phase change and optical power distribution received by light propagating through each optical waveguide in an interferometric optical circuit having optical waveguides of different lengths. The present invention also relates to a method of measuring with high accuracy.

【0002】[0002]

【従来の技術】図2は長さの異なる2本の光導波路(ア
ーム)を有する2×2マッハ・ツェンダ型光回路を示す
もので、図中、1,2はマッハ・ツェンダ干渉計の2つ
のアーム、3,4は3dBカプラ、5,6は入射ポー
ト、7,8は出射ポートである。ポート5から入射した
光は3dBカプラ3で二分され、それぞれアーム1,2
を伝搬した後、3dBカプラ4で合波される。各アーム
を伝搬した光のパワーP1,P2 (又は光パワー分配比
1 /P2 )及び位相差φに応じてポート7,8からの
出射パワーが決定されるので、これらのパラメータを非
破壊かつ高精度に測定する技術が不可欠となる。
2. Description of the Related Art FIG. 2 shows a 2 × 2 Mach-Zehnder type optical circuit having two optical waveguides (arms) having different lengths. One arm, 3 and 4 are 3 dB couplers, 5 and 6 are entrance ports, and 7 and 8 are exit ports. The light incident from the port 5 is divided into two by the 3 dB coupler 3, and the arms 1 and 2, respectively.
After being transmitted, the 3 dB coupler 4 multiplexes it. Since the output powers from the ports 7 and 8 are determined according to the powers P 1 and P 2 (or the optical power distribution ratio P 1 / P 2 ) of the light propagating through each arm and the phase difference φ, these parameters are set as follows. Non-destructive and highly accurate measurement technology is essential.

【0003】これまでにバルク型又は光ファイバ型のマ
ッハ・ツェンダ干渉計により、干渉形光回路内の光パワ
ー分配比及び光路長差を非破壊で評価する方法が報告さ
れており、その一例を図3に示す。図3において、11
は各光導波路間の光路長差よりも短いコヒーレント長を
有する中心波長1.53μmの発光ダイオードからなる
光源、12,13は光ファイバ3dBカプラ、14は試
験用の干渉形光回路、15,16はレンズ、17はプリ
ズム、18はリフレクタ、19は光検出器、20は選択
レベル計、21,22はカプラ12の出射ポート、2
3,24はカプラ13の入射ポートである。
Up to now, a method of nondestructively evaluating the optical power distribution ratio and the optical path length difference in an interference type optical circuit by a bulk type or optical fiber type Mach-Zehnder interferometer has been reported. As shown in FIG. In FIG. 3, 11
Is a light source composed of a light emitting diode having a center wavelength of 1.53 μm having a coherent length shorter than the optical path length difference between the optical waveguides, 12 and 13 are optical fiber 3 dB couplers, 14 is a test interference type optical circuit, and 15 and 16 Is a lens, 17 is a prism, 18 is a reflector, 19 is a photodetector, 20 is a selection level meter, 21 and 22 are exit ports of the coupler 12, 2
Reference numerals 3 and 24 are incident ports of the coupler 13.

【0004】干渉形光回路14は、例えば図4に示すよ
うに、共通の入射ポート25に入射された光が、光パワ
ーを分配する分配器26によって六分配され、6本の長
さの異なる光導波路27−1〜27−6を伝搬した後に
合波器28で合波され、共通の出射ポート29から出射
する如く構成されている。
In the interferometric optical circuit 14, for example, as shown in FIG. 4, light incident on a common incident port 25 is divided into six parts by a distributor 26 which distributes optical power, and six different lengths are provided. After being propagated through the optical waveguides 27-1 to 27-6, they are multiplexed by the multiplexer 28 and emitted from the common emission port 29.

【0005】図3において、光源11からの出射光はカ
プラ12で二分される。二分された一方の光は、ポート
21より干渉形光回路14に入射する。二分された他方
の光は、ポート22を伝搬して参照光となり、レンズ1
5で平行ビームにコリメートされた後、プリズム17で
反射され、リフレクタ18で平行に反射され、プリズム
17を経由してレンズ16でカプラ13のポート24に
入射する。ここで、リフレクタ18はビームに平行に移
動させることによって、参照光の光路長を変化させる。
In FIG. 3, the light emitted from the light source 11 is divided into two by the coupler 12. One of the two divided lights enters the interference type optical circuit 14 from the port 21. The other half of the light propagates through the port 22 to become the reference light, and the lens 1
After being collimated into a parallel beam by 5, the light is reflected by the prism 17, reflected by the reflector 18 in parallel, and then enters the port 24 of the coupler 13 by the lens 16 via the prism 17. Here, the reflector 18 is moved in parallel with the beam to change the optical path length of the reference light.

【0006】一方、光回路14を透過した光はポート2
3に入射し、カプラ13にて前記参照光と合波される。
合波された光は光検出器19で受光され、電気信号に変
換されて選択レベル計20に入力される。選択レベル計
20は参照光の光路長の変化とともに生じるビート信号
(これをインターフェログラムと呼ぶ。)の包絡線検波
を行う。
On the other hand, the light transmitted through the optical circuit 14 is transmitted to the port 2
3 and is combined with the reference light by the coupler 13.
The combined light is received by the photodetector 19, converted into an electric signal, and input to the selection level meter 20. The selection level meter 20 performs envelope detection of a beat signal (this is called an interferogram) that occurs with a change in the optical path length of the reference light.

【0007】光回路14内の光路長差よりも伝搬光のコ
ヒーレント長が短いので、各光導波路を伝搬した光波
は、それぞれ独立に参照光と干渉する。従って、試験用
の干渉形光回路14内にN本の光導波路がある場合、参
照光の光路長の変化とともにN個の孤立したビート信号
が観測される。従来例では、これらビート信号の包絡線
波形を電圧計20で測定した。
Since the coherent length of the propagating light is shorter than the optical path length difference in the optical circuit 14, the light waves propagating through the respective optical waveguides interfere with the reference light independently. Therefore, when there are N optical waveguides in the test interference type optical circuit 14, N isolated beat signals are observed as the optical path length of the reference light changes. In the conventional example, the envelope waveform of these beat signals was measured by the voltmeter 20.

【0008】図5は図4中の1番目及び2番目の光導波
路27−1,27−2に対する包絡線波形を示す。図
中、横軸は参照光の光路長変化を、縦軸は強度を示す。
従来例では、各孤立波形のピーク間隔から2光導波路間
の光路長としてピーク間隔K=240μmを、2光導波
路間のパワー分配比として各波形のピークの比P1 /P
2 =1.5の値をそれぞれ導出していた。
FIG. 5 shows envelope waveforms for the first and second optical waveguides 27-1 and 27-2 in FIG. In the figure, the horizontal axis represents the change in the optical path length of the reference light, and the vertical axis represents the intensity.
In the conventional example, the peak interval K = 240 μm as the optical path length between the two optical waveguides from the peak interval of each isolated waveform, and the peak ratio P 1 / P of each waveform as the power distribution ratio between the two optical waveguides.
A value of 2 = 1.5 was derived for each.

【0009】[0009]

【発明が解決しようとする課題】理論的には、ビート信
号のピーク間隔より求まるKの値は、群遅延時間差τ
(=(L1 −L2 )/vg ;L1 及びL2 は1番目及び
2番目の光導波路の幾何学的長さ、vg は群速度)に光
速度cを乗じた値τcに等しい。光導波路の屈折率は波
長に依存するので、群速度vg と位相速度vp (=c/
n;nは実効屈折率)とは異なり、Kの値は2光導波路
間の光路長差と一致しない。
Theoretically, the value of K obtained from the peak interval of the beat signal is the group delay time difference τ.
(= (L 1 −L 2 ) / v g ; L 1 and L 2 are the geometrical lengths of the first and second optical waveguides, and v g is the group velocity) equal. Since the refractive index of the optical waveguide depends on the wavelength, the group velocity v g and the phase velocity v p (= c /
n; n is an effective refractive index), and the value of K does not match the optical path length difference between the two optical waveguides.

【0010】実際、石英系光導波路では、群速度と位相
速度とは約2%異なるので、光導波路長が数cmの光回
路では、ピーク間隔から見積った光路長差には、数100
μmの誤差が生じる。即ち、波長λ=1.5μmにおい
て、K/λの関係式から光導波路間の位相差φを求める
ことができない。また、長尺の光回路では、作製プロセ
スの不完全性によって、位相速度が光回路の位置によっ
て微妙に変化してしまうので、群速度と位相速度との差
を理論的に求めた後、Kの値から光路長差をサブミクロ
ンの精度で求めることは不可能である。
In a quartz optical waveguide, the group velocity and the phase velocity are different from each other by about 2%. Therefore, in an optical circuit having an optical waveguide length of several cm, the optical path length difference estimated from the peak interval is several hundreds.
An error of μm occurs. That is, at the wavelength λ = 1.5 μm, the phase difference φ between the optical waveguides cannot be obtained from the relational expression of K / λ. In a long optical circuit, the phase velocity slightly changes depending on the position of the optical circuit due to the imperfections in the manufacturing process. Therefore, after theoretically obtaining the difference between the group velocity and the phase velocity, K It is impossible to determine the optical path length difference from the value of with sub-micron accuracy.

【0011】また、光源である発光ダイオードは数10
nmのスペクトル幅を有するが、一般に、光回路の分配
比はこのスペクトル範囲では波長とともに変化するの
で、包絡線のピークから分配比を求める方法では、分配
比の波長平均値しか求めることができない。
The number of light emitting diodes which are the light source is several tens.
Although it has a spectral width of nm, in general, the distribution ratio of the optical circuit changes with the wavelength in this spectral range, so that the method of obtaining the distribution ratio from the peak of the envelope can only find the average wavelength value of the distribution ratio.

【0012】本発明の目的は、干渉形光回路内の各光導
波路を伝搬する光が受ける位相変化及び光パワー分配量
を高精度に測定し得る光回路評価方法を提供することに
ある。
An object of the present invention is to provide an optical circuit evaluation method capable of highly accurately measuring the phase change and the amount of optical power distribution received by the light propagating through each optical waveguide in the interference type optical circuit.

【0013】[0013]

【課題を解決するための手段】本発明では、コヒーレン
ト長の十分短い光を試験用の干渉形光回路に入射した
時、該光回路内の各光導波路を伝搬した光と参照光との
干渉によって孤立したビート信号(即ち、インターフェ
ログラム)が発生し、これらビート信号のフーリエ変換
により、各光導波路の応答関数を求めることができるこ
とに注目した。
According to the present invention, when light having a sufficiently short coherence length is incident on a test interference type optical circuit, interference between the light propagating through each optical waveguide in the optical circuit and the reference light It was noted that isolated beat signals (that is, interferograms) are generated by the above, and the response function of each optical waveguide can be obtained by Fourier transform of these beat signals.

【0014】図1は請求項1に対応するフローチャート
を示すもので、孤立したビート信号を生成し(s1)、
各ビート信号を光路長差xの関数として抽出し(s
2)、フーリエ変換し(s3)、それぞれの位相と振幅
を求めることにより、各光導波路における位相及び光パ
ワー分配量を求める(s4)ことを特徴とする。
FIG. 1 shows a flowchart corresponding to claim 1, wherein an isolated beat signal is generated (s1),
Each beat signal is extracted as a function of the optical path length difference x (s
2), Fourier transform (s3), and the phase and the amplitude of each are calculated to obtain the phase and the optical power distribution amount in each optical waveguide (s4).

【0015】また、光路長差xが非常に大きい場合は、
請求項2に対応する図6のフローチャートに示すよう
に、中心までの光路長差を予め求めて計算する方が得策
である。即ち、各ビート信号の中心付近における参照光
の光路長変化をxk (k=1,2,……N)、xk を原
点とした光路長変化をyk として、各ビート信号をjk
(yk )と表し、σを波数としてjk (yk )のフーリ
エ変換 を計算し(iは虚数単位)(st1〜3)、振幅b
k (σ)及び位相φk (σ)を求めた後に、2πσxk
+φk (σ)の関係式よりk番目の光導波路により波数
σの光が受ける位相を、また、g(σ)を光源のスペク
トルとして|bk (σ)/g(σ)|2 の関係式より光
導波路で光が受けるパワー分配量を求める(st4)こ
とを特徴とする。
When the optical path length difference x is very large,
As shown in the flowchart of FIG. 6 corresponding to claim 2, it is better to obtain and calculate the optical path length difference to the center in advance. That is, the optical path length change of the reference beam in the vicinity of the center of each beat signal x k (k = 1,2, ...... N), the optical path length changes with the origin of the x k as y k, each beat signal j k
(Y k) and represents the Fourier transform of j k (y k) of σ as wavenumber (I is an imaginary unit) (st1 to 3), and the amplitude b
after obtaining the k (sigma) and the phase φ k (σ), 2πσx k
From the relational expression of + φ k (σ), the relationship of | b k (σ) / g (σ) | 2 is the phase that the light of wave number σ is received by the k-th optical waveguide, and g (σ) is the spectrum of the light source. It is characterized in that the power distribution amount received by the light in the optical waveguide is obtained from the equation (st4).

【0016】また、光源のスペクトルg(σ)が複雑な
波形となり、孤立したビート信号が得られない場合は、
請求項3に対応する図7のフローチャートに示すよう
に、全ビート信号I(x)をフーリエ変換し(sp1,
2)、光源のスペクトルg(σ)で除算し(sp3)、
さらにガウス型のウィンドゥ関数C(σ)を乗じ(sp
4)、これを逆フーリエ変換して(sp5)、孤立した
ビート信号を生成する(sp6)ことを特徴とする。
When the spectrum g (σ) of the light source has a complicated waveform and an isolated beat signal cannot be obtained,
As shown in the flowchart of FIG. 7 corresponding to claim 3, all the beat signals I (x) are Fourier transformed (sp1,
2), divide by the spectrum g (σ) of the light source (sp3),
Further, it is multiplied by a Gaussian window function C (σ) (sp
4), which is inverse Fourier transformed (sp5) to generate an isolated beat signal (sp6).

【0017】[0017]

【作用】本発明方法によれば、従来、不可能であった、
干渉形光回路内の各光導波路で受けた位相変化やパワー
分配比の波長依存性を高精度に測定することができるの
で、作製プロセスへのフィードバックを可能とするとと
もに、本方法を位相モニタとした精密位相制御技術の開
発を可能とする。
According to the method of the present invention, heretofore impossible.
Since it is possible to measure the phase change received by each optical waveguide in the interferometric optical circuit and the wavelength dependence of the power distribution ratio with high accuracy, it is possible to feed back to the manufacturing process and use this method as a phase monitor. Enables the development of precise phase control technology.

【0018】[0018]

【実施例】単位振幅の光波を試験用の干渉形光回路に入
射した際、該干渉形光回路内の各光導波路を伝搬した光
波の複素振幅をhk (σ)(k=1,2,……N;Nは
光導波路の本数)とする(以後、hk (σ)を波数σで
の光導波路kの応答関数と呼ぶ。)。hk (σ)を hk (σ)=ak (σ)exp[iδk (σ)] ……(1) と表せば、γk (σ)=|ak (σ)|2 が波数σでの
光導波路kへのパワー分配量、δk (σ)が光導波路k
で受ける光波の位相変化を示す量であり、これらを測定
する原理を以下に述べる。
EXAMPLE When a light wave having a unit amplitude is incident on a test interference type optical circuit, the complex amplitude of the light wave propagating through each optical waveguide in the interference type optical circuit is represented by h k (σ) (k = 1, 2). , ... N; N is the number of optical waveguides) (h k (σ) is hereinafter referred to as the response function of the optical waveguide k at the wave number σ). If h k (σ) is expressed as h k (σ) = a k (σ) exp [iδ k (σ)] (1), γ k (σ) = | a k (σ) | 2 is the wave number The power distribution amount to the optical waveguide k at σ, δ k (σ) is the optical waveguide k
This is a quantity that indicates the phase change of the light wave received at, and the principle of measuring these will be described below.

【0019】干渉形光回路がN本の光導波路から構成さ
れ、それぞれが結合の無い互いに独立した光導波路であ
るとすると、干渉形光回路の応答関数H(σ)はそれぞ
れの応答関数の和として、 と表される。
Assuming that the interferometric optical circuit is composed of N optical waveguides and each is an independent optical waveguide without coupling, the response function H (σ) of the interferometric optical circuit is the sum of the respective response functions. As Is expressed as

【0020】従って、入射光のスペクトルをg(σ)と
すれば、参照光の光路長の変化xによって生じるビート
信号は、 と表される。
Therefore, if the spectrum of the incident light is g (σ), the beat signal generated by the change x in the optical path length of the reference light is Is expressed as

【0021】 の半値全幅として光源のコヒーレント長を定義する。光
源のコヒーレント長がどの光導波路間の光路長差よりも
十分短いとすれば、(3) 式中の積分項である は、xがik (x)のピークから光導波路間の光路長差
程度変化すると、無視し得るほどに小さくなる。即ち、
これらのビート信号は、孤立したインターフェログラム
波形を示す。図8にk,k+1番目の光導波路から生じ
たインターフェログラムの一例を示す。
[0021] The coherent length of the light source is defined as the full width at half maximum of. If the coherent length of the light source is sufficiently shorter than the optical path length difference between any optical waveguides, it is the integral term in Eq. (3). Becomes negligibly small when x changes from the peak of i k (x) by an optical path length difference between the optical waveguides. That is,
These beat signals exhibit an isolated interferogram waveform. FIG. 8 shows an example of an interferogram generated from the (k, k + 1) th optical waveguide.

【0022】従って、次式(4) に示す通り、各インター
フェログラムik (x)のフーリエ変換によってg
(σ)hk (σ)を求め、 これをg(σ)で除することにより、hk (σ)を求め
ることができる。
Therefore, as shown in the following equation (4), g is obtained by the Fourier transform of each interferogram i k (x).
(Σ) h k (σ) is calculated, By dividing this by g (σ), h k (σ) can be obtained.

【0023】xが数cmに及ぶ反面、各インターフェロ
グラムの有限な持続幅(即ち、コヒーレント長)が数1
0μmである場合の効率的な計算方法は以下の通りであ
る。
While x reaches several cm, the finite duration (ie, coherent length) of each interferogram is equal to 1
The efficient calculation method in the case of 0 μm is as follows.

【0024】図8に示す通り、座標を光路長差xから、
k (x)のピーク近辺の座標xkからの相対座標yk
に変換(即ち、x=xk +yk )すれば、(4) 式は、 となる。ここで、jk (yk )はik (x)に等しく、
座標xk を原点としたインターフェログラムを示す。
As shown in FIG. 8, the coordinates are calculated from the optical path length difference x,
Relative coordinate y k from coordinate x k near the peak of i k (x)
When converted to (that is, x = x k + y k ), equation (4) becomes Becomes Where j k (y k ) is equal to i k (x),
An interferogram having coordinates x k as an origin is shown.

【0025】jk (yk )のフーリエ変換を振幅b
k (σ)、位相φk (σ)により、 と表せば、(5) 式は、 g(σ)hk (σ)=exp(2πiσxk ) ・bk (σ)exp[iφk (σ)] =bk (σ)exp[i(2πσxk +φk (σ))] ……(7) となる。
The Fourier transform of j k (y k ) is amplitude b
By k (σ) and phase φ k (σ), Then, the equation (5) is expressed by g (σ) h k (σ) = exp (2πiσx k ) · b k (σ) exp [iφ k (σ)] = b k (σ) exp [i (2πσx k + φ k (σ))] (7).

【0026】即ち、k番目の光導波路の応答関数は、 hk (σ)=bk (σ)exp[i(2πσxk +φk (σ))]/g(σ) ……(8) で与えられる。That is, the response function of the kth optical waveguide is h k (σ) = b k (σ) exp [i (2πσx k + φ k (σ))] / g (σ) (8) Given.

【0027】最終的に、k番目の光導波路で受ける位相
ρk (σ)、パワー分配量γk (σ)は、 ρk (σ)=2πσxk +φk (σ)、 γk (σ)=|bk (σ)/g(σ)|2 ……(9) より求めることができる。また、ρk (σ)をσに関し
て一階及び二階微分することにより、各光導波路で受け
る群遅延χk (σ)と分散ξk (σ)、即ち χk (σ)={d[ρk (σ)]/dσ}/2π =xk +{d[φk (σ)]/dσ}/2π、 ξk (σ)=σ2 {d2 [ρk (σ)]/dσ2 }/2πc ……(10) も導出することができる。ここで、cは光速度である。
Finally, the phase ρ k (σ) and the power distribution amount γ k (σ) received by the k-th optical waveguide are: ρ k (σ) = 2πσx k + φ k (σ), γ k (σ) = | B k (σ) / g (σ) | 2 (9) Further, by differentiating ρ k (σ) with respect to σ with respect to σ, the group delay χ k (σ) and the dispersion ξ k (σ) received in each optical waveguide, that is, χ k (σ) = {d [ρ k (σ)] / dσ} / 2π = x k + {d [φ k (σ)] / dσ} / 2π, ξ k (σ) = σ 2 {d 2k (σ)] / dσ 2 } / 2πc (10) can also be derived. Here, c is the speed of light.

【0028】以上の説明は、各ビート信号が図8に示す
ように孤立している場合に当てはまる。アルミニウムを
添加した光ファイバ増幅器からの自然放出光には、二つ
のピークが存在するため、これを光源とした場合、発生
するインターフェログラムにはいくつかのサイドローブ
が生じ、隣のインターフェログラムと重なってしまう場
合が生じる。光源のスペクトルが十分に広いにもかかわ
らず(従って、コヒーレント長が十分短いにもかかわら
ず)、スペクトル構造によって孤立したインターフェロ
グラムの発生が困難な場合でも、以下の方法で孤立した
ビート信号を再生することができる。
The above description applies when each beat signal is isolated as shown in FIG. Since there are two peaks in the spontaneous emission light from the optical fiber amplifier with aluminum added, when this light source is used as the light source, some side lobes occur in the generated interferogram and the adjacent interferogram There may be cases where they overlap. Even if the spectrum of the light source is wide enough (thus, the coherence length is short enough), even if the isolated interferogram is difficult to generate due to the spectral structure, the isolated beat signal is Can be played.

【0029】(3) 式が示す通り、全インターフェログラ
ムI(x)のフーリエ変換により、関数g(σ)H
(σ)を求めることができる。隣のインターフェログラ
ムと重なるのはg(σ)の凹凸の構造に起因する。フー
リエ変換から求めたこの関数を光源のスペクトルg
(σ)で割ることによって、平坦な単位スペクトル入射
の場合に相当するH(σ)自身を求める。
As shown in the equation (3), the function g (σ) H is obtained by the Fourier transform of the total interferogram I (x).
(Σ) can be obtained. The overlap with the adjacent interferogram is due to the uneven structure of g (σ). This function obtained from the Fourier transform is the spectrum g of the light source.
By dividing by (σ), H (σ) itself corresponding to the case of flat unit spectrum incidence is obtained.

【0030】次に、ガウス型関数等の波数σに対して滑
らかに変化するウィンドゥ関数C(σ)を乗ずることに
より、g(σ)ではなくC(σ)のスペクトル光源が入
射した場合の関数であるC(σ)・H(σ)を計算で求
める。(3) 式から、スペクトルC(σ)入射に対するイ
ンターフェログラムは、C(σ)H(σ)の逆フーリエ
変換を行うことにより得られるので、結果的に、孤立し
たインターフェログラムを再生させることが可能とな
る。
Next, the wave number σ of a Gaussian function or the like is multiplied by a window function C (σ) that changes smoothly to obtain a function when a spectral light source of C (σ) is incident instead of g (σ). C (σ) · H (σ) is calculated. From equation (3), the interferogram for the incident spectrum C (σ) is obtained by performing the inverse Fourier transform of C (σ) H (σ), and as a result, an isolated interferogram is reproduced. It becomes possible.

【0031】図9は本発明を実施する測定系の構成を示
すもので、干渉計の構成は図3に示したものとほぼ同一
であるが、参照光の光路長変化を高精度に測定するた
め、波長λ=1.3μmの分布帰還型(DFB)レーザ
を設置した点が異なる。これは、干渉性の良いレーザ光
をファイバ型干渉計内に伝搬させて、参照光の光路長変
化をモニタするためである。
FIG. 9 shows the structure of a measuring system for carrying out the present invention. Although the structure of the interferometer is almost the same as that shown in FIG. 3, the change in the optical path length of the reference light is measured with high accuracy. Therefore, a difference is that a distributed feedback (DFB) laser having a wavelength λ = 1.3 μm is installed. This is because laser light having good coherence is propagated in the fiber interferometer to monitor the change in the optical path length of the reference light.

【0032】図9において、11は光源、12,13は
光ファイバ3dBカプラ、14は試験用の干渉形光回
路、15,16,31はレンズ、17はプリズム、18
はリフレクタ、21,22はカプラ12の出射ポート、
23,24はカプラ13の入射ポート、32はDFBレ
ーザ、33はダイクロイックミラー、34,35は光検
出器、36はフリンジカウンタ、37はウェーブフォー
ム・レコーダである。
In FIG. 9, 11 is a light source, 12 and 13 are optical fiber 3 dB couplers, 14 is a test interference type optical circuit, 15, 16 and 31 are lenses, 17 is a prism, and 18 is a prism.
Is a reflector, 21 and 22 are exit ports of the coupler 12,
Reference numerals 23 and 24 are incident ports of the coupler 13, 32 is a DFB laser, 33 is a dichroic mirror, 34 and 35 are photodetectors, 36 is a fringe counter, and 37 is a waveform recorder.

【0033】干渉計から出射する波長1.3μm及び
1.53μmの光をダイクロイックミラー33で分離
し、1.3μm光は光検出器34で、1.53μm光は
光検出器35でそれぞれ受光した。干渉計内の光路長が
λ/2だけ変化するとレーザ光のビート信号が半周期変
化することを利用して、フリンジカウンタ36はλ/2
の光路長変化毎にクロックパルスを発生させる。外部ク
ロックモードに設定されたウェーブフォーム・レコーダ
37は、このクロックでインターフェログラムのサンプ
リングを行う。
Light having wavelengths of 1.3 μm and 1.53 μm emitted from the interferometer is separated by a dichroic mirror 33, and 1.3 μm light is received by a photodetector 34 and 1.53 μm light is received by a photodetector 35, respectively. . The fringe counter 36 uses the fact that the beat signal of the laser light changes by a half cycle when the optical path length in the interferometer changes by λ / 2.
A clock pulse is generated every time the optical path length changes. The waveform recorder 37 set to the external clock mode samples the interferogram with this clock.

【0034】本実施例では、図10に示すようなアレー
光導波回路回折格子型光合分波器の各光導波路の位相を
測定した。この合分波器は、32本の入射ポート41、
32本の出射ポート42、ΔL=634μmのピッチで
長さの増加するN=128本の光導波路43を有する。
本合分波器の何れも16番目のポートを本実験での光の
入出射に使用した。この光導波路は、回折格子としての
機能を有し、透過バンドのピークに対するサイドローブ
の抑圧比は10dBであった。
In this embodiment, the phase of each optical waveguide of the array optical waveguide circuit diffraction grating type optical multiplexer / demultiplexer as shown in FIG. 10 was measured. This multiplexer / demultiplexer has 32 incident ports 41,
It has 32 emission ports 42 and N = 128 optical waveguides 43 whose length increases at a pitch of ΔL = 634 μm.
The 16th port of each of the multiplexers / demultiplexers was used for the entrance and exit of light in this experiment. This optical waveguide had a function as a diffraction grating, and the side lobe suppression ratio for the peak of the transmission band was 10 dB.

【0035】ピッチのわずかな変動が合分波器の透過特
性に影響する。k番目(k=1,2,…,N)の光導波
路の設計光導波路長からのずれをδLk とすれば、波数
σでのk番目の光導波路(以下、アレーと呼ぶ。)の位
相は、定数を無視して、 Φk (σ)=2πσ(kΔL+δLk ) =2πσkΔL+2πσ(δLk ) ……(11) となる。(11)式の右辺第二項の2πσ(δLk )が各光
導波路に付随する位相誤差である。透過スペクトルのピ
ーク点の波数では、(11)式の右辺第一項が全て2πの整
数倍になることに注目すれば、各光導波路の位相誤差
は、ピーク地点でのΦk (σ)の値として求めることが
できる。
A slight variation in pitch affects the transmission characteristics of the multiplexer / demultiplexer. If the deviation from the design optical waveguide length of the k-th (k = 1, 2, ..., N) optical waveguide is δL k , the phase of the k-th optical waveguide (hereinafter referred to as array) at the wave number σ. Ignoring the constant, Φ k (σ) = 2πσ (kΔL + δL k ) = 2πσkΔL + 2πσ (δL k ) (11) The second term on the right side of the equation (11), 2πσ (δL k ) is the phase error associated with each optical waveguide. At the wave number at the peak point of the transmission spectrum, note that the first term on the right-hand side of Eq. (11) is an integral multiple of 2π, and the phase error of each optical waveguide is Φ k (σ) at the peak point. It can be obtained as a value.

【0036】図11は、このようにして求めた位相誤差
をアレーの番号順に示したものである。多数回の測定の
結果、測定誤差は各アレーともにπ/30以下であっ
た。また、図11に示した位相誤差分布と設計ピッチを
用いて計算したアレー導波路の理論透過特性は、測定透
過曲線と良く一致した。
FIG. 11 shows the phase errors thus obtained in the order of the array numbers. As a result of a large number of measurements, the measurement error was π / 30 or less in each array. Further, the theoretical transmission characteristics of the array waveguide calculated using the phase error distribution and the design pitch shown in FIG. 11 were in good agreement with the measured transmission curve.

【0037】図12は、特定の二本のアレーの光パワー
分配量を測定した結果である。縦軸は任意目盛りである
ので、両曲線の比がアレーへの光パワー分配比率を示
す。図のように、各アレーともに無視できない程に波長
に対して変化していることが分かる。
FIG. 12 shows the results of measuring the optical power distribution amount of two specific arrays. Since the vertical axis is an arbitrary scale, the ratio of both curves shows the optical power distribution ratio to the array. As shown in the figure, it can be seen that each array changes with wavelength so that it cannot be ignored.

【0038】図13は、透過スペクトルの透過ピークを
与える波長において求めた各アレーへの光パワー分配量
を示す。アレー毎に分配量はかなり変動していることが
分かった。
FIG. 13 shows the amount of optical power distribution to each array obtained at the wavelength giving the transmission peak of the transmission spectrum. It was found that the distribution amount varied considerably for each array.

【0039】図14は、ピッチΔL=126μm、10
1本のアレー光導波路を有するアレー光導波回路の位相
誤差の測定結果である。このアレー光導波路が30dB
という優れたサイドローブ抑圧比を示すのに対応して、
各アレーの位相誤差はかなり小さいことが分かった。
In FIG. 14, the pitch ΔL = 126 μm, 10
It is a measurement result of the phase error of the array optical waveguide circuit having one array optical waveguide. This array optical waveguide is 30 dB
Corresponding to the excellent side lobe suppression ratio
It was found that the phase error of each array was quite small.

【0040】光ファイバ増幅器からの自然放出光を光源
とした時のサンプリングされたビート信号波形の一例を
図15(a) に、また、光源のスペクトルをもとにビート
信号を再生した結果を図15(b) に示す。ウィンドゥ関
数C(σ)としては、スペクトルの半値全幅30nmの
ガウス型関数を用いた。自然放出光の二つのピークを有
するスペクトル構造によって、図15(a) に示す通り、
ビートの端が重なってしまったのが、信号処理により、
図15(b) に示す通り、孤立したビート波形を再生でき
たことが分かる。
FIG. 15 (a) shows an example of the sampled beat signal waveform when the spontaneous emission light from the optical fiber amplifier is used as the light source, and the result of reproducing the beat signal based on the spectrum of the light source is shown in FIG. It is shown in 15 (b). As the window function C (σ), a Gaussian function having a full width at half maximum of the spectrum of 30 nm was used. Due to the spectral structure with two peaks of spontaneous emission light, as shown in Fig. 15 (a),
The signal processing caused the edges of the beats to overlap.
As shown in FIG. 15B, it can be seen that an isolated beat waveform could be reproduced.

【0041】[0041]

【発明の効果】以上説明したように本発明によれば、多
くの光導波路を有する干渉形光回路における光導波路間
の位相差と分配比を高精度に測定することが可能とな
り、作製プロセスへのフィードバックを可能にするとと
もに、本方法を位相モニタとした精密位相制御技術の開
発を可能とする。
As described above, according to the present invention, it is possible to measure the phase difference and the distribution ratio between the optical waveguides in the interferometric optical circuit having many optical waveguides with high accuracy, and to the manufacturing process. It is possible to develop the precise phase control technology using this method as a phase monitor.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1に対応するフローチャートFIG. 1 is a flowchart corresponding to claim 1.

【図2】2×2マッハ・ツェンダ型光回路の構成図FIG. 2 is a block diagram of a 2 × 2 Mach-Zehnder type optical circuit.

【図3】マッハ・ツェンダ干渉計を用いた従来の測定系
の構成図
FIG. 3 is a block diagram of a conventional measurement system using a Mach-Zehnder interferometer.

【図4】試験用の干渉形光回路の一例を示す構成図FIG. 4 is a configuration diagram showing an example of a test interference optical circuit.

【図5】ビート信号の包絡線波形の一例を示す図FIG. 5 is a diagram showing an example of an envelope waveform of a beat signal.

【図6】請求項2に対応するフローチャートFIG. 6 is a flowchart corresponding to claim 2;

【図7】請求項3に対応するフローチャートFIG. 7 is a flowchart corresponding to claim 3;

【図8】ビート信号の波形の一例を示す図FIG. 8 is a diagram showing an example of a waveform of a beat signal.

【図9】マッハ・ツェンダ干渉計を用いた本発明の測定
系の構成図
FIG. 9 is a configuration diagram of a measurement system of the present invention using a Mach-Zehnder interferometer.

【図10】アレー光導波回路回折格子型光合分波器の構
成図
FIG. 10 is a configuration diagram of an array optical waveguide circuit diffraction grating type optical multiplexer / demultiplexer.

【図11】各アレー光導波路における位相誤差の分布を
示すグラフ
FIG. 11 is a graph showing a distribution of phase error in each array optical waveguide.

【図12】特定の2本のアレー光導波路における光パワ
ー分配量の波長依存性を示すグラフ
FIG. 12 is a graph showing wavelength dependence of optical power distribution in two specific array optical waveguides.

【図13】各アレー光導波路における光パワー分配量の
分布を示すグラフ
FIG. 13 is a graph showing the distribution of optical power distribution in each array optical waveguide.

【図14】他のアレー光導波回路回折格子型光合分波器
の各アレー光導波路における位相誤差の分布を示すグラ
FIG. 14 is a graph showing a distribution of phase error in each array optical waveguide of another array optical waveguide circuit diffraction grating type optical multiplexer / demultiplexer.

【図15】信号処理前後のビート信号の波形の一例を示
す図
FIG. 15 is a diagram showing an example of a waveform of a beat signal before and after signal processing.

【符号の説明】[Explanation of symbols]

1,2…マッハ・ツェンダ干渉計の2つのアーム、3,
4…3dBカプラ、5,6,23,24…入射ポート、
7,8,21,22…出射ポート、11…光源、12,
13…光ファイバ3dBカプラ、14…試験用の干渉形
光回路、15,16,31…レンズ、17…プリズム、
18…リフレクタ、19,34,35…光検出器、20
…選択レベル計、32…DFBレーザ、33…ダイクロ
イックミラー、36…フリンジカウンタ、37…ウェー
ブフォーム・レコーダ。
1, 2 ... 2 arms of Mach-Zehnder interferometer, 3,
4 ... 3 dB coupler, 5, 6, 23, 24 ... Incident port,
7,8,21,22 ... Outgoing port, 11 ... Light source, 12,
13 ... Optical fiber 3 dB coupler, 14 ... Interferometric optical circuit for test, 15, 16, 31 ... Lens, 17 ... Prism,
18 ... Reflector, 19, 34, 35 ... Photodetector, 20
... selective level meter, 32 ... DFB laser, 33 ... dichroic mirror, 36 ... fringe counter, 37 ... waveform recorder.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 共通の入射ポート及び出射ポートを有
し、長さの異なるN本の光導波路を有する干渉形光回路
内の各光導波路を伝搬する光が受ける位相変化及び光パ
ワー分配量を測定する光回路評価方法において、 光回路の任意の2つの光導波路間の光路長差よりも短い
コヒーレント長を有する光源を用いた干渉計の一方の光
路内に該光回路を設置し、参照光の光路となる該干渉計
の他方の光路の光路長を変化させ、各光導波路を伝搬す
る光と前記参照光との干渉によって生じるN個の孤立し
たビート信号からなるインターフェログラムI(x)を
生成(xは特定の地点からの参照光の光路長変化)し、
孤立した各ビート信号ik (x)を抽出し、σを波数と
して、フーリエ変換 を計算し(iは虚数単位)、それぞれの振幅Ak (σ)
と位相Φk (σ)を求め、位相Φk (σ)をk番目の光
導波路にて光が受けた位相変化、光源のスペクトルをg
(σ)として|Ak (σ)/g(σ)|2 を光パワー分
配量として導出することを特徴とする光回路評価方法。
1. A phase change and an optical power distribution amount received by light propagating in each optical waveguide in an interferometric optical circuit having a common incident port and a common outgoing port and having N optical waveguides of different lengths. In an optical circuit evaluation method for measuring, an optical circuit is installed in one optical path of an interferometer using a light source having a coherent length shorter than an optical path length difference between any two optical waveguides of the optical circuit, and a reference light is used. By changing the optical path length of the other optical path of the interferometer serving as the optical path of the interferometer I (x) consisting of N isolated beat signals generated by the interference between the light propagating through each optical waveguide and the reference light. (Where x is the optical path length change of the reference light from a specific point),
Each isolated beat signal i k (x) is extracted, and Fourier transform is performed with σ as the wave number. (I is an imaginary unit), and each amplitude A k (σ)
And the phase Φ k (σ) are obtained, and the phase Φ k (σ) is the phase change received by the light in the k-th optical waveguide, and the spectrum of the light source is g
An optical circuit evaluation method, wherein | A k (σ) / g (σ) | 2 is derived as the optical power distribution amount as (σ).
【請求項2】 前記ビート信号をフーリエ変換して振幅
と位相を導出する方法として、それぞれのビート信号の
中心付近の特定の地点での(参照光の)光路長変化をx
k 、xk を原点とした光路長の変化をyk として、各ビ
ート信号をykの関数としてjk (yk )(k=1,
2,……N)と表し(即ち、ik (x)=j
k (yk ))、jk (yk )のフーリエ変換 を計算し、それぞれの振幅bk (σ)と位相φk (σ)
を求め、2πσxk +φk (σ)の関係式より波数σに
おけるk番目の光導波路を通過した光の受けた位相を、
|bk (σ)/g(σ)|2 の関係式よりその光への光
パワー分配量をそれぞれ導出することを特徴とする請求
項1記載の光導波路評価方法。
2. A method of deriving an amplitude and a phase by Fourier transforming the beat signal, wherein a change in optical path length (of the reference light) at a specific point near the center of each beat signal is x.
k, j k (y k) changes in optical path length with the origin of x k as y k, each beat signal as a function of y k (k = 1,
2, ... N) (that is, i k (x) = j
Fourier transform of k (y k )), j k (y k ) To calculate the amplitude b k (σ) and phase φ k (σ) of each
From the relational expression of 2πσ x k + φ k (σ), the phase received by the light passing through the k-th optical waveguide at the wave number σ is
The optical waveguide evaluation method according to claim 1, wherein the optical power distribution amount to the light is derived from the relational expression of | b k (σ) / g (σ) | 2 .
【請求項3】 N個の孤立したビート信号を生成する方
法として、参照光の光路長の変化とともに生じる全ビー
ト信号(インターフェログラム)I(x)を取得し、こ
れをフーリエ変換して振幅A(σ)と位相ψ(σ)を求
め(即ち、 B(σ)=A(σ)/g(σ)を求め、単一のピークを
有し集束性の良いウィンドゥ関数C(σ)と前記位相項
exp[iψ(σ)]をB(σ)に乗じた後、逆フーリ
エ変換を施して(即ち、 を計算して)、孤立したビート信号を再生することを特
徴とする請求項1又は2記載の光回路評価方法。
3. As a method of generating N isolated beat signals, a total beat signal (interferogram) I (x) generated with a change in the optical path length of the reference light is acquired, and Fourier-transformed to obtain the amplitude. A (σ) and phase ψ (σ) are calculated (that is, B (σ) = A (σ) / g (σ) is obtained, and the window function C (σ) having a single peak and good focusing property and the phase term exp [iψ (σ)] are B (σ) And then apply the inverse Fourier transform (ie, The optical circuit evaluation method according to claim 1 or 2, wherein the isolated beat signal is reproduced.
【請求項4】 前記光源と波長が異なる単色光源からの
光を前記干渉計内に入射させ、前記光路長の変化ととも
に生じるビート信号の変化より、前記参照光の光路長変
化を測定することを特徴とする請求項1記載の光回路評
価方法。
4. An optical path length change of the reference light is measured based on a change in a beat signal caused by a change in the optical path length by causing light from a monochromatic light source having a wavelength different from that of the light source to enter the interferometer. The optical circuit evaluation method according to claim 1, which is characterized in that.
JP598994A 1994-01-24 1994-01-24 Optical circuit evaluation method Expired - Lifetime JP3339656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP598994A JP3339656B2 (en) 1994-01-24 1994-01-24 Optical circuit evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP598994A JP3339656B2 (en) 1994-01-24 1994-01-24 Optical circuit evaluation method

Publications (2)

Publication Number Publication Date
JPH07209090A true JPH07209090A (en) 1995-08-11
JP3339656B2 JP3339656B2 (en) 2002-10-28

Family

ID=11626211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP598994A Expired - Lifetime JP3339656B2 (en) 1994-01-24 1994-01-24 Optical circuit evaluation method

Country Status (1)

Country Link
JP (1) JP3339656B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0818695A2 (en) * 1996-07-10 1998-01-14 Nippon Telegraph And Telephone Corporation Guided-wave circuit with optical characteristics adjusting plate method for producing it, and apparatus for producing optical characteristics adjusting plate
JP2004126398A (en) * 2002-10-04 2004-04-22 Nippon Telegr & Teleph Corp <Ntt> Optical circuit and evaluation device therefor
US6975781B2 (en) 2002-07-10 2005-12-13 Nippon Telegraph And Telephone Corporation Characteristic adjustment method of multistage Mach-Zehnder interferometer type optical circuit and multistage Mach-Zehnder interferometer type optical circuit
JP2013037002A (en) * 2007-06-15 2013-02-21 Board Of Trustees Of The Leland Stanford Junior Univ System and method for using slow light in optical sensor
US8705044B2 (en) 2008-04-01 2014-04-22 The Board Of Trustees Of The Leland Stanford Junior University Method of using a unidirectional crow gyroscope
US9019482B2 (en) 2009-06-05 2015-04-28 The Board Of Trustees Of The Leland Stanford Junior University Optical device with fiber Bragg grating and narrowband optical source
US9025157B2 (en) 2010-09-08 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University System and method for measuring perturbations using a slow-light fiber Bragg grating sensor
US9366808B2 (en) 2010-09-08 2016-06-14 The Board Of Trustees Of The Leland Stanford Junior University Slow-light sensor utilizing an optical filter and a narrowband optical source

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0818695A2 (en) * 1996-07-10 1998-01-14 Nippon Telegraph And Telephone Corporation Guided-wave circuit with optical characteristics adjusting plate method for producing it, and apparatus for producing optical characteristics adjusting plate
EP0818695A3 (en) * 1996-07-10 1998-11-04 Nippon Telegraph And Telephone Corporation Guided-wave circuit with optical characteristics adjusting plate method for producing it, and apparatus for producing optical characteristics adjusting plate
US5940548A (en) * 1996-07-10 1999-08-17 Nippon Telegraph And Telephone Corporation Guided-wave circuit with optical characteristics adjusting plate, method for producing it, and apparatus for producing optical characteristics adjusting plate
US6975781B2 (en) 2002-07-10 2005-12-13 Nippon Telegraph And Telephone Corporation Characteristic adjustment method of multistage Mach-Zehnder interferometer type optical circuit and multistage Mach-Zehnder interferometer type optical circuit
JP2004126398A (en) * 2002-10-04 2004-04-22 Nippon Telegr & Teleph Corp <Ntt> Optical circuit and evaluation device therefor
JP2013037002A (en) * 2007-06-15 2013-02-21 Board Of Trustees Of The Leland Stanford Junior Univ System and method for using slow light in optical sensor
US8705044B2 (en) 2008-04-01 2014-04-22 The Board Of Trustees Of The Leland Stanford Junior University Method of using a unidirectional crow gyroscope
US9019482B2 (en) 2009-06-05 2015-04-28 The Board Of Trustees Of The Leland Stanford Junior University Optical device with fiber Bragg grating and narrowband optical source
US9329089B2 (en) 2009-06-05 2016-05-03 The Board Of Trustees Of The Leland Stanford Junior University Optical device utilizing fiber bragg grating and narrowband light with non-bragg wavelength
US9025157B2 (en) 2010-09-08 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University System and method for measuring perturbations using a slow-light fiber Bragg grating sensor
US9347826B2 (en) 2010-09-08 2016-05-24 The Board Of Trustees Of The Leland Stanford Junior University System and method for measuring perturbations utilizing an optical filter and a narrowband optical source
US9366808B2 (en) 2010-09-08 2016-06-14 The Board Of Trustees Of The Leland Stanford Junior University Slow-light sensor utilizing an optical filter and a narrowband optical source

Also Published As

Publication number Publication date
JP3339656B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
EP0506297B1 (en) Three wavelength optical measurement apparatus
US7110119B2 (en) Determining an optical property by using superimposed delayed signals
CN110646805B (en) Frequency modulation continuous wave laser ranging system based on virtual sweep frequency light source
US5341205A (en) Method for characterization of optical waveguide devices using partial coherence interferometry
CN110132138B (en) Double-sweep-frequency light source ranging system and method based on cascade interferometer
JP3922742B2 (en) Method and apparatus for measuring film thickness
US5684586A (en) Apparatus for characterizing short optical pulses
JP3814343B2 (en) Method and apparatus for measuring film thickness
JP3339656B2 (en) Optical circuit evaluation method
JP2003528326A (en) Method and apparatus for evaluating chromatic dispersion in fiber Bragg gratings
JP2004085275A (en) Equipment, method and program for measuring optical characteristic utilizing quantum interference, and recording medium recording the program
JPH06229922A (en) Very accurate air refractometer
JPH0972723A (en) Method and equipment for measuring thickness and refractive index of film
JP2002333371A (en) Wavemeter
JPH0354292B2 (en)
JPH067071B2 (en) Optical spectrum measuring device
JP2767000B2 (en) Waveguide dispersion measurement method and apparatus
JPH05203410A (en) Method and device for measuring reflecting point in optical frequency domain
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
Imran et al. Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry
JP3287441B2 (en) Optical component for optical line identification and remote measuring method and device therefor
US5805282A (en) Method and apparatus for coherence observation by interference noise
US20230152156A1 (en) Radio frequency tagging optical spectrometer and method for measurements of optical spectra
JPH01143931A (en) Method and device for measuring mode double refractive index of birefringent fiber
RU2152588C1 (en) Method measuring optical thickness of plane-parallel clear objects

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070816

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130816

Year of fee payment: 11

EXPY Cancellation because of completion of term