JPH07208112A - Exhaust afterburning type combined plant operating method and exhaust heat recovering system - Google Patents

Exhaust afterburning type combined plant operating method and exhaust heat recovering system

Info

Publication number
JPH07208112A
JPH07208112A JP567894A JP567894A JPH07208112A JP H07208112 A JPH07208112 A JP H07208112A JP 567894 A JP567894 A JP 567894A JP 567894 A JP567894 A JP 567894A JP H07208112 A JPH07208112 A JP H07208112A
Authority
JP
Japan
Prior art keywords
exhaust gas
boiler
heat
plant
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP567894A
Other languages
Japanese (ja)
Inventor
Shigeki Kuroba
茂樹 黒羽
Hiroshi Arase
央 荒瀬
Tetsuzo Kuribayashi
哲三 栗林
Hideaki Komatsu
秀明 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP567894A priority Critical patent/JPH07208112A/en
Publication of JPH07208112A publication Critical patent/JPH07208112A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To effectively use exhaust heat of a combined plant in air-conditioning, hot-water supply, and the like without returning excessive heat amount of a combined plant into a steam turbine cycle by separating a part of exhaust gas in a boiler, and supplying exhaust gas to the system outside a combined plant. CONSTITUTION:Exhaust gas of a boiler 5 is supplied to a high pressure gas heater 6 through a ventilation pipe 70, and heat recovery is carried out by the high pressure gas heater 6 at the time of feed water. Heat recovery is carried out by a low pressure gas heater 7 at the time of condensation, so that exhaust gas of the boiler 5 is cooled to about 100 deg. degree, and exhaust gas is discharged toward the atmosphere through a chimney 8. Especially, a branch pipe 71 for branching a part of exhaust gas of the boiler 5 is provided in the ventilation pipe 70. A heat accompanying supply plane 25 for supplying exhaust heat of boiler exhaust gas to the system outside a combined plant is arranged on one end of the branch pipe 71. It is thus possible to utilize exhaust heat of a power plant for air-conditioning, hot-water supply, and the like effectively without being influenced by the load fluctuation of a plant, improve overall heat efficiency, and reduce environmental pollution due to exhaust heat.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排気再燃型コンバインド
プラントに係り、特に熱併給システムを設けることで、
給水・復水へのボイラ排熱回収量を調整し、安定した熱
併給発電運転を可能とする排気再燃型コンバインドプラ
ントの排熱回収システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas recombustion type combined plant, and in particular, by providing a cogeneration system,
The present invention relates to an exhaust heat recovery system for an exhaust gas re-combustion combined plant that adjusts the amount of boiler exhaust heat recovery for water supply and condensate and enables stable cogeneration operation.

【0002】[0002]

【従来の技術】従来の排気再燃型コンバインドプラント
は例えば特開平4-234506号公報に開示されてい
るように、発電機を駆動させるガスタービンと、このガ
スタービンの排ガスを用いて蒸気を発生させるボイラ
と、このボイラの蒸気を利用して発電する蒸気タービン
サイクルを備える。この蒸気タービンサイクルの給水系
統をボイラ排ガスの一部を用いたガスヒータで加熱し、
このガスヒータに並列に設けられた排熱回収ボイラに、
前記ガスヒータで用いられなかったボイラ排ガスを供給
し、低圧タービンで仕事を終えた蒸気を前記の排熱回収
ボイラで加熱して再び中圧タービンへ供給していた。
2. Description of the Related Art A conventional exhaust gas recombustion combined plant, for example, as disclosed in Japanese Patent Application Laid-Open No. 4-234506, uses a gas turbine for driving a generator and exhaust gas from the gas turbine to generate steam. It is equipped with a boiler and a steam turbine cycle that uses the steam of the boiler to generate electricity. The water supply system of this steam turbine cycle is heated by a gas heater that uses a part of the boiler exhaust gas,
In the exhaust heat recovery boiler installed in parallel with this gas heater,
Boiler exhaust gas that was not used in the gas heater was supplied, and steam that had finished its work in the low-pressure turbine was heated by the exhaust heat recovery boiler and was supplied again to the intermediate-pressure turbine.

【0003】すなわち蒸気従来技術は、ボイラ排ガスの
排熱を蒸気タービンサイクルへ熱回収するように構成さ
れていた、
That is, in the conventional steam technology, the exhaust heat of the boiler exhaust gas was recovered to the steam turbine cycle.

【0004】[0004]

【発明が解決しようとする課題】排気再燃型コンバイン
ドプラントへのリパワリングは、既設発電プラントに対
しガスタービン出力分プラント出力増加となり、ガスタ
ービンの高温排ガスをボイラの燃焼用空気として利用
し、またボイラの高温排ガスで給水及び復水の加熱を行
なうことから、プラント効率が向上するという利点があ
る。しかしながら、リパワリングは既設火力プラントの
改造であるという点も含め、上記従来技術のボイラ排ガ
ス熱量を蒸気タービンサイクルへ熱回収することで、復
水器熱負荷の増加及びガスヒータの余剰熱量により以下
の問題点が生じる。
Repowering of an exhaust gas re-combustion combined plant results in an increase in the gas turbine output for the existing power plant, and the high temperature exhaust gas of the gas turbine is used as combustion air for the boiler. Since the feed water and the condensate are heated by the high temperature exhaust gas, there is an advantage that the plant efficiency is improved. However, repowering, including the fact that it is a modification of an existing thermal power plant, by recovering the heat of the boiler exhaust gas heat of the above-mentioned conventional technology to the steam turbine cycle, the following problems due to an increase in the heat load of the condenser and the surplus heat of the gas heater Dots occur.

【0005】排気再燃型コンバインドプラントにおいて
復水器熱負荷は既設火力プラントに対し増加傾向となる
が、蒸気タービン定格負荷を確保し、低圧蒸気タービン
の排気蒸気を復水器にて冷却する復水器冷却水の復水器
出入口温度差を既設火力プラントの環境規定値内に押さ
えるためには、復水器冷却水量を増加させることが必要
となり、復水器冷却水を復水器へ送り込む循環水ポンプ
の大容量化、復水器等の大幅な改造が必要となる。
Although the heat load of the condenser in the exhaust gas re-combustion combined plant tends to increase compared to the existing thermal power plant, the steam turbine rated load is secured and the condensate for cooling the exhaust steam of the low pressure steam turbine in the condenser. It is necessary to increase the amount of condenser cooling water in order to keep the temperature difference between the condenser inlet and outlet of the condenser within the environmental limits of the existing thermal power plant, and the circulation of condenser cooling water to the condenser is circulated. It will be necessary to increase the capacity of the water pump and make major modifications to the condenser.

【0006】またプラント低負荷時においては、給水及
び復水は蒸気タービン負荷にほぼ追従して減少するが、
ガスタービンの回転速度はプラント低負荷時においても
あまり変化しないためボイラ排ガス量も定格負荷時に比
べさほど変化しない。よってガスヒータ回収熱量もあま
り減少しない。このため給水及び復水をガスヒータへ全
量通水しても過熱されるという問題が生じる。
Further, when the load on the plant is low, the feed water and the condensate decrease substantially in accordance with the steam turbine load.
The rotational speed of the gas turbine does not change much even when the load on the plant is low, so the amount of boiler exhaust gas does not change much compared to when the load is rated. Therefore, the heat recovery amount of the gas heater does not decrease so much. Therefore, there is a problem in that even if the entire amount of supplied water and condensate is passed through the gas heater, it is overheated.

【0007】本発明の第1の目的は、コンバインドプラ
ント系統外にボイラ排ガスの熱量の一部を供給し、コン
バインドプラントの余剰熱量を蒸気タービンサイクルに
戻すことなく前記系統外で冷暖房・給湯等で有効に使用
できるコンバインドプラントの排熱回収システムを提供
することにある。
A first object of the present invention is to supply a part of the heat quantity of the boiler exhaust gas to the outside of the combined plant system, and to cool / heat / hot water etc. outside the system without returning the surplus heat amount of the combined plant to the steam turbine cycle. It is to provide an exhaust heat recovery system for a combined plant that can be effectively used.

【0008】本発明の第2の目的は、前記熱併給システ
ムによりコンバインドプラント系統外に供給される熱量
をプラント負荷に関わらず常に一定して供給できるコン
バインドプラントの排熱回収システムを提供することに
ある。
A second object of the present invention is to provide an exhaust heat recovery system for a combined plant, which can always supply a constant amount of heat supplied to the outside of the combined plant system by the cogeneration system regardless of the plant load. is there.

【0009】本発明の他の目的は、プラント定格負荷時
もしくは低負荷時におけるガスヒータでは回収できない
余剰熱量を、コンバインドプラントの系統外へ供給して
冷暖房等に有効に利用するコンバインドプラントの運転
方法を提供することにある。
Another object of the present invention is to provide a method for operating a combined plant, which supplies the excess heat amount, which cannot be recovered by a gas heater at the time of rated load or low load of the plant, to the outside of the system of the combined plant and effectively uses it for cooling and heating. To provide.

【0010】また、コンバインドプラントの系統外へ供
給する熱量をプラント負荷に関わりなく略一定にして常
に安定した熱量を得ることが可能なコンバインドプラン
トの運転方法を提供することも本発明の他の目的の一つ
である。
Another object of the present invention is to provide a method for operating a combined plant, which makes it possible to constantly obtain a stable amount of heat by making the amount of heat supplied to the outside of the combined plant system substantially constant regardless of the plant load. one of.

【0011】[0011]

【課題を解決するための手段】上記第1の目的を達成す
るために、本発明の第1の発明は、ガスタービンの排ガ
スを燃焼空気として蒸気を発生するボイラと、該ボイラ
の発生蒸気により駆動される蒸気タービンの給水を前記
ボイラの排ガスを用いて加熱するガスヒータを有する排
気再燃型コンバインドプラントにおいては、ボイラの排
ガスの一部を分岐させ、この排ガスをコンバインドプラ
ントの系統外へを供給する熱併給システムに供給させる
ように構成したことを特徴とする。
In order to achieve the first object, a first invention of the present invention is to use a boiler for generating steam by using exhaust gas of a gas turbine as combustion air, and a steam generated by the boiler. In an exhaust gas reburn type combined plant having a gas heater for heating feed water of a driven steam turbine by using the exhaust gas of the boiler, a part of the exhaust gas of the boiler is branched and the exhaust gas is supplied to the outside of the combined plant system. It is characterized in that it is configured so as to be supplied to the heat supply system.

【0012】上記第2の目的を達成するために、本発明
の第2の発明は、上記の排気再燃型コンバインドプラン
トにおいては、ボイラの排ガスの一部を分岐させ、この
排ガスをコンバインドプラントの系統外へを供給する熱
併給システムに供給させるように成し、更にこの排ガス
の熱量が、プラントの負荷に関わらず常に略一定になる
ように構成したことを特徴とする。
In order to achieve the above-mentioned second object, the second invention of the present invention is, in the above-mentioned exhaust gas re-combustion type combined plant, part of the exhaust gas of the boiler is branched, and this exhaust gas is connected to the system of the combined plant. It is characterized in that it is configured to be supplied to a cogeneration system that supplies the outside, and that the heat quantity of this exhaust gas is always substantially constant regardless of the load on the plant.

【0013】上記他の目的を達成するために、本発明の
他の発明は、ガスタービンの排ガスをボイラの熱源とし
て使用すると共に、ボイラの排ガスを蒸気タービンサイ
クルの給水系を加熱するガスヒータに供給する排気再燃
型コンバインドプラントの運転方法において、前記ガス
ヒータとこれに並列的に設けられた熱併給プラントに供
給されるボイラ排ガスの熱量を熱併給システム供給可能
熱量としたときに、該熱量と予め定められたガスヒータ
可能回収熱量との差よりも大きい所定熱量相当分のボイ
ラ排ガス量を、前記コンバインドプラント系統外へボイ
ラ排ガスの排熱を供給する前記熱併給プラントに分配供
給して運転することを特徴とする。
In order to achieve the above-mentioned other object, another invention of the present invention uses the exhaust gas of a gas turbine as a heat source of a boiler and supplies the exhaust gas of the boiler to a gas heater for heating a water supply system of a steam turbine cycle. In the method of operating an exhaust gas reburn type combined plant, when the heat quantity of the boiler exhaust gas supplied to the gas heater and the heat cogeneration plant provided in parallel with the gas heater is set as the heat cogeneration system supplyable heat quantity, the heat quantity and the heat quantity are predetermined. It is characterized in that the boiler exhaust gas amount corresponding to a predetermined heat amount that is larger than the difference between the recovered heat amount of the gas heater and the combined heat generation plant for supplying exhaust heat of the boiler exhaust gas to the outside of the combined plant system is distributed and operated. And

【0014】また、前記所定熱量をプラントの負荷に関
わらず略一定にしてもよい。
The predetermined amount of heat may be made substantially constant regardless of the load on the plant.

【0015】更に、前記所定熱量を復水器熱負荷抑制域
又は復水ダンプ域において略一定としてもよい。
Further, the predetermined amount of heat may be substantially constant in the condenser heat load suppression area or the condensate dump area.

【0016】[0016]

【作用】上記第1の発明に係る排気再燃型コンバインド
プラントは、ボイラ排ガスの余剰熱を蒸気タービンサイ
クルへ戻すことなくコンバインドプラントの系統外で冷
暖房、給湯等に使用するため、復水及び給水を過剰に加
熱することことなく、前記余剰熱を有効に利用すること
ができる。
In the exhaust gas reburn type combined plant according to the first aspect of the present invention, since the excess heat of the boiler exhaust gas is used for cooling and heating, hot water supply, etc. outside the system of the combined plant without returning to the steam turbine cycle, condensate and water supply The surplus heat can be effectively utilized without excessive heating.

【0017】上記第2の発明に係る排気再燃型コンバイ
ンドプラントは、熱併給システムに供給されるボイラ排
ガスの熱量をプラントの負荷に関わりなく常に略一定と
なるように構成したので、常に安定した必要熱量を得る
ことができ、質の高い熱併給システムを提供することが
できる。
The exhaust gas re-combustion combined plant according to the second aspect of the present invention is constructed so that the heat quantity of the boiler exhaust gas supplied to the cogeneration system is always substantially constant irrespective of the load on the plant. The amount of heat can be obtained, and a high quality heat supply system can be provided.

【0018】上記他の発明に係る排気再燃型コンバイン
ドプラントの運転方法は、ガスヒータ回収熱量の上限値
を超えるボイラ排ガスの熱量が発生するプラント負荷
時、例えば復水器熱負荷抑制域又は復水ダンプ域におい
ては、その余剰熱量を復水器へダンプして無駄にするこ
となく、前記熱併給システムに供給するため、余剰熱量
を有効に冷暖房等に利用することができる。
An operating method of an exhaust gas re-combustion combined plant according to the above-mentioned other invention is a plant load in which a heat quantity of a boiler exhaust gas exceeding an upper limit value of a gas heater recovery heat quantity is generated, for example, a condenser heat load suppressing area or a condensate dump. In the region, the surplus heat amount is supplied to the cogeneration system without being wasted by dumping it to the condenser, so that the surplus heat amount can be effectively used for cooling and heating.

【0019】また、前記熱併給システムに供給される熱
量をプラントの負荷に関わらず略一定にしているため、
常に安定した熱量をコンバインドプラントの系統外で得
ることができる。
Further, since the amount of heat supplied to the cogeneration system is substantially constant regardless of the load on the plant,
A stable amount of heat can always be obtained outside the combined plant system.

【0020】[0020]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0021】図1は本発明の一実施例に係る排気再燃型
コンバインドプラントのボイラ排ガス系に熱併給システ
ム26を設けた構成図である。
FIG. 1 is a configuration diagram in which a cogeneration system 26 is provided in a boiler exhaust gas system of an exhaust gas re-combustion combined plant according to an embodiment of the present invention.

【0022】発電機4を発電駆動とするガスタービン
(圧縮機1,燃焼器2,タービン3)設備において、ガ
スタービン3からの高温排ガスをボイラ5の燃焼用空気
として使用する。ボイラ5の排ガスは通気管70を介し
て高圧ガスヒータ6に供給され、この高圧ガスヒータ6
にて給水に熱回収を図り、更に低圧ガスヒータ7にて復
水に熱回収を図ることにより、ボイラ5の排ガス温度は
100℃程度に冷却され煙突8より大気に放出する。
In the gas turbine (compressor 1, combustor 2, turbine 3) equipment in which the generator 4 is driven to generate electricity, the high temperature exhaust gas from the gas turbine 3 is used as combustion air for the boiler 5. Exhaust gas from the boiler 5 is supplied to the high-pressure gas heater 6 via the ventilation pipe 70.
By recovering heat to the feed water and further recovering heat to the condensate by the low-pressure gas heater 7, the exhaust gas temperature of the boiler 5 is cooled to about 100 ° C. and released to the atmosphere from the chimney 8.

【0023】一方、給水を蒸気に変換するボイラ5と、
ボイラ5で発生した蒸気により駆動され発電機12を発
電駆動する高圧蒸気タービン9と、高圧蒸気タービン9
の排気蒸気をボイラ5で再熱した蒸気により駆動される
中圧蒸気タービン10と、中圧蒸気タービン10の排気
蒸気により駆動される低圧蒸気タービン11と、低圧蒸
気タービン11の排気蒸気を復水化する復水器13と、
復水器13の復水を昇圧して復水系統に吐出する復水ポ
ンプ14と、復水ポンプ14から供給された復水を低圧
蒸気タービン11の抽気蒸気により加熱する低圧給水加
熱器15と、低圧給水加熱器15から供給された復水を
中圧蒸気タービン10の抽気蒸気にて脱気する脱気器1
6と、脱気器16により脱気された復水を昇圧して給水
系統に吐出する給水ポンプ17と、給水ポンプ17から
供給された給水を高圧蒸気タービン9の抽気蒸気により
加熱する高圧給水加熱器18とを備え、低圧蒸気タービ
ン11の排気蒸気を復水器13にて冷却するための海水
を復水器13へ吐出する循環水ポンプ20を備える。
On the other hand, a boiler 5 for converting the feed water into steam,
A high-pressure steam turbine 9 that is driven by the steam generated in the boiler 5 to drive the generator 12 to generate electricity, and a high-pressure steam turbine 9
Medium-pressure steam turbine 10 driven by the steam reheated from the exhaust steam of Boiler 5, low-pressure steam turbine 11 driven by the exhaust steam of medium-pressure steam turbine 10, and exhaust steam of low-pressure steam turbine 11 Condenser 13 that turns into
A condensate pump 14 that pressurizes the condensate of the condenser 13 and discharges it to the condensate system, and a low-pressure feed water heater 15 that heats the condensate supplied from the condensate pump 14 by the extraction steam of the low-pressure steam turbine 11. , A deaerator 1 for deaerating the condensate supplied from the low-pressure feed water heater 15 with the extracted steam of the medium-pressure steam turbine 10.
6, a water supply pump 17 that pressurizes the condensed water deaerated by the deaerator 16 and discharges it to the water supply system, and high-pressure feed water heating that heats the feed water supplied from the water feed pump 17 by the extraction steam of the high-pressure steam turbine 9. And a circulating water pump 20 that discharges seawater for cooling the exhaust steam of the low-pressure steam turbine 11 in the condenser 13 to the condenser 13.

【0024】また、熱併給システム26として、熱併給
プラント25と、この熱併給プラント25へ必要熱量を
供給するための手段として通気管70の途中に設けら
れ、ボイラ排ガス系の高圧ガスヒータ6及び低圧ガスヒ
ータ7の入口から分岐される分岐管71を介して、これ
らガスヒ−タと並列に温水加熱器21を設け、高圧ガス
ヒータ入口分岐配管上には高圧ガス調整器22、低圧ガ
スヒータ入口の分岐管71上には低圧ガス調整器23を
備え、低圧ガスヒータ7の出口側に排ガス流量調整器2
4を備える。
Further, the cogeneration system 26 is provided as a cogeneration plant 25 and a ventilation pipe 70 as a means for supplying a necessary amount of heat to the cogeneration plant 25, and the boiler exhaust gas high pressure gas heater 6 and the low pressure gas heater 6 are provided. A hot water heater 21 is provided in parallel with these gas heaters via a branch pipe 71 branched from the inlet of the gas heater 7, and a high pressure gas regulator 22 and a low pressure gas heater inlet branch pipe 71 are provided on the high pressure gas heater inlet branch pipe. A low pressure gas regulator 23 is provided on the upper side, and an exhaust gas flow rate regulator 2 is provided on the outlet side of the low pressure gas heater 7.
4 is provided.

【0025】図2は本発明の一実施例に係る排気再燃型
コンバインドプラントの蒸気タービン負荷に対するボイ
ラ排ガス熱量の特性を示す説明図である。
FIG. 2 is an explanatory diagram showing the characteristics of the boiler exhaust gas heat quantity with respect to the steam turbine load of the exhaust gas re-combustion combined plant according to one embodiment of the present invention.

【0026】ボイラ排ガス熱量は熱併給システム26の
必要熱量と蒸気タービンサイクルの復水器熱負荷の増加
及び給水・復水の過度の温度上昇等の問題を考慮したガ
スヒータ回収熱量から温水加熱器21側とガスヒータ側
へ排ガス流量調整器24、高圧ガス調整器22及び低圧
ガス調整器23の開度を調整し分配制御する。
The boiler exhaust gas heat quantity is calculated from the heat quantity recovered by the gas heater in consideration of the heat quantity required for the cogeneration system 26, the heat load on the condenser of the steam turbine cycle, and the excessive temperature rise of the feed water / condensate. Side and the gas heater side, the opening degree of the exhaust gas flow rate regulator 24, the high pressure gas regulator 22 and the low pressure gas regulator 23 is adjusted to perform distribution control.

【0027】プラント高負荷時においてはボイラ排ガス
熱量を排ガス流量調整器24にて分配制御し、ガスヒー
タ回収熱量を上限値以下に調整することで、給水加熱器
側へのボイラ排ガス熱量分配比が大きくなり、給水加熱
器通水量が増加する。このため、給水加熱器必要抽気量
が増加し、その分蒸気タービン排気量が減少する。この
結果、低圧タービン11から復水器13への排気蒸気は
減少し、復水器13への排熱量を抑制でき、循環水ポン
プ20、復水器13等の大幅な改造無しで復水器冷却水
の復水器出入口温度差を環境規定値内に押さえられる。
When the plant has a high load, the exhaust gas flow controller 24 controls the distribution of the heat quantity of the boiler exhaust gas, and the heat recovery quantity of the gas heater is adjusted to be equal to or lower than the upper limit value, thereby increasing the distribution ratio of the heat quantity of the boiler exhaust gas to the feed water heater side. Therefore, the water flow rate of the feed water heater increases. For this reason, the required extraction amount of the feed water heater increases, and the steam turbine exhaust amount decreases accordingly. As a result, the amount of exhaust steam from the low-pressure turbine 11 to the condenser 13 is reduced, the amount of heat exhausted to the condenser 13 can be suppressed, and the condenser 20 without significant modification of the circulating water pump 20, the condenser 13, etc. The temperature difference between the inlet and outlet of the condenser for cooling water can be kept within the specified environmental limits.

【0028】プラント低負荷時においてはボイラ排ガス
熱量を排ガス流量調整器24にて分配制御し、ガスヒー
タ回収熱量を上限値以下に調整することで、給水加熱器
通水量が増加し、それに伴い給水加熱器必要抽気量が増
加するため蒸気タービン抽気逆止弁チャタリングが防止
できる。またボイラ排ガス熱量による給水・復水温度の
過上昇を防止でき、安全且つ効率的なプラント運用が可
能となる。
When the load of the plant is low, the heat quantity of the boiler exhaust gas is distributed and controlled by the exhaust gas flow rate regulator 24, and the heat quantity recovered by the gas heater is adjusted to the upper limit value or less. Since the required bleeding amount of the steam generator is increased, the steam turbine bleeding check valve chattering can be prevented. In addition, it is possible to prevent an excessive rise in the temperature of the water supply / condensate due to the heat quantity of the boiler exhaust gas, which enables safe and efficient plant operation.

【0029】一方、熱併給システム26においては電気
中心型のプラント運転時でも発電所の負荷パターンに影
響されることなく安定したボイラ排ガス系からの熱量を
確保でき、冷暖房、給湯等に有効利用できる。
On the other hand, in the cogeneration system 26, a stable amount of heat from the boiler exhaust gas system can be secured without being affected by the load pattern of the power plant even during the operation of the electric center type plant, and it can be effectively used for cooling and heating, hot water supply, etc. .

【0030】また熱併給プラント25が停止時において
ボイラ排ガス熱量は排ガス流量調整器24を全開、高圧
ガス調整器22及び低圧ガス調整器23は全閉とし、ガ
スヒータ側へ全量送り込む。そしてガスヒータの余剰熱
量が生じる負荷においては復水温度の過上昇を防止する
ため、復水量を増加させガスヒータ通水後、復水ダンプ
系統19から復水器へ戻すことで対応可能とする。
Further, when the cogeneration plant 25 is stopped, the exhaust gas heat quantity of the boiler is sent to the gas heater side by fully opening the exhaust gas flow rate regulator 24 and fully closing the high pressure gas regulator 22 and the low pressure gas regulator 23. In order to prevent the condensate temperature from excessively increasing under a load that causes an excessive amount of heat from the gas heater, the condensate amount can be increased and returned from the condensate dump system 19 to the condenser after passing through the gas heater.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば排
気再燃型コンバインドプラントの排熱回収方法として、
熱併給システムを設けることで発電プラントの排熱をプ
ラントの負荷変動に影響されることなく冷暖房、給湯等
に有効利用でき、総合熱効率の向上及び排熱公害の低減
化を図ることが可能となる。また蒸気タービンプラント
においては復水器熱負荷の増加による復水器冷却水の復
水器出入口温度差を環境規定値内に抑制することが可能
となると共に、プラント低負荷時の給水・復水温度の過
上昇を防止でき安全且つ効率的なプラント運用が可能と
なる。一方、排気再燃型コンバインドプラントの新設時
に同様の排熱回収システムを設けることにより、循環水
ポンプ、復水器等の小容量化が図れる。
As described above, according to the present invention, as an exhaust heat recovery method for an exhaust gas reburn type combined plant,
By installing a cogeneration system, the exhaust heat of the power plant can be effectively used for cooling and heating, hot water supply, etc. without being affected by the load fluctuation of the plant, and it is possible to improve the overall thermal efficiency and reduce exhaust heat pollution. . In a steam turbine plant, it is possible to suppress the condenser inlet / outlet temperature difference of condenser cooling water due to an increase in condenser heat load to within the environmentally specified value, and to supply water / condensate water when the plant has a low load. It is possible to prevent excessive temperature rise and to operate the plant safely and efficiently. On the other hand, by installing a similar exhaust heat recovery system when a new exhaust gas re-combustion combined plant is installed, the capacity of the circulating water pump, condenser, etc. can be reduced.

【0032】[0032]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す排気再燃型コンバイン
ドプラントの系統図である。
FIG. 1 is a system diagram of an exhaust gas reburn type combined plant showing an embodiment of the present invention.

【図2】本発明に係る蒸気タービン負荷に対するガスヒ
ータ及び熱回収システムへ分配供給されるボイラ排ガス
熱量の特性を示す説明図である。
FIG. 2 is an explanatory diagram showing characteristics of a boiler exhaust gas heat quantity distributed and supplied to a gas heater and a heat recovery system with respect to a steam turbine load according to the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機,2…燃焼器,3…ガスタービン,4,12
…発電機,5…ボイラ,6…高圧ガスヒータ,7…低圧
ガスヒータ,8…煙突,9…高圧蒸気タービン,10…
中圧蒸気タービン,11…低圧蒸気タービン,13…復
水器,14…復水ポンプ,15…低圧給水加熱器,16
…脱気器,17…給水ポンプ,18…高圧給水加熱器,
19…復水ダンプ系統,20…循環水ポンプ,21…温
水加熱器,22…高圧ガス調整器,23…低圧ガス調整
器,24…排ガス流量調整器,25…熱併給プラント,
26…熱併給システム,70…通気管,71…分岐管
1 ... Compressor, 2 ... Combustor, 3 ... Gas turbine, 4, 12
... generator, 5 ... boiler, 6 ... high pressure gas heater, 7 ... low pressure gas heater, 8 ... chimney, 9 ... high pressure steam turbine, 10 ...
Medium-pressure steam turbine, 11 ... Low-pressure steam turbine, 13 ... Condenser, 14 ... Condensate pump, 15 ... Low-pressure feed water heater, 16
… Deaerator, 17… Water pump, 18… High pressure water heater,
19 ... Condensate dump system, 20 ... Circulating water pump, 21 ... Hot water heater, 22 ... High pressure gas regulator, 23 ... Low pressure gas regulator, 24 ... Exhaust gas flow regulator, 25 ... Cogeneration plant,
26 ... Heat supply system, 70 ... Ventilation pipe, 71 ... Branch pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02C 6/18 A Z (72)発明者 栗林 哲三 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 小松 秀明 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location F02C 6/18 AZ (72) Inventor Tetsuzo Kuribayashi 3-2-1, Sachimachi, Hitachi City, Ibaraki Prefecture Within Hitachi Engineering Co., Ltd. (72) Inventor Hideaki Komatsu 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ガスタービンの排ガスを燃焼空気として蒸
気を発生するボイラと、該ボイラの発生蒸気により駆動
される蒸気タービンの給水を前記ボイラの排ガスを用い
て加熱するガスヒータと、前記ボイラと前記ガスヒータ
とを連結し、前記ガスヒータへボイラの排ガスを通気す
る通気管とを有する排気再燃型コンバインドプラントに
おいて、前記通気管にボイラの排ガスの一部を分岐させ
る分岐管を設けると共に、この分岐管の一端に前記コン
バインドプラントの系統外へボイラ排ガスの排熱を供給
する熱併給プラントを設置したことを特徴とする排気再
燃型コンバインドプラントの排熱回収システム。
1. A boiler for generating steam using exhaust gas of a gas turbine as combustion air, a gas heater for heating feed water of a steam turbine driven by steam generated by the boiler by using the exhaust gas of the boiler, the boiler and the boiler. In an exhaust gas re-combustion combined plant having a gas heater and a ventilation pipe for ventilating the exhaust gas of the boiler to the gas heater, a branch pipe for branching a part of the exhaust gas of the boiler is provided in the ventilation pipe, and An exhaust heat recovery system for an exhaust gas re-combustion combined plant, wherein a cogeneration plant for supplying exhaust heat of boiler exhaust gas to the outside of the combined plant system is installed at one end.
【請求項2】ガスタービンの排ガスを燃焼空気として蒸
気を発生するボイラと、該ボイラの発生蒸気により駆動
される蒸気タービンの給水を前記ボイラの排ガスを用い
て加熱するガスヒータと、前記ボイラと前記ガスヒータ
とを連結し、前記ガスヒータへボイラの排ガスを通気す
る通気管とを有する排気再燃型コンバインドプラントに
おいて、前記通気管内を流れるボイラ排ガスの一部を分
岐させる分岐管と、この分岐管により分岐されたボイラ
排ガスを用いて前記コンバインドプラントの系統外へボ
イラ排ガスの排熱を供給する熱併給プラントと、前記排
熱量が前記プラント負荷に関わらずほぼ一定となるよう
に、前記熱併給プラントに供給されるボイラ排ガス量を
制御する排ガス量制御手段とを備えたことを特徴とする
排気再燃型コンバインドプラントの排熱回収システム。
2. A boiler that generates steam by using exhaust gas of a gas turbine as combustion air, a gas heater that heats feed water of a steam turbine that is driven by steam generated by the boiler by using the exhaust gas of the boiler, the boiler, and the boiler. In an exhaust gas re-combustion combined plant having a gas heater and a vent pipe for venting the exhaust gas of the boiler to the gas heater, a branch pipe for branching a part of the boiler exhaust gas flowing in the vent pipe, and a branch pipe branched by this branch pipe. And a cogeneration plant that supplies the exhaust heat of the boiler exhaust gas to the outside of the combined plant system using the boiler exhaust gas, so that the exhaust heat amount is substantially constant regardless of the plant load, and is supplied to the cogeneration plant. And an exhaust gas re-combustion converter for controlling the amount of boiler exhaust gas. Command plant waste heat recovery system.
【請求項3】ガスタービンの排ガスをボイラの熱源とし
て使用すると共に、ボイラの排ガスを蒸気タービンサイ
クルの給水系を加熱するガスヒータに供給する排気再燃
型コンバインドプラントの運転方法において、 前記ガスヒータとこれに並列的に設けられた熱併給プラ
ントに供給されるボイラ排ガスの熱量を熱併給システム
供給可能熱量としたときに、該熱量と予め定められたガ
スヒータ可能回収熱量との差よりも大きい所定熱量相当
分のボイラ排ガス量を、前記コンバインドプラント系統
外へボイラ排ガスの排熱を供給する前記熱併給プラント
に分配供給して運転することを特徴とする排気再燃型コ
ンバインドプラントの運転方法。
3. A method of operating an exhaust gas recombustion combined plant, wherein the exhaust gas of a gas turbine is used as a heat source of a boiler, and the exhaust gas of the boiler is supplied to a gas heater for heating a feed water system of a steam turbine cycle. When the calorific value of the boiler exhaust gas supplied to the cogeneration plant provided in parallel is set as the calorie supplyable calorific value, a predetermined calorific value equivalent to a predetermined calorific value larger than the difference between the calorific value and a predetermined gas heater recoverable calorific value. The method for operating an exhaust gas re-combustion combined plant, comprising: distributing and supplying the boiler exhaust gas amount to the heat cogeneration plant that supplies exhaust heat of the boiler exhaust gas to the outside of the combined plant system.
【請求項4】請求項3記載の排気再燃型コンバインドプ
ラントの運転方法において、前記所定熱量は、前記プラ
ント負荷に関わらず略一定あることを特徴とする排気再
燃型コンバインドプラントの運転方法。
4. The method of operating an exhaust gas re-combustion combined plant according to claim 3, wherein the predetermined amount of heat is substantially constant regardless of the plant load.
【請求項5】請求項3記載の排気再燃型コンバインドプ
ラントの運転方法において、前記所定熱量は、復水器熱
負荷抑制域又は復水ダンプ域において略一定であること
を特徴とする排気再燃型コンバインドプラントの運転方
法。
5. The method of operating an exhaust gas reburn type combined plant according to claim 3, wherein the predetermined amount of heat is substantially constant in the condenser heat load suppression region or the condensate dump region. How to operate a combined plant.
JP567894A 1994-01-24 1994-01-24 Exhaust afterburning type combined plant operating method and exhaust heat recovering system Pending JPH07208112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP567894A JPH07208112A (en) 1994-01-24 1994-01-24 Exhaust afterburning type combined plant operating method and exhaust heat recovering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP567894A JPH07208112A (en) 1994-01-24 1994-01-24 Exhaust afterburning type combined plant operating method and exhaust heat recovering system

Publications (1)

Publication Number Publication Date
JPH07208112A true JPH07208112A (en) 1995-08-08

Family

ID=11617761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP567894A Pending JPH07208112A (en) 1994-01-24 1994-01-24 Exhaust afterburning type combined plant operating method and exhaust heat recovering system

Country Status (1)

Country Link
JP (1) JPH07208112A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1365198A1 (en) * 2001-01-23 2003-11-26 Honda Giken Kogyo Kabushiki Kaisha Cogeneration device
CN102537933A (en) * 2011-12-30 2012-07-04 冯伟忠 Adjustable feed water heat regenerative system for turbo generator unit
EP3985233A1 (en) * 2020-10-16 2022-04-20 Siemens Gamesa Renewable Energy GmbH & Co. KG Heat recovery steam generator with mass flow adaption

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1365198A1 (en) * 2001-01-23 2003-11-26 Honda Giken Kogyo Kabushiki Kaisha Cogeneration device
EP1365198A4 (en) * 2001-01-23 2004-08-04 Honda Motor Co Ltd Cogeneration device
US6948319B2 (en) 2001-01-23 2005-09-27 Honda Giken Kogyo Kabushiki Kaisha Cogeneration device
CN102537933A (en) * 2011-12-30 2012-07-04 冯伟忠 Adjustable feed water heat regenerative system for turbo generator unit
EP3985233A1 (en) * 2020-10-16 2022-04-20 Siemens Gamesa Renewable Energy GmbH & Co. KG Heat recovery steam generator with mass flow adaption
WO2022078795A1 (en) 2020-10-16 2022-04-21 Siemens Gamesa Renewable Energy Gmbh & Co. Kg Heat recovery steam generator with mass flow adaption

Similar Documents

Publication Publication Date Title
US6089012A (en) Steam cooled gas turbine system
CN107747503B (en) A kind of system and operation method of Thermal generation unit Ultra-low load operation
US5473898A (en) Method and apparatus for warming a steam turbine in a combined cycle power plant
KR100341646B1 (en) Method of cooling thermally loaded components of a gas turbine group
US7509794B2 (en) Waste heat steam generator
EP0911504B1 (en) Combined cycle power generating plant and method of supplying cooling steam for gas turbine in same
US8981583B2 (en) Method for stabilization of the network frequency of an electrical power network
CZ20003811A3 (en) Method of reheating gas turbine cooling steam and high-pressure steam at the turbine exhaust in a combined cycle system and apparatus for making the same
US6964167B2 (en) Method for operating a steam power installation and corresponding steam power installation
JP3009712B2 (en) Method and apparatus for forming steam and power for starting operation of a steam power station
JP3925985B2 (en) Combined cycle power plant
JPH07208112A (en) Exhaust afterburning type combined plant operating method and exhaust heat recovering system
KR101613227B1 (en) Apparatus and method for power production using waste heat in a ship
JPH08338205A (en) Combined cycle, electric power plant
JPH09303113A (en) Combined cycle generating plant
JP3604886B2 (en) Pressurized fluidized bed combined cycle power plant and power plant
JP4090584B2 (en) Combined cycle power plant
JPH05340205A (en) Controller for combined power generation plant
GB2318832A (en) Gas turbine based combined cycle power plant
JP3089108B2 (en) Exhaust system for exhaust reburn cycle
JP2683178B2 (en) Exhaust Reburning Combined Plant Operating Method and Exhaust Reburning Combined Plant
SU1090899A1 (en) Method of operating heat-electric generation plant
GB2176248A (en) Turbine control
JPS58214605A (en) Back pressure steam turbine cycle
JP3845905B2 (en) Outlet feed water temperature control device for gas high pressure feed water heater in exhaust recombustion combined cycle plant