JPH07207279A - Heat decomposition of pvc-containing waste plastic into oil - Google Patents

Heat decomposition of pvc-containing waste plastic into oil

Info

Publication number
JPH07207279A
JPH07207279A JP2310094A JP2310094A JPH07207279A JP H07207279 A JPH07207279 A JP H07207279A JP 2310094 A JP2310094 A JP 2310094A JP 2310094 A JP2310094 A JP 2310094A JP H07207279 A JPH07207279 A JP H07207279A
Authority
JP
Japan
Prior art keywords
temperature
pvc
oil
gas
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2310094A
Other languages
Japanese (ja)
Inventor
Isoo Shirai
磯男 白井
Hiroshi Ono
小野  浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba Fine Chem Kk
KANKYO KAGAKU CENTER KK
Original Assignee
Chiba Fine Chem Kk
KANKYO KAGAKU CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba Fine Chem Kk, KANKYO KAGAKU CENTER KK filed Critical Chiba Fine Chem Kk
Priority to JP2310094A priority Critical patent/JPH07207279A/en
Publication of JPH07207279A publication Critical patent/JPH07207279A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To provide an abridged decomposition process comprising heating PVC- containing waste plastics at the reflux temperature of a specified hydrocarbon solvent to separate hydrogen chloride from the PVC, heating the entire to the heat decomposition temperature, and condensing the produced decomposition gas. CONSTITUTION:40-160 pts.wt. hydrocarbon solvent selected from among a heat decomposition oil having a distillation temperature of 15-280 deg.C at atmospheric temperature, heavy oil A and an oil prepared by removing at least 30wt.% low-boiling part from kerosene is added to 100 pts.wt. PVC-containing waste plastics. The HCl formed by decomposition is removed by using the liquid temperature at the reflux temperature of the solvent as the decomposition temperature (step 1). The residue devoid of the HCl is heated to the heat decomposition temperature of the waste plastics, the high- boiling part of the produced heat decomposition gas is recirculated into the heat decomposition vessel and decomposed again, and the solvent and the heat decomposition oil are condensed, separated and recovered (step 2). By adding a metallic catalyst such as Cu, Al or Ni to the vapor phase of the heat decomposition vessel, the heat decomposition can be accomplished within a time shorter than that necessary when no catalyst is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、PVC含有廃プラスチ
ックの熱分解油化方法に関するものであり、更に詳しく
は、工程を短縮、簡略化し、かつ、廃棄物の排出実態に
合わせたバッチシステムに好適なPVC含有廃プラスチ
ックの熱分解油化方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for thermally decomposing waste plastic containing PVC into oil, and more specifically to a batch system that shortens and simplifies the process and matches the actual conditions of waste discharge. The present invention relates to a preferred method for thermally decomposing waste plastic containing PVC into oil.

【0002】[0002]

【従来の技術】一般廃棄物、産業廃棄物を問わず、廃棄
物中の廃プラスチック製品、廃プラスチック素材等を熱
分解処理し、燃料油等とする技術は多々知られている
が、その油化対象はPVC以外の汎用の熱可塑性プラス
チック(PE、PP、PS)が大部分である。しかし現
実には、PVC以外の熱可塑性廃プラスチックのみを収
集することは、大きな制約があり、PVCが混入するケ
ースがほとんどである。そのため、これら混入PVCは
何等かの手段で選別排除する必要がある。
2. Description of the Related Art There are many known techniques for thermally decomposing waste plastic products, waste plastic materials, etc. in waste, regardless of general waste or industrial waste, to obtain fuel oil. Most of the generalized objects are general-purpose thermoplastics (PE, PP, PS) other than PVC. However, in reality, collecting only thermoplastic waste plastics other than PVC has a large limitation, and PVC is mixed in most cases. Therefore, it is necessary to sort out these mixed PVCs by some means.

【0003】このような混入PVCの排除方法として
は、廃プラスチックの収集段階での選別排除と、熱分解
の前処理工程での選別排除が主流であるが、この選別排
除の工程で、PVC以外の熱可塑性プラスチックも相当
量が同伴して失われる。これら選別排除されたものは埋
め立て処理されてしまうため、廃棄物エネルギー回収に
貢献しないだけでなく、不足する廃棄物最終処分場の延
命にも寄与しない。
[0003] As a method of eliminating such mixed PVC, the mainstream is selection and elimination at the stage of collecting waste plastics and selection and elimination in the pretreatment step of thermal decomposition. A considerable amount of thermoplastics will also be lost. Since those that have been sorted out and eliminated are landfilled, they do not contribute not only to energy recovery of waste, but also to extension of the life of the final waste final disposal site.

【0004】一方、混入PVCを他の熱可塑性プラスチ
ックと共に熱分解し、PVCから発生するHClガスの混
入した熱分解ガスを中間処理で吸収処理したり、又はHC
l混入の凝縮熱分解油を後処理で洗浄・中和して、HClを
除去する技術も知られている。しかし、そのための余分
な装置や工程が付加され、又HClでの腐食対策も必要
で、設備費が高くなる。
On the other hand, the mixed PVC is thermally decomposed together with other thermoplastics, and the thermally decomposed gas mixed with HCl gas generated from PVC is absorbed in an intermediate treatment or HC
A technique is also known in which HCl is removed by washing and neutralizing the condensate pyrolysis oil that has been mixed in aftertreatment. However, extra equipment and processes are added for that purpose, and measures against corrosion with HCl are also required, resulting in high equipment costs.

【0005】熱分解容器内で、発生するHClガスと熱分
解油ガスを別々に処理する技術は知られていない。その
原因は、特にバッチシステムで、熱分解容器(釜、槽)
内での均一で、安定した温度コントロールが非常に困難
な為である。
There is no known technique for separately treating generated HCl gas and pyrolysis oil gas in a pyrolysis vessel. The cause is especially the batch system, and the thermal decomposition vessel (pot, tank)
This is because it is very difficult to achieve uniform and stable temperature control inside.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、PV
C含有廃プラスチックを、PVCから発生するHClガス
と、他の熱可塑性プラスチックの熱分解ガスとを、混入
させずに別処理することで、収集時のPVCの選別排
除、前処理工程での選別除去設備、中間工程での HClの
除去処理設備、後処理工程での熱分解油の洗浄設備等を
全て不要とし、廃プラスチック収集の簡便化、熱分解油
化設備の簡略化、同工程の短縮を実現することにある。
この為には、如何にして熱分解容器内部の液温を、PV
Cの脱HCl分解反応温度範囲に、安定して維持するか
が、技術上の課題である。
SUMMARY OF THE INVENTION The object of the present invention is to provide PV
By separately treating the C-containing waste plastic with HCl gas generated from PVC and pyrolysis gas of other thermoplastics without mixing it, the PVC is eliminated at the time of collection and the pretreatment step is performed. Removal equipment, HCl removal treatment equipment in the intermediate process, pyrolysis oil cleaning equipment in the post-treatment process are all unnecessary, simplifying collection of waste plastics, simplifying pyrolysis oilification equipment, shortening the same process Is to realize.
To this end, how to set the liquid temperature inside the pyrolysis container to PV
It is a technical subject to stably maintain the temperature range of the dehydrochlorination reaction of C.

【0007】[0007]

【課題を解決するための手段】本発明はバッチシステム
の熱分解容器内で、PVCのHClガス発生と他の熱可塑
性プラスチックの熱分解を、充分な温度コントロール
で、別々に行い、且つ処理して、前処理、中間処理、或
は後処理でのPVC、HClの除去処理を不要とする。こ
の様な技術は未だ開発されていない。本発明では、一般
に知られているPVCの脱HCl分解反応温度(190〜300
℃)と、他の熱可塑性プラスチックの熱分解温度(P
P:328〜410℃、PE:335〜450℃、PS:285〜440
℃)の温度範囲の差を利用して、第1段階でPVCの脱
HCl反応のみが起こる温度範囲に、熱分解容器内部の液
温をコントロールする。その為、炭化水素類をPVC含
有廃プラスチックの熱分解油化処理の溶媒として使用
し、そのリフラックス温度の液温を、PVCの脱HCl分
解温度内に保つ。リフラックス温度下では、少々加熱が
不安定であっても、溶媒ガスのリフラックス量が変動す
るだけで、液温、ガス温とも一定範囲内に維持される。
DISCLOSURE OF THE INVENTION In the thermal decomposition vessel of a batch system, the present invention separately performs and treats HCl gas generation of PVC and thermal decomposition of other thermoplastics with sufficient temperature control. Therefore, the pretreatment, intermediate treatment, or post-treatment for removing PVC and HCl is unnecessary. Such technology has not been developed yet. In the present invention, the generally known dehydrochlorination reaction temperature of PVC (190 to 300
℃) and the thermal decomposition temperature of other thermoplastics (P
P: 328-410 ° C, PE: 335-450 ° C, PS: 285-440
The difference between the temperature ranges of (° C) is used to remove PVC from the first stage.
The temperature of the liquid inside the pyrolysis vessel is controlled within a temperature range where only the HCl reaction occurs. Therefore, hydrocarbons are used as a solvent for the thermal decomposition oil treatment of PVC-containing waste plastics, and the liquid temperature of the reflux temperature is kept within the dehydrochlorination temperature of PVC. At the reflux temperature, even if the heating is a little unstable, the liquid temperature and the gas temperature are both kept within a certain range only by changing the reflux amount of the solvent gas.

【0008】PVCの脱HCl分解反応終了後、第2段階
では残液を加熱により熱分解温度まで徐々に上げて、他
の熱可塑性プラスチックの熱分解油化を行い、発生熱分
解ガスの高沸部を熱分解容器内に還流しながら、該溶媒
と熱分解油の凝縮・回収を行う。従って、本発明は以下
の構成からなる。すなわち、PVC含有廃プラスチック
を熱分解し、発生ガスから油分を得るに当り、該熱分解
油化処理を、PVC含有廃プラスチック100重量部に対
し40〜160重量部の10%留出温度が大気圧下150〜280℃
である炭化水素類溶媒の存在下、2段階で行い、その
際、第1段階の処理は、該溶媒のリフラックス温度下で
行うことにより、含有PVCから選択的にHClを分解、
除去し、第2段階の処理は、HCl除去後の残液を廃プラ
スチックの熱分解温度領域まで昇温し、発生分解ガスを
高沸ガス還流下に処理し、凝縮液を分取することを特徴
とするPVC含有廃プラスチックの熱分解油化方法であ
る。
After the completion of the dehydrochlorination reaction of PVC, in the second stage, the residual liquid is gradually heated to the thermal decomposition temperature to thermally decompose other thermoplastics into oil, and the high boiling point of the thermally decomposed gas is generated. The solvent and the pyrolyzed oil are condensed and recovered while refluxing the part into the pyrolyzer. Therefore, the present invention has the following configurations. That is, when the PVC-containing waste plastic is thermally decomposed to obtain an oil content from the generated gas, the thermal decomposition oil treatment is performed at a high 10% distillation temperature of 40 to 160 parts by weight based on 100 parts by weight of the PVC-containing waste plastic. 150-280 ℃ under atmospheric pressure
In the presence of a hydrocarbon solvent, which is a two-step process, in which the first-step treatment is carried out at the reflux temperature of the solvent to selectively decompose HCl from the contained PVC,
In the second stage treatment, the residual liquid after HCl removal is heated to the thermal decomposition temperature range of the waste plastic, the generated decomposition gas is processed under high boiling gas reflux, and the condensate is separated. It is a characteristic method of pyrolyzing oil containing waste plastic containing PVC.

【0009】本発明においては、炭化水素類溶媒を、P
VC含有廃プラスチック100重量部に対し、40〜160重量
部を使用することを要件としているが、該溶媒を加温す
ると、200℃前後において均一な溶融溶解状の液体にな
る為である。この均一になることが液体の温度を安定的
にコントロールする為の必要第1条件である。バッチシ
ステムで、溶媒を全く使用しない廃プラスチックの熱分
解油化では加熱面は熱分解温度に達していても、容器中
心部は全く温度が上がらないような温度の不均一性が起
こる。
In the present invention, the hydrocarbon solvent is P
It is required to use 40 to 160 parts by weight with respect to 100 parts by weight of VC-containing waste plastic, but when the solvent is heated, it becomes a liquid in a molten and melted state at around 200 ° C. This uniformity is the first necessary condition for stable control of the liquid temperature. In a batch system, in the thermal decomposition of waste plastic without using any solvent, even if the heating surface reaches the thermal decomposition temperature, the temperature in the center of the container does not rise at all.

【0010】炭化水素類溶媒量が前記使用範囲を外れて
少なすぎると、プラスチックの溶融部と溶解部が遍在し
て均一にならず、温度も均一にならない。又、該溶媒量
が使用範囲を外れて多すぎるのは均一性には障害となら
ないが、装置効率や溶媒の回収等の熱効率面から好まし
くない。更に、嵩高なPVC含有廃プラスチック間の空
隙を該溶媒で適当に充し、且つ液の流動性を維持するこ
とによって液の温度をコントロールするには、前記範囲
の使用量が適当である。この使用量の範囲は、より好ま
しくはPVC含有廃プラスチック 100重量部に対し、60
〜120重量部である。
If the amount of the hydrocarbon solvent is out of the above-mentioned range and is too small, the melting portion and the melting portion of the plastic are not evenly distributed and the temperature is not uniform. Further, if the amount of the solvent is out of the range of use and is too large, the homogeneity is not hindered, but it is not preferable from the viewpoint of equipment efficiency and thermal efficiency such as solvent recovery. Further, in order to control the temperature of the liquid by appropriately filling the voids between the bulky PVC-containing waste plastics with the solvent and maintaining the fluidity of the liquid, the amount used in the above range is suitable. The range of the amount used is more preferably 60 parts with respect to 100 parts by weight of waste plastic containing PVC.
~ 120 parts by weight.

【0011】又、本発明において使用される炭化水素類
溶媒は10%留出温度が大気圧下150〜280℃である。これ
らの混合物は通常リフラックス下では液温がガス温より
20〜30℃高く、更に溶媒中にプラスチックが存在する
と、液温とガス温の差は広がっていき、本発明の条件下
では、ガス温と液温の差は50〜100℃になる。PVC含
有廃プラスチックの存在下で、該溶媒のリフラックス下
での液温をPVCの脱HCl分解反応温度範囲の190〜300
℃にするには、ガス温は液温より50℃低い140〜250℃と
なる。従って、炭化水素類の蒸留性状の10%留出温度が
このガス温に近似し、やや高目の150〜280℃の10%留出
温度のものが、この条件に合致する。この範囲の炭化水
素類溶媒は本発明の条件下ではリフラックスの液温がP
VCの脱HCl分解反応温度になる。PVCの脱HCl分解反
応温度は190〜210℃の低い領域では、脱HCl分解反応速
度が遅いが、高い温度領域では同分解反応速度は速くな
り好ましい。しかし、285℃を越えると、熱可塑性プラ
スチックの分解温度領域に入り、HClガスに一部廃プラ
スチックの熱分解発生ガスが混入する。従って、PVC
の脱HCl分解反応温度領域は、さらに好ましくは220〜28
0℃である。この温度領域に対応する炭化水素類溶媒の
リフラックス下のガス温は170〜230℃で、炭化水素類溶
媒の10%留出温度はこれよりやや高目の180〜250℃のも
のが、この条件に合致してより好ましい。この範囲の炭
化水素類溶媒を使用したリフラックス下では、PVC含
有廃プラスチックのPVCの脱HCl分解反応は1時間前
後で終了する。
The hydrocarbon solvent used in the present invention has a 10% distillation temperature of 150 to 280 ° C. under atmospheric pressure. The liquid temperature of these mixtures is usually lower than the gas temperature under reflux.
When the temperature is higher by 20 to 30 ° C. and plastic is present in the solvent, the difference between the liquid temperature and the gas temperature widens, and under the conditions of the present invention, the difference between the gas temperature and the liquid temperature becomes 50 to 100 ° C. In the presence of waste plastic containing PVC, the liquid temperature under reflux of the solvent is set to 190 to 300, which is the reaction temperature range for dehydrochlorination reaction of PVC.
To reach ℃, the gas temperature is 140-250 ℃, which is 50 ℃ lower than the liquid temperature. Therefore, the 10% distillation temperature of the distillation property of hydrocarbons is close to this gas temperature, and the slightly higher 10% distillation temperature of 150 to 280 ° C meets this condition. Under the conditions of the present invention, hydrocarbon solvents in this range have a reflux liquid temperature of P
The reaction temperature for dehydrochlorination of VC is reached. The dehydrochlorination reaction temperature of PVC is low in a low temperature range of 190 to 210 ° C., but the dehydrochlorination reaction rate is high in a high temperature region, which is preferable. However, when the temperature exceeds 285 ° C., it enters the decomposition temperature range of the thermoplastic, and the HCl decomposition gas partially contains the thermal decomposition generation gas of the waste plastic. Therefore, PVC
More preferably, the reaction temperature range for dehydrochlorination of 220 to 28 is
It is 0 ° C. The gas temperature under the reflux of hydrocarbon solvents corresponding to this temperature range is 170 to 230 ° C, and the 10% distillation temperature of hydrocarbon solvents is 180 to 250 ° C, which is slightly higher than this. It is more preferable to meet the conditions. Under reflux using a hydrocarbon solvent in this range, the PVC dechlorination reaction of PVC-containing waste plastic is completed in about 1 hour.

【0012】前記炭化水素類溶媒として具体的には、廃
プラスチックの熱分解油、A重油、及び、低沸部を少な
くとも30%以上除去した灯油の高沸部からなる群からの
いづれでも使用できる。中でも、廃プラスチックの熱分
解油は廃プラスチックと相性がよく、繰り返し使用でき
るので経済的である。前記第1段階のPVCの脱HCl分
解反応の際、溶媒のリフラックス用に使用した冷却器
を、熱媒を変更することで、第2段階の熱分解で発生す
る分解ガスの高沸ガス還流器として使用でき、これによ
り、装置の簡略化を図ることが出来る。廃プラスチック
の熱分解で発生する分解ガスは、ガス状の低分子量から
常温で固体となる高分子量のものまで、分子量分布が広
い。このうち、高分子量の高沸ガスを選択的に熱分解容
器内に還流し、再分解することで、常温で固化しない液
状の油を得ることが出来る。
As the hydrocarbon solvent, any one of the group consisting of pyrolysis oil of waste plastic, heavy oil A, and high boiling portion of kerosene in which at least 30% of low boiling portion is removed can be used. . Among them, the thermally decomposed oil of waste plastic has good compatibility with waste plastic and can be repeatedly used, which is economical. In the dehydrochloric decomposition reaction of PVC in the first step, by changing the heat medium in the cooler used for the reflux of the solvent, the high boiling gas reflux of the decomposition gas generated in the second step of thermal decomposition It can be used as a container, which can simplify the device. The decomposition gas generated by the thermal decomposition of waste plastic has a wide molecular weight distribution from a low molecular weight gas to a high molecular weight gas that becomes a solid at room temperature. Among them, a high boiling point gas having a high molecular weight is selectively refluxed in the pyrolysis vessel and redissolved to obtain a liquid oil that does not solidify at room temperature.

【0013】リフラックス用冷却器の熱媒は通常冷却水
が最適であるが、高沸ガス還流器の熱媒は120℃から300
℃まで高温で広い範囲に温度変更が可能であるものが必
要である。この範囲で液からガスなどに性状変化しない
ものが望ましく、水は不適当であり、熱媒の切り替えが
必要となる。
Cooling water is usually the optimum heat medium for the reflux condenser, but the heat medium for the high-boiling gas recirculator is from 120 ° C to 300 ° C.
A material that can change the temperature in a wide range at a high temperature up to ℃ is required. It is desirable that the property does not change from liquid to gas or the like in this range, water is inappropriate, and it is necessary to switch the heat medium.

【0014】このような高沸ガス還流器の熱媒として
は、入手し易いものが好ましく、蒸留性状の初留点が12
0℃以上の液状炭化水素類は、前記記載の10%留出温度
が150〜280℃の炭化水素類溶媒とほぼ同じであり、又、
高温空気、及び熱分解の加熱排ガス等も入手し易く、こ
れらを使用することによって、前記記載の第2段階の処
理が出来る。
As the heat medium for such a high boiling gas recirculator, an easily available one is preferable, and the initial boiling point of the distillation property is 12
The liquid hydrocarbons at 0 ° C. or higher are substantially the same as the above-mentioned hydrocarbon solvents having a 10% distillation temperature of 150 to 280 ° C.,
High-temperature air, heated exhaust gas from thermal decomposition, and the like are also easily available, and by using these, the second stage treatment described above can be performed.

【0015】前記液状炭化水素類として、初留点が160
℃以上の液状炭化水素類は、本発明に使用する10%留出
温度が180〜250℃の炭化水素類溶媒と同じで、共通に使
用することが出来る。熱媒としての使用可能範囲もより
広く、入手し易い高沸ガス還流器の熱媒として好まし
く、配管、貯蔵タンク等設備を共通とすることが出来、
設備の簡略化になる。
The initial boiling point of the liquid hydrocarbons is 160
Liquid hydrocarbons having a temperature of ℃ or higher are the same as the hydrocarbon solvents having a 10% distillation temperature of 180 to 250 ℃ used in the present invention, and can be commonly used. Wider usable range as a heat medium, preferable as a heat medium for a high boiling gas recirculator that is easily available, and can have common equipment such as piping and storage tanks.
This simplifies the equipment.

【0016】本発明は金属触媒の存在下でさらに好適に
実施できる。該金属触媒としては、Cu、Al、Ni等
があり、これら金属は廃プラスチックの選択的熱分解性
はないが、熱分解を促進する。熱分解容器内気相部にこ
れらの金属を量、割合、形状、屑金属などの質に関わり
なく存在させることで、無触媒下よりも熱分解時間を短
縮することができる。
The present invention can be more preferably carried out in the presence of a metal catalyst. The metal catalyst includes Cu, Al, Ni, etc. These metals do not have the selective thermal decomposability of waste plastic, but accelerate the thermal decomposition. By allowing these metals to exist in the vapor phase portion in the thermal decomposition vessel regardless of the quantity, proportion, shape, quality of scrap metal, etc., the thermal decomposition time can be shortened as compared with the case without a catalyst.

【0017】[0017]

【発明の効果】以上説明した通り、本発明によれば、現
実にPVCが混入した状態で排出される廃プラスチック
を分別収集したり、熱分解油化の前処理工程でPVCを
選別排除する作業や設備の省略が出来るだけでなく、そ
の際に同伴して排除される相当量の油化適切物であるP
VC以外の熱可塑性プラスチックが失われずにすみ、廃
棄物エネルギー回収率向上と廃棄物最終処分場の延命に
貢献出来る。又、熱分解油化工程で発生するガスからHC
lガスを吸着排除したり、後処理工程で凝縮熱分解油を
洗浄中和する設備・工程を必要としない為、設備費の大
幅節減が出来る。
As described above, according to the present invention, the work of separately collecting waste plastic discharged in the state where PVC is actually mixed and sorting out PVC in the pretreatment step of pyrolysis and oilification. Not only can the equipment and facilities be omitted, but a considerable amount of suitable petroleum products that are removed along with the P
Thermoplastics other than VC will not be lost, and it will contribute to improving the energy recovery rate of waste and prolonging the life of the final waste disposal site. In addition, HC is generated from the gas generated in the pyrolysis oilification process.
l No need for equipment / process to adsorb and remove gas and to wash and neutralize condensed pyrolysis oil in post-treatment process, so equipment cost can be significantly reduced.

【0018】[0018]

【実施例】本発明の方法について、図1に示すテスト装
置にもとづいて説明する。しかし、本発明は以下の実施
例の記載に限定されるものではない。 実施例1 図1に示すテスト装置を用いて、充分保温をして内部の
状態を観察しながら実施した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be described with reference to the test apparatus shown in FIG. However, the present invention is not limited to the description of the examples below. Example 1 The test apparatus shown in FIG. 1 was used to carry out heat retention while observing the internal state.

【0019】熱分解油化に用いたプラスチックはペレッ
トで、混合プラスチック[混合割合はPE(HD/LD=1/
1):50gr、PP( ホモ/コポリ):20gr/10gr、PS:
20gr、計100gr]90grに、可塑剤を含まないPVCだけ
のものと、可塑剤入りのもの(可塑剤43.7%)を各5gr
ずつ加えた合計100grに、炭化水素類溶媒として、プラ
スチックの熱分解油(10%留出温度207℃)100ml (82.9
gr)を図1の熱分解容器(500mlフラスコ)1に入れ、金
属触媒10(Cu線4.3gr、Al板3.9gr、Ni片5.7gr、計13.9g
r)を加えて、リフラックス用冷却器兼高沸ガス還流器
4及び凝縮器12はそれぞれ冷却水を冷却水供給口5及び
13から流しておき、留出弁(コック)15を閉にして、N
2供給口11からN2を流して容器内を置換後、供給口11を
絞りN2を少量づつ流しながら、熱電対8とコントロー
ラ9を備えたマントルヒーター7で、熱分解容器1を加
熱した。
The plastic used for pyrolyzed oil is pellets, mixed plastic [mixing ratio is PE (HD / LD = 1 /
1): 50gr, PP (homo / copoly): 20gr / 10gr, PS:
20gr, 100gr in total] 90gr, 5gr each of PVC-free plasticizer and plasticizer-containing plasticizer (plasticizer 43.7%)
To a total of 100 gr added each, 100 ml (82.9%) of pyrolysis oil of plastic (10% distillation temperature 207 ° C) as a hydrocarbon solvent
1g of metal catalyst 10 (Cu wire 4.3gr, Al plate 3.9gr, Ni piece 5.7gr, total 13.9g)
r) is added, and the reflux condenser / high boiling gas recirculator 4 and the condenser 12 supply cooling water to the cooling water supply port 5 and
Pour from 13 and close the distilling valve (cock) 15 to N
2 After supplying N 2 from the supply port 11 to replace the inside of the container, the pyrolysis container 1 was heated by the mantle heater 7 equipped with the thermocouple 8 and the controller 9 while narrowing the supply port 11 and flowing N 2 little by little. .

【0020】又、加熱に先立ち、排気のバイパスライン
17の先にHCl捕集用装置として、三角フラスコ18に、P
VCの分解で発生するHClの計算等量の50%のアルカリ
(NaOH)水溶液19を入れ、フェノールフタレインを添加
し、マグネチックスターラー20で攪拌した。熱分解容器
中の液温は温度計2により測定され、加熱開始後20分で
100℃、49分で200℃になった。加熱開始と共に、HCl捕
集用の三角フラスコ18の温度が少しずつ上昇し始め、液
温が200℃に達した直後(加熱開始後50分)、HCl捕集用
三角フラスコ中のフェノールフタレインの赤色が無色と
なり、前後して熱分解容器の内部も均一な溶融溶解状に
なった。1時間02分後、冷却器4で溶媒のリフラックス
が始まり、ガス温(温度計3で測定)は166〜191℃、液
温は249〜262℃を示し、加熱の変動に左右されず所定の
範囲に収まり安定した。
Also, prior to heating, an exhaust bypass line
At the end of 17 as a device for collecting HCl, add Erlenmeyer flask 18 to P
50% alkali equivalent to the calculated amount of HCl generated by the decomposition of VC
A (NaOH) aqueous solution 19 was added, phenolphthalein was added, and the mixture was stirred with a magnetic stirrer 20. The temperature of the liquid in the pyrolysis vessel is measured by thermometer 2, and 20 minutes after the start of heating
The temperature reached 100 ° C and 200 ° C in 49 minutes. With the start of heating, the temperature of the Erlenmeyer flask 18 for collecting HCl began to rise little by little, and immediately after the liquid temperature reached 200 ° C. (50 minutes after the start of heating), the phenolphthalein in the Erlenmeyer flask for collecting HCl was collected. The red color became colorless, and before and after the inside of the thermal decomposition container became a uniform melted state. After 1 hour and 02 minutes, the reflux of the solvent started in the cooler 4, the gas temperature (measured by the thermometer 3) was 166 to 191 ° C, and the liquid temperature was 249 to 262 ° C. It was stable in the range of.

【0021】この状態で1時間リフラックス後、N2
供給を停止し、リフラックス用冷却器4の冷却水を冷却
水供給口5から抜き出し、熱媒供給口6に150〜170℃の
加温空気を高沸ガス還流器の熱媒として流し、留出弁15
を半開にした。溶媒ガスは凝縮器12で凝縮し、留出弁15
の上部に溜り、一部は熱分解容器内に還流しながら、留
出弁15から補助冷却器14を経由して、受器16に留出し始
めた。
After refluxing for 1 hour in this state, the supply of N 2 is stopped, the cooling water of the reflux condenser 4 is withdrawn from the cooling water supply port 5, and the heating medium supply port 6 is heated to 150 to 170 ° C. Warm air is made to flow as the heat medium of the high boiling gas recirculation device, and the distillation valve 15
Half opened. The solvent gas is condensed in the condenser 12, and the distilling valve 15
Was collected in the upper part of the reactor, and part of it was refluxed into the thermal decomposition vessel, and started to be distilled from the distillation valve 15 to the receiver 16 via the auxiliary cooler 14.

【0022】留出開始と共に、液温は徐々に上昇し、留
出開始後35分で287℃になりPVC以外の熱可塑性プラ
スチックの分解温度領域に達し、溶媒ガスと共に熱分解
ガスの留出が始まり、加熱開始より5時間20分経過後、
液温332℃、ガス温286℃になった時、補助冷却器14に可
塑剤かその他の添加物と思われる微細な針状結晶が一部
生成しているのが観察された。更に5時間30分後、液温
363℃、ガス温280℃の時、文献情報より相当速くPVC
の主鎖切断と思われる二次分解のガスによって泡立ち、
熱分解が一時活発になった。これらの現象は熱分解油化
の障害にならなかった。
With the start of distillation, the liquid temperature gradually rises, reaches 287 ° C. 35 minutes after the start of distillation, reaches the decomposition temperature region of thermoplastics other than PVC, and the decomposition gas along with the solvent gas is distilled. 5 hours and 20 minutes after the start of heating,
At the liquid temperature of 332 ° C. and the gas temperature of 286 ° C., it was observed that the acicular cooler 14 partially formed fine needle-like crystals which seemed to be a plasticizer or other additives. After 5 hours and 30 minutes, liquid temperature
PVC at 363 ℃ and gas temperature of 280 ℃, much faster than literature information
Bubbles due to secondary decomposition gas that seems to be the main chain breakage of
Thermal decomposition became temporarily active. These phenomena did not hinder pyrolysis oil conversion.

【0023】加熱開始より9時間経過後、液温397℃で
加熱を中断した。留出した熱分解油の合計量は118.7gr
(約146ml)であり、留出熱分解油の比重は0.81〜2であ
った。未分解残渣は一部カーボンの混入した黒褐色のワ
ックス状で、48.2grであった。又、ガス留分と溶媒ロス
の合計量は16.1gr(HClの計算量4.6grを含む)で、見か
けの分解率(溶媒として使用したプラスチックの熱分解
油は全量回収されたとして)は51.8%であった。溶媒ロ
スを含めたガス化率(分解量に対する割合)は33.4%
(HClを除くと23.8%)で、実施例2に比較してガス化
率がやや高かった。HClを捕集した三角フラスコはアル
カリで滴定し、HClの捕捉率は計算量の92%であった。
又、留出熱分解油の試験紙によるテストは中性であっ
た。
After a lapse of 9 hours from the start of heating, the heating was stopped at a liquid temperature of 397 ° C. The total amount of pyrolysis oil distilled was 118.7 gr.
(About 146 ml), and the specific gravity of the distillate pyrolysis oil was 0.81 to 2. The undecomposed residue was in the form of a blackish brown wax containing a part of carbon and was 48.2 gr. The total amount of gas fraction and solvent loss was 16.1gr (including the calculated amount of HCl 4.6gr), and the apparent decomposition rate (assuming that all the pyrolysis oil of the plastic used as the solvent was recovered) was 51.8%. Met. Gasification rate including solvent loss (ratio to decomposition amount) is 33.4%
(23.8% excluding HCl), the gasification rate was slightly higher than in Example 2. The Erlenmeyer flask in which HCl was collected was titrated with alkali, and the HCl capture rate was 92% of the calculated amount.
Further, the test using distillate pyrolyzed oil with a test paper was neutral.

【0024】実施例2 実施例1と同じ割合の混合プラスチック95grに、可塑剤
を含まないPVC5grの計100grに炭化水素類溶媒とし
て市販のA重油(10%留出温度219℃)100ml (82.8gr)
の合計182.8grを、図1の装置で、同じ触媒、同じ手
順、同じ条件で加熱した。加熱に先立ち、HCl捕集用装
置の三角フラスコ18には計算等量の75%のアルカリ水溶
液19を入れ、フェノールフタレインで着色した。
Example 2 95 g of mixed plastic in the same ratio as in Example 1 and 5 g of PVC containing no plasticizer in a total of 100 g were used as a hydrocarbon solvent. A commercial heavy oil (10% distillation temperature 219 ° C.) 100 ml (82.8 gr) )
A total of 182.8 gr of the above was heated in the apparatus of FIG. 1 with the same catalyst, the same procedure, and the same conditions. Prior to heating, a calculated equivalent amount of 75% aqueous alkali solution 19 was placed in the Erlenmeyer flask 18 of the HCl collecting apparatus and colored with phenolphthalein.

【0025】加熱開始後、熱分解容器中の液温は18分で
100℃、45分で200℃になった。1時間15分でリフラック
スが始まり、液温246〜264℃、ガス温174〜192℃で安定
し、内部も均一な溶融溶解状であった。2時間05分後
(リフラックス後50分)三角フラスコ中のフェノールフ
タレインが消色した。2時間20分後、実施例1と同様に
2 の供給を停止し、留出弁15を半開し、冷却器を高沸
ガス還流器に切り替えて、熱分解油の留出を開始した。
6時間15分後、液温352℃、ガス温236℃の時、PVCの
主鎖切断と思われる二次分解が活発となり、泡立ち状に
なった。15分後に泡立ちが消えおさまった。
After the heating is started, the liquid temperature in the pyrolysis container is 18 minutes.
It reached 200 ℃ in 45 minutes at 100 ℃. Refluxing started within 1 hour and 15 minutes, was stable at a liquid temperature of 246 to 264 ° C and a gas temperature of 174 to 192 ° C, and the inside was in a uniform melted state. After 2 hours and 05 minutes (50 minutes after reflux), the phenolphthalein in the Erlenmeyer flask was decolored. After 2 hours and 20 minutes, as in Example 1, the supply of N 2 was stopped, the distillation valve 15 was half-opened, the condenser was switched to the high boiling gas reflux condenser, and distillation of the pyrolysis oil was started.
After 6 hours and 15 minutes, when the liquid temperature was 352 ° C. and the gas temperature was 236 ° C., secondary decomposition, which is considered to be the main chain cleavage of PVC, became active and became foamy. The bubbling disappeared after 15 minutes.

【0026】9時間30分後、液温396℃で加熱を中断し
た。留出した熱分解油の合計量は117.4gr (約144ml)
で、留出したA重油と熱分解油の混合物の比重は0.82で
あった。未分解残渣は一部カーボンの混入した黒褐色の
ワックス状で、54.8grであった。ガス留分と溶媒ロスの
合計は10.6gr(HClの計算量2.9grを含む)で、見かけの
分解率は45.2%であった。
After 9 hours and 30 minutes, heating was stopped at a liquid temperature of 396 ° C. The total amount of pyrolyzed oil was 117.4 gr (about 144 ml)
The specific gravity of the distilled mixture of the heavy oil A and the pyrolysis oil was 0.82. The undecomposed residue was in the form of a blackish brown wax partially containing carbon and was 54.8 gr. The total of the gas fraction and the solvent loss was 10.6 gr (including the calculated amount of HCl of 2.9 gr), and the apparent decomposition rate was 45.2%.

【0027】溶媒ロスを含めたガス化率は21.8%(HCl
を除くと14.1%)であった。又、滴定の結果はHCl捕捉
率90%であり、熱分解油は中性であった。 比較例1 実施例1の混合プラスチック合計100gr (PVCを入れ
ず)に、炭化水素類溶媒として市販の灯油(10%留出温
度148℃)100ml (77.9gr)を使用して、HCl捕集用装置を
セットしなかった以外は、図1の装置で、実施例1と同
じ触媒、同じ手順、同じ条件で、合計177.9grの同様な
プラスチックの熱分解油化を行った。熱分解容器の液温
は20分で100℃に達した後、40分で180℃、1時間01分で
蒸気が上がり始め、1時間05分で溶媒のリフラックスが
始まり、ガス温152〜172℃、液温182〜195℃で安定し、
液温はPVCの脱HCl分解反応温度(190〜300℃)には
明らかに低すぎた。
Gasification rate including solvent loss is 21.8% (HCl
Was 14.1%). The titration result was 90% HCl capture rate, and the pyrolysis oil was neutral. Comparative Example 1 100 ml (77.9 gr) of commercially available kerosene (10% distillation temperature 148 ° C.) was used as a hydrocarbon solvent in 100 gr of the mixed plastic of Example 1 (without PVC) to collect HCl. Using the apparatus shown in FIG. 1 except that the apparatus was not set, a total of 177.9 gr of the same plastic was pyrolyzed and oiled under the same catalyst, the same procedure and the same conditions as in Example 1. After the liquid temperature of the pyrolysis container reached 100 ° C in 20 minutes, 180 ° C in 40 minutes, the vapor started to rise in 1 hour 01 minutes, the reflux of the solvent started in 1 hour 05 minutes, and the gas temperature 152-172. ℃, stable at liquid temperature 182-195 ℃,
The liquid temperature was clearly too low for the reaction temperature for dehydrochlorination of PVC (190 to 300 ° C).

【0028】又、溶媒の10%留出温度が低いため、熱分
解容器内部は加熱部周辺はプラスチックは溶融状になっ
たが、中心部は多少形状は崩れているが、溶解も溶融も
せず、均一な液状にならなかった。1時間リフラックス
後も大きな変化はなく、実施例1と同様に、冷却器を高
沸ガス還流器に切り替え、留出弁15を半開として留出を
開始した。
Further, since the 10% distillation temperature of the solvent was low, the plastic was melted around the heating part inside the pyrolysis container, but the shape at the center part was somewhat broken, but it did not melt or melt. , Did not become a uniform liquid. After 1 hour of reflux, there was no significant change, and as in Example 1, the cooler was switched to the high boiling gas reflux, the distillation valve 15 was half-opened, and distillation was started.

【0029】液温を加温上昇すると、まもなく均一な溶
融溶解状になり、加熱開始より3時間10分、留出量約30
ml(溶媒の30%に相当)の時、液温240℃、ガス温185℃
に上昇し、実施例1、2のリフラックス時と同じ様な状
態となり、PVCが存在すればHCl分解の充分な温度条
件に達した。
When the liquid temperature is increased by heating, a uniform molten and melted state is soon formed, and 3 hours and 10 minutes from the start of heating, and a distillate amount of about 30
When ml (corresponding to 30% of solvent), liquid temperature 240 ℃, gas temperature 185 ℃
And reached the same condition as in the case of the reflux of Examples 1 and 2, and when PVC was present, a temperature condition sufficient for HCl decomposition was reached.

【0030】350℃前後でのPVCの主鎖切断による熱
分解の活発化もなく、9時間後、液温402℃で加熱を中
断した。留出した灯油と熱分解油の合計量は120.8gr
(約153ml)、留出油の比重は0.78〜9であった。未分解
残渣は50.7gr、ガス留分と溶媒ロスの合計量は6.4gr、
見かけの分解率は49.3%、溶媒ロスを含めたガス化率は
12.6%であった。
At about 350 ° C., thermal decomposition due to the main chain cleavage of PVC was not activated, and after 9 hours, heating was stopped at a liquid temperature of 402 ° C. The total amount of distilled kerosene and pyrolysis oil is 120.8 gr.
(About 153 ml), the specific gravity of the distillate oil was 0.78-9. Undecomposed residue is 50.7 gr, total amount of gas fraction and solvent loss is 6.4 gr,
Apparent decomposition rate is 49.3%, gasification rate including solvent loss is
It was 12.6%.

【0031】実施例3 比較例1の結果を踏まえ、実施例1と同じ割合の混合プ
ラスチック計92grに可塑剤入りのPVC(可塑剤43.7%
入り)8grを加えた合計100grに、炭化水素類溶媒とし
て市販灯油の低沸部30%を予め除去した70ml(54.6gr、
10%留出温度188℃)を熱分解溶媒として加えて、合計1
54.6grを、図1の装置で、HCl捕集装置のHCl捕集用三角
フラスコには計算等量の80%のアルカリ水溶液を入れ、
フェノールフタレインで着色し、実施例1と同じ触媒、
同じ手順、同じ条件で加熱をした。
Example 3 Based on the results of Comparative Example 1, PVC containing plasticizer (plasticizer 43.7% was added to 92 gr of mixed plastic in the same proportion as in Example 1).
70 ml (54.6 gr, 54.6 gr, which was obtained by removing 30% of the low boiling point of commercially available kerosene as a hydrocarbon solvent in advance to a total of 100 gr
10% distillation temperature 188 ℃) was added as a pyrolysis solvent to give a total of 1
Using the device shown in Fig. 1, put 54.6 gr into the Erlenmeyer flask for HCl collection of the HCl collection device, and put a calculated equivalent amount of 80% alkaline aqueous solution.
The same catalyst as in Example 1, colored with phenolphthalein,
Heating was performed under the same procedure and the same conditions.

【0032】加熱開始後、18分で100℃、52分後にリフ
ラックス状態になり、溶融溶解状の均一な液になり、液
温232〜254℃、ガス温178〜198℃で安定した。リフラッ
クス1時間後、フェノールフタレインの消色がなく、実
施例1と同様に冷却器を高沸ガス還流器に切り替え、留
出弁15より留出を開始した直後、液温254℃、ガス温206
℃の時、三角フラスコ中のフェノールフタレインの色が
消えた。脱HCl分解反応は1時間をややオーバーしたが
問題はなかった。5時間10分後、液温346℃、ガス温243
℃の時、PVCの二次分解(主鎖切断)が始まり、約10
分間分解は活発になった。又、実施例1と同様に補助冷
却器14に微細な針状結晶の析出が観察された。
After heating was started, 100 minutes after the start of heating, 52 minutes later, a reflux state was established, and a uniform liquid in a melt-dissolved state was obtained, and the temperature was stable at a liquid temperature of 232 to 254 ° C and a gas temperature of 178 to 198 ° C. After 1 hour of reflux, there was no discoloration of phenolphthalein, and as in Example 1, the condenser was switched to the high boiling gas reflux apparatus, and immediately after the distillation was started from the distillation valve 15, the liquid temperature was 254 ° C. Temperature 206
At ℃, the color of phenolphthalein in the Erlenmeyer flask disappeared. The dehydrochlorination reaction was slightly over 1 hour, but there was no problem. After 5 hours and 10 minutes, liquid temperature 346 ℃, gas temperature 243
At ℃, secondary decomposition of PVC (main chain cleavage) begins and
Minute decomposition became active. Further, as in Example 1, precipitation of fine needle-like crystals was observed in the auxiliary cooler 14.

【0033】9時間後液温399℃で熱分解を中断した。
留出した熱分解油の合計は99.1gr(約125ml)、留出した
灯油高沸部と熱分解油の混合物の比重は0.79であった。
未分解残渣はカーボンの一部混じった黒褐色のワックス
状で41.2grであった。見かけの分解率は58.8%、ガス留
分と溶媒ロスの合計は14.3gr(含むHClの計算量4.4
%)、溶媒ロスを含めたガス化率は24.3%(HClを除く
と16.8%)、HClの捕集率は91%で、留出した灯油高沸
部と熱分解油の混合物は中性であった。
After 9 hours, the thermal decomposition was stopped at a liquid temperature of 399 ° C.
The total amount of the pyrolyzed oil distilled was 99.1 gr (about 125 ml), and the specific gravity of the distillate mixture of kerosene high boiling point and pyrolyzed oil was 0.79.
The undecomposed residue was 41.2 gr in the form of a blackish brown wax containing a part of carbon. Apparent decomposition rate is 58.8%, total of gas fraction and solvent loss is 14.3gr (calculated amount of HCl containing 4.4
%), The gasification rate including solvent loss was 24.3% (16.8% excluding HCl), the collection rate of HCl was 91%, and the mixture of distilled kerosene high boiling part and pyrolysis oil was neutral. there were.

【0034】比較例1と実施例3から灯油はそのままで
は不適当であるが、低沸部を30%除去した高沸部は本発
明の範囲内にあり使用できる。又、実施例3は廃プラス
チック100部に対し、溶媒は54.6部でも、液の流動性が
やや小さめに感じられる以外特に障害はなかった。 比較例2 実施例1と同じ割合の混合プラスチック100gr(PVC
を入れず)に、炭化水素類溶媒として、市販A重油を予
め低沸部(191〜256℃)を除去したA重油高沸部(10%
留出温度312℃)93.3grを加え、合計193.3grで、HCl捕
集用装置をセットしない他は図1の装置で、実施例1と
同じ触媒、同じ手順、同じ条件で熱分解を行った。加熱
開始後、19分で100℃、48分で200℃に達し、1時間10分
後、液温279℃で均一溶融溶解状になり、2時間20分
後、リフラックスが始まり、液温292〜306℃、ガス温26
4〜274℃で安定した。液温はPVCの脱HCl反応のみ進
行する条件としては明らかに高すぎる状態で、熱可塑性
プラスチックの分解温度域に入った。リフラックス1時
間後、留出弁15と冷却器の切り替えをし、留出を開始
し、9時間15分、液温410℃で加熱を中断した。
From Comparative Example 1 and Example 3, kerosene is unsuitable as it is, but the high boiling portion obtained by removing the low boiling portion by 30% can be used within the scope of the present invention. Further, in Example 3, even if the solvent was 54.6 parts with respect to 100 parts of the waste plastic, there was no particular problem except that the fluidity of the solution was slightly small. Comparative Example 2 100 gr of mixed plastic in the same proportion as in Example 1 (PVC
Is not used), and commercial A heavy oil is used as a hydrocarbon solvent. A heavy oil high boiling part (10%
(Distillation temperature: 312 ° C.) 93.3 gr was added, and the total was 193.3 gr. The apparatus of FIG. 1 was used except that the apparatus for collecting HCl was not set, and the same catalyst, the same procedure, and the same conditions as in Example 1 were used for the thermal decomposition. . After starting heating, the temperature reached 100 ° C in 19 minutes and 200 ° C in 48 minutes. After 1 hour and 10 minutes, the solution melted into a uniform melt at 279 ° C, and after 2 hours and 20 minutes, reflux started and the liquid temperature reached 292. ~ 306 ℃, gas temperature 26
Stable at 4-274 ℃. The liquid temperature entered the decomposition temperature range of the thermoplastic resin in a state that it was obviously too high as a condition for proceeding only the HCl removal reaction of PVC. After 1 hour of reflux, the distillation valve 15 and the condenser were switched to start distillation, and heating was interrupted at a liquid temperature of 410 ° C. for 9 hours and 15 minutes.

【0035】A重油と熱分解油の留出途中、高沸ガス還
流器の熱媒供給口6の温度を200〜220℃まで上げ留出を
促進した。留出したA重油と熱分解油の合計量は170.3g
r(約203ml)で、留出したA重油高沸部と熱分解油の比重
は0.84であった。未分解残渣は12.8gr、ガス留分と溶媒
ロスの合計量は10.2gr、見かけの分解率は87.2%、溶媒
ロスを含めたガス化率は11.7%であった。又、留出油の
ガスクロマトグラフからC7〜C24留分まで含まれ、実
施例1〜3の通常の分子量分布(C7〜C22) より高沸
留分の増加が確認された。
During the distillation of the heavy oil A and the pyrolysis oil, the temperature of the heat medium supply port 6 of the high boiling gas recirculation vessel was raised to 200 to 220 ° C. to promote the distillation. The total amount of A heavy oil and pyrolysis oil distilled out is 170.3g.
At r (about 203 ml), the specific gravity of the high boiling portion of the heavy oil A distilled and the pyrolysis oil was 0.84. The undecomposed residue was 12.8 gr, the total amount of gas fraction and solvent loss was 10.2 gr, the apparent decomposition rate was 87.2%, and the gasification rate including solvent loss was 11.7%. Further, from the gas chromatograph of the distillate oil, it was confirmed that C 7 to C 24 fractions were included, and the high boiling fraction was increased from the usual molecular weight distribution (C 7 to C 22 ) of Examples 1 to 3.

【0036】比較例2は明らかにリフラックス下の液温
がPVCの選択的脱HCl分解温度には高すぎた。しか
し、高沸ガス還流器の熱媒の温度変更で、留出熱分解油
の高沸部の変更が出来ることは確認出来た。 比較例3 100grのうちの10grをPVCに代えた以外は実施例1と
同じ割合の混合プラスチックとPVCからなるプラスチ
ック100grに、比較例1と同じ溶媒(市販灯油)100ml
(77.9gr)を用い、かつHCl捕集用装置の三角フラスコ
に入れるアルカリ水溶液のアルカリをHCl計算等量の60
%とする以外は実施例1と同じ触媒、同じ手順、同じ条
件で加熱し、熱分解を行った。
In Comparative Example 2, the liquid temperature under reflux was obviously too high for the selective dehydrochlorination temperature of PVC. However, it was confirmed that the high boiling part of the distillate pyrolysis oil could be changed by changing the temperature of the heating medium of the high boiling gas reflux device. Comparative Example 3 100 gr of the same solvent as in Comparative Example 1 (commercial kerosene) was added to 100 gr of the mixed plastic and PVC in the same ratio as in Example 1 except that 10 gr of 100 gr was replaced with PVC.
(77.9gr), and the alkali of the alkaline aqueous solution put in the Erlenmeyer flask of the device for collecting HCl is adjusted to 60
Pyrolysis was performed by heating with the same catalyst, the same procedure and the same conditions as in Example 1 except that the content was changed to%.

【0037】熱分解容器の液温は20分で100℃、41分で1
89℃に達した後、1時間03分で溶媒蒸気が上がり、リフ
ラックスが始まり、ガス温155〜174℃、液温180〜194℃
で安定した。リフラックス1時間後もフェノールフタレ
インの消色がなく、実施例1と同様に冷却器を高沸ガス
還流器に切り替えて留出を開始した。
The liquid temperature in the pyrolysis container is 100 ° C. in 20 minutes and 1 in 41 minutes.
After reaching 89 ° C, solvent vapor rises and reflux begins at 1 hour 03 minutes, gas temperature 155-174 ° C, liquid temperature 180-194 ° C.
Stable in. The phenolphthalein was not discolored even after 1 hour of reflux, and the condenser was switched to the high-boiling gas reflux condenser in the same manner as in Example 1 to start distillation.

【0038】留出開始後、57分(加熱開始後約3時
間)、ガス温188℃、液温220℃の時、フェノールフタレ
インが消色した。留出熱分解油受器から希薄であるが塩
酸臭があった。加熱開始4時間55分後、液温347℃、ガ
ス温263℃の時PVCの主鎖切断反応によるガス発生で
泡立ち、容器内を充たすほど活発になった。泡立ちは約
10分間でおさまった。又、実施例1、3と同様に補助冷
却器に微細な針状結晶の生成が観察された。
57 minutes after the start of distillation (about 3 hours after the start of heating), phenolphthalein was decolored at a gas temperature of 188 ° C. and a liquid temperature of 220 ° C. Although it was diluted from the distillate pyrolysis oil receiver, it smelled of hydrochloric acid. Four hours and 55 minutes after the start of heating, when the liquid temperature was 347 ° C. and the gas temperature was 263 ° C., bubbles were generated due to the gas generation by the main chain breaking reaction of PVC, and became more active as the container was filled. Foaming is about
It subsided in 10 minutes. Further, as in Examples 1 and 3, formation of fine needle-shaped crystals was observed in the auxiliary cooler.

【0039】加熱開始9時間後、液温395℃で加熱を中
断した。留出した熱分解油と溶媒の合計量は120.1gr
(約154ml)で、比重は0.78、未分解残渣は黒褐色のワ
ックス状で44.0gr、ガス留分と溶媒ロスの合計量は13.8
gr(HClの計算量4.6grを含む)、見かけの分解率は56.0
%、溶媒ロスを含めたガス化率は24.6%(HClを除くと1
6.4%)であった。
After 9 hours from the start of heating, heating was stopped at a liquid temperature of 395 ° C. The total amount of pyrolyzed oil and solvent was 120.1 gr.
(About 154 ml), specific gravity is 0.78, undecomposed residue is a blackish brown wax 44.0 gr, total amount of gas fraction and solvent loss is 13.8
gr (including calculated amount of HCl 4.6gr), apparent decomposition rate is 56.0
%, Gasification rate including solvent loss is 24.6% (excluding HCl is 1
6.4%).

【0040】滴定の結果、HCl捕捉率は87%で、留出油
は試験紙で酸性を示し、留出油中にHClの溶解があるこ
とが確認された。
As a result of titration, it was confirmed that the HCl capture rate was 87%, the distillate oil was acidic on a test paper, and that HCl was dissolved in the distillate oil.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で使用するテスト装置の図。FIG. 1 is a diagram of a test apparatus used in an example.

【符号の説明】[Explanation of symbols]

1 熱分解容器(500mlフラスコ) 2 温度計(熱分解容器内液温用) 3 温度計(ガス温用) 4 高沸ガス還流器 5 冷却水供給口 6 熱媒供給口 7 加熱用マントルヒーター 8 加熱温度用熱電対 9 加熱温度用コントローラー 10 触媒(Cu、Al、Ni片) 11 N2供給口 12 凝縮器 13 冷却水供給口 14 補助冷却器 15 留出弁(コック) 16 留出熱分解油受器 17 バイパスライン 18 HCl捕集用三角フラスコ 19 アルカリ (NaOH) 水溶液 20 マグネチックスターラー1 Pyrolysis vessel (500 ml flask) 2 Thermometer (for liquid temperature in pyrolysis vessel) 3 Thermometer (for gas temperature) 4 High boiling gas reflux device 5 Cooling water supply port 6 Heat medium supply port 7 Heating mantle heater 8 Thermocouple for heating temperature 9 Controller for heating temperature 10 Catalyst (Cu, Al, Ni piece) 11 N 2 supply port 12 Condenser 13 Cooling water supply port 14 Auxiliary cooler 15 Distillation valve (cock) 16 Distillation pyrolysis oil Receiver 17 Bypass line 18 Erlenmeyer flask for HCl collection 19 Alkaline (NaOH) aqueous solution 20 Magnetic stirrer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年3月4日[Submission date] March 4, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 105:26 C08L 27:06 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // B29K 105: 26 C08L 27:06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 PVC含有廃プラスチックを熱分解し、
発生ガスから油分を得るに当り、該熱分解油化処理をP
VC含有廃プラスチック100重量部に対し40〜160重量部
の、10%留出温度が大気圧下150〜280℃である炭化水素
類溶媒の存在下、2段階で行い、その際、第1段階の処
理は、該溶媒のリフラックス温度下で行うことにより、
含有PVCから選択的にHClを分解、除去し、第2段階
の処理は、HCl除去後の残液を廃プラスチックの熱分解
温度域まで昇温し、発生分解ガスを高沸ガス還流下に処
理し、凝縮液を分取することを特徴とするPVC含有廃
プラスチックの熱分解油化方法。
1. A pyrolysis of waste plastic containing PVC,
In obtaining oil from the evolved gas, P
It is carried out in two steps in the presence of 40 to 160 parts by weight of hydrocarbon containing 100 parts by weight of VC-containing plastic having a 10% distillation temperature of 150 to 280 ° C. under atmospheric pressure, in which case the first step Is carried out under the reflux temperature of the solvent,
HCl is selectively decomposed and removed from the contained PVC. In the second stage treatment, the residual liquid after HCl removal is heated to the thermal decomposition temperature range of the waste plastic, and the generated decomposition gas is treated under high boiling gas reflux. Then, the condensate is collected and a method for pyrolyzing oil containing waste plastic containing PVC is described.
【請求項2】 前記炭化水素類溶媒は、廃プラスチック
の熱分解油、A重油、及び低沸部を少なくとも30%以上
除去した灯油の高沸部から選ばれるものである請求項1
に記載のPVC含有廃プラスチックの熱分解油化方法。
2. The hydrocarbon solvent is selected from pyrolysis oil of waste plastic, heavy fuel oil A, and high boiling portion of kerosene in which at least 30% of low boiling portion is removed.
5. A method of thermally decomposing oil waste of PVC-containing waste according to 1.
【請求項3】 前記第1段階の溶媒リフラックスに冷却
器を用い、該冷却器は、第2段階では使用熱媒の切り替
えにより、発生ガスの高沸ガス還流器として使用する請
求項1に記載のPVC含有廃プラスチックの熱分解油化
方法。
3. A cooler is used for the solvent reflux in the first step, and the cooler is used as a high boiling gas recirculator for the generated gas in the second step by switching the heat medium used. A method for thermally decomposing waste PVC-containing waste plastic as described.
【請求項4】 高沸ガス還流器に用いられる熱媒は、初
留点が120℃以上の液状炭化水素類、高温空気、及び熱
分解の加熱排ガスからなる群から選ばれるものである請
求項3に記載のPVC含有廃プラスチックの熱分解油化
方法。
4. The heat medium used in the high boiling gas recirculator is selected from the group consisting of liquid hydrocarbons having an initial boiling point of 120 ° C. or higher, high temperature air, and heated exhaust gas of thermal decomposition. 4. A method for making pyrolysis oil of waste plastic containing PVC according to 3 above.
【請求項5】 液状炭化水素類は、廃プラスチックの熱
分解油、A重油、及び低沸部を少なくとも30%以上除去
した灯油の高沸部からなる群から選ばれるものである請
求項4に記載のPVC含有廃プラスチックの熱分解油化
方法。
5. The liquid hydrocarbons are selected from the group consisting of pyrolysis oil of waste plastics, heavy oil A, and high boiling parts of kerosene in which at least 30% of low boiling parts are removed. A method for thermally decomposing waste PVC-containing waste plastic as described.
【請求項6】 金属触媒を更に存在させることを特徴と
する請求項1に記載のPVC含有廃プラスチックの熱分
解油化方法。
6. The method for thermally decomposing PVC-containing waste plastics according to claim 1, wherein a metal catalyst is further present.
JP2310094A 1994-01-25 1994-01-25 Heat decomposition of pvc-containing waste plastic into oil Pending JPH07207279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2310094A JPH07207279A (en) 1994-01-25 1994-01-25 Heat decomposition of pvc-containing waste plastic into oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2310094A JPH07207279A (en) 1994-01-25 1994-01-25 Heat decomposition of pvc-containing waste plastic into oil

Publications (1)

Publication Number Publication Date
JPH07207279A true JPH07207279A (en) 1995-08-08

Family

ID=12101041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2310094A Pending JPH07207279A (en) 1994-01-25 1994-01-25 Heat decomposition of pvc-containing waste plastic into oil

Country Status (1)

Country Link
JP (1) JPH07207279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066685A (en) * 1997-08-13 2000-05-23 Kawasaki Steel Corporation Method for treating plastics and solid fuel obtained by the same method
JP2013536292A (en) * 2010-08-26 2013-09-19 アーハーデー ヴァジョンケゼルー エーエシュ タナーチャドゥー カーエフテー. Process for pyrolysis of PVC and other waste containing halogen containing polymer waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066685A (en) * 1997-08-13 2000-05-23 Kawasaki Steel Corporation Method for treating plastics and solid fuel obtained by the same method
JP2013536292A (en) * 2010-08-26 2013-09-19 アーハーデー ヴァジョンケゼルー エーエシュ タナーチャドゥー カーエフテー. Process for pyrolysis of PVC and other waste containing halogen containing polymer waste

Similar Documents

Publication Publication Date Title
KR100202467B1 (en) Polymer cracking
US6172275B1 (en) Method and apparatus for pyrolytically decomposing waste plastic
US5608136A (en) Method and apparatus for pyrolytically decomposing waste plastic
JPH05345894A (en) Method for chemically reusing plastics
US6352674B2 (en) Apparatus for converting a plastic waste into oil
US5728909A (en) Method of cracking polymeric materials catalyzed by copper
EP1130076A2 (en) Method and system for pyrolyzing plastic and pyrolysate product
US6504068B1 (en) Method for converting a plastic waste into oil in a stainless steel reactor
GB2158089A (en) Treatment of waste plastics
JPH06179877A (en) Method and apparatus for thermal decomposition of waste plastics
JPH07207279A (en) Heat decomposition of pvc-containing waste plastic into oil
US11898111B2 (en) Process for production of useful hydrocarbon materials from plastic waste and reaction system therefor
JP3260436B2 (en) Processing method of polymer material
JPS5829987B2 (en) Method for producing hydrocarbon oil from crosslinked polyethylene
JP2000119440A (en) Heat decomposition of plastic waste
JPH1067991A (en) Conversion of plastic waste into oil and apparatus therefor
CN105018126B (en) A kind of utilization waste polyolefin produces the gentle cleavage method of liquid hydrocarbon
JP3520505B2 (en) Liquid fuel recovery method from polyolefin plastic waste
JP2002265956A (en) Liquefaction apparatus for polymer waste
KR100517898B1 (en) Downflow type catalytic cracking reaction apparatus and method for producing gasoline and light oil using waste synthetic resins using the same
EP4321595A1 (en) Process for production of hydrocarbon materials from plastic waste
US20220389328A1 (en) Process for production of useful hydrocarbon materials from plastic waste
JP2003506215A (en) How to use gas from settling tank
CN105524642B (en) Oxyhydrogen combustion method directly heats the device and method of cracking waste polyolefin
JP2969417B2 (en) Decomposition method of waste plastic