JPH0719947B2 - Metal pattern manufacturing method and metal wiring manufacturing method using the same - Google Patents

Metal pattern manufacturing method and metal wiring manufacturing method using the same

Info

Publication number
JPH0719947B2
JPH0719947B2 JP16006288A JP16006288A JPH0719947B2 JP H0719947 B2 JPH0719947 B2 JP H0719947B2 JP 16006288 A JP16006288 A JP 16006288A JP 16006288 A JP16006288 A JP 16006288A JP H0719947 B2 JPH0719947 B2 JP H0719947B2
Authority
JP
Japan
Prior art keywords
metal
metal pattern
fine particles
silane
based surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16006288A
Other languages
Japanese (ja)
Other versions
JPH029196A (en
Inventor
規央 美濃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16006288A priority Critical patent/JPH0719947B2/en
Priority to US07/361,261 priority patent/US4985273A/en
Priority to EP19890305701 priority patent/EP0346074B1/en
Priority to DE1989624198 priority patent/DE68924198T2/en
Publication of JPH029196A publication Critical patent/JPH029196A/en
Priority to US07/606,620 priority patent/US5277980A/en
Publication of JPH0719947B2 publication Critical patent/JPH0719947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/102Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding of conductive powder, i.e. metallic powder

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属パターン利用分野に関するものである。
特に、印刷、コーティング、防蝕、配線、電極などに関
するものである。
TECHNICAL FIELD OF THE INVENTION The present invention relates to the field of metal pattern applications.
In particular, it relates to printing, coating, anticorrosion, wiring, electrodes and the like.

従来の技術 従来の金属パターンの製造は、所定の金属を基板上に蒸
着して金属薄膜を形成する。つぎに、フォトレジストプ
ロセスにより、所定のパターンをフォトレジストにより
形成する。つぎに、フォトレジストをマスクにして金属
薄膜をエッチング処理して除去する。つぎに、フォトレ
ジストを除去して、金属パターンを形成する。
2. Description of the Related Art In the conventional manufacturing of metal patterns, a predetermined metal is deposited on a substrate to form a metal thin film. Next, a predetermined pattern is formed of photoresist by a photoresist process. Next, the metal thin film is etched and removed using the photoresist as a mask. Next, the photoresist is removed to form a metal pattern.

発明が解決しようとする課題 しかしながら、従来の方法は、フォトレジストをマスク
にして間接的に金属パターンを形成するもので、処理工
程が複雑であった。また、金属微粒子を用いた金属配線
形成では金属微粒子とパターン形成用樹脂を混合する必
要があるが、従来はその金属微粒子の混合比率が小さ
く、低い比抵抗率を得ることが困難であった。
However, according to the conventional method, the metal pattern is indirectly formed by using the photoresist as a mask, and the processing steps are complicated. Further, in forming a metal wiring using fine metal particles, it is necessary to mix the fine metal particles and a resin for pattern formation, but conventionally, the mixing ratio of the fine metal particles was small, and it was difficult to obtain a low specific resistance.

課題を解決するための手段 本発明は、重合性を有し、分子の末端にクロロシラン基
を有するシラン系界面活性剤と金属微粒子表面の水酸基
を反応させ、前記金属微粒子表面に前記シラン界面活性
剤からなる単分子膜を形成する工程と前記単分子膜で覆
われた金属微粒子を金属パターンを施す基板上に成膜す
る工程と、前記金属パターンを形成する部位に基板にエ
ネルギービームを選択的に照射する工程と前記金属パタ
ーンを形成する部位にエネルギービームを照射しなかっ
た部位の金属微粒子を除去する工程とを備えることによ
って課題を解決するものである。
Means for Solving the Problems The present invention has a polymerizable silane-based surfactant having a chlorosilane group at the terminal of a molecule and a hydroxyl group on the surface of metal fine particles, and the surface of the metal fine particles is treated with the silane surfactant. And a step of forming fine metal particles covered with the monomolecular film on a substrate on which a metal pattern is formed, and selectively applying an energy beam to the substrate at the site where the metal pattern is formed. The problem is solved by providing a step of irradiating and a step of removing the metal fine particles in the part where the energy pattern is not irradiated to the part where the metal pattern is formed.

作用 本発明は、重合性を有し、分子の末端にクロロシラン基
を有するシラン系界面活性剤と金属微粒子表面の水酸基
を反応させ、金属微粒子表面と分子末端とがシロキサン
結合なる化学結合により金属微粒子表面に単分子膜を形
成する。本発明によれば、金属微粒子表面に形成してい
る単分子膜を構成している分子鎖の先端には重合性を有
する官能基があり、この官能基が単分子膜表面に一様に
露出することになり、この金属微粒子が近接した状態で
エネルギービームを照射し、隣接する金属微粒子の単分
子膜の官能基が結合する作用により、フォトレジストを
用いずに直接に、金属パターンを形成することができ
る。そして、本発明は、金属微粒子表面は単分子膜とい
う極めて薄い膜が存在するのみであり、金属微粒子の占
める割合が極めて大きい金属配線パターン等の形成が可
能となる。また、前記シロキサン結合なる化学結合によ
り、金属微粒子と単分子膜との密着性は非常に強固なも
のとなる。
Action The present invention is a metal fine particle that is chemically polymerizable and has a silane-based surfactant having a chlorosilane group at the end of the molecule and a hydroxyl group on the surface of the fine metal particle are reacted to form a siloxane bond between the surface of the fine metal particle and the molecular end. Form a monolayer on the surface. According to the present invention, there is a functional group having polymerizability at the tip of the molecular chain constituting the monomolecular film formed on the surface of the metal fine particles, and this functional group is uniformly exposed on the surface of the monomolecular film. By irradiating an energy beam in the state where the metal fine particles are close to each other, the functional group of the monomolecular film of the adjacent metal fine particles is bonded to directly form a metal pattern without using a photoresist. be able to. Further, according to the present invention, the surface of the metal fine particles only has an extremely thin film such as a monomolecular film, and a metal wiring pattern or the like in which the proportion of the metal fine particles is extremely large can be formed. Further, the chemical bond of the siloxane bond makes the adhesion between the metal fine particles and the monomolecular film extremely strong.

実施例 以下に、本発明の金属パターン形成方法の一実施例を模
式的断面図第1図、第2図、第3図、第4図および第5
図を用いて詳細に説明する。
Example An example of a metal pattern forming method according to the present invention will be described below with reference to schematic cross-sectional views 1, 2, 3, 4, and 5.
This will be described in detail with reference to the drawings.

金属微粒子1として、例えば、アルミニウムシリコン合
金からなる微粒子をシラン系界面活性剤2として、たと
えば、CH2=CH-(CH2)n-SiCl3(ここでnは正の整数)を
適宜溶解させたn−ヘキサンを主成分とする非水系の溶
液に浸漬する。ここで、シラン系界面活性剤2は、末端
には-SiCl3基と直鎖炭化水素鎖および先端には官能基と
して、たとえば、ビニル基3からなっている。通常、金
属微粒子表面には自然酸化膜の薄膜が形成されているた
め表面に、水酸基が露出している。したがって、非水系
の溶液中で-SiCl3基(クロロシラン基)と水酸基とが脱
塩酸反応を起こして が金属微粒子表面に一様に形成され、シラン系界面活性
剤からなる単分子膜4が一層(厚みとして2〜3nm)形
成される。〈第1図および第2図(ただし、第2図は第
1図の円A内の拡大図である。)〉 つぎに、シラン系界面活性剤の単分子膜4で一様に覆わ
れたアルミニウムシリコン合金からなる金属微粒子1を
取り出し、前記金属微粒子1を非水系溶液として、たと
えばクロロホルムに溶かして塗布し、クロロホルムを蒸
発させて、金属パターンを保持する基板5上に前記金属
微粒子からなる膜を形成する。この膜は第1、2図から
明らかなように金属微粒子1の表面を一様に覆うととも
に極めて薄いものであり、金属微粒子の占める割合は極
めて大きいものとなる。また、第2図から明らかなよう
に金属微粒子1と膜を形成するシラン系界面活性剤2は
シロキサン結合を介して化学結合されており、金属微粒
子と膜との密着は非常に強固なものとなる。つぎに、金
属パターンを形成するところのみ選択的にエネルギービ
ームが照射されるようマスク8を前記基板5上に設置
し、マスク8を介してエネルギービームとして、たとえ
ば、X線7を照射する。
As the metal fine particles 1, for example, fine particles made of an aluminum silicon alloy are used as the silane-based surfactant 2 and, for example, CH 2 = CH- (CH 2 ) n -SiCl 3 (where n is a positive integer) is appropriately dissolved. And dipped in a non-aqueous solution containing n-hexane as a main component. Here, the silane-based surfactant 2 is composed of a —SiCl 3 group and a linear hydrocarbon chain at the end and a functional group at the tip, for example, a vinyl group 3. Usually, since a thin film of a natural oxide film is formed on the surface of the metal fine particles, hydroxyl groups are exposed on the surface. Therefore, the -SiCl 3 group (chlorosilane group) and the hydroxyl group undergo a dehydrochlorination reaction in a non-aqueous solution. Are uniformly formed on the surface of the metal fine particles, and a monolayer film 4 (having a thickness of 2 to 3 nm) of a silane-based surfactant is formed. <FIG. 1 and FIG. 2 (however, FIG. 2 is an enlarged view in the circle A in FIG. 1)> Next, the monomolecular film 4 of the silane-based surfactant was uniformly covered. A metal fine particle 1 made of an aluminum-silicon alloy is taken out, and the fine metal particle 1 is applied as a non-aqueous solution, for example, by dissolving it in chloroform and evaporating the chloroform to form a film made of the fine metal particle on the substrate 5 holding the metal pattern. To form. As is clear from FIGS. 1 and 2, this film uniformly covers the surface of the metal fine particles 1 and is extremely thin, and the proportion of the metal fine particles is extremely large. Further, as is clear from FIG. 2, the metal fine particles 1 and the silane-based surfactant 2 forming the film are chemically bonded via a siloxane bond, and the adhesion between the metal fine particles and the film is very strong. Become. Next, the mask 8 is placed on the substrate 5 so that the energy beam is selectively irradiated only where the metal pattern is formed, and, for example, X-ray 7 is irradiated as an energy beam through the mask 8.

エネルギービームとして、たとえば、X線7を照射する
ことにより、隣接するアルミニウムシリコン合金からな
る金属微粒子1,1′の表面に形成されたシラン系界面活
性剤2よりなる単分子膜4,4′の先端のビニル基同志が
重合反応を起こして、化学結合部8を形成する。このよ
うに、エネルギービームを選択的に照射することで、隣
接するアルミニウムシリコン合金からなる金属微粒子
は、たがいに、化学結合部を介して選択的に固定され
る。〈第3図および第4図(ただし、第4図は第3図の
円B内の拡大図である。)〉 つぎに、エネルギービームを選択的に照射した金属微粒
子からなる膜を溶媒として、たとえば、クロロホルムに
浸漬する。浸漬することにより、エネルギービームが照
射されずに金属微粒子表面の単分子膜のビニル基同志で
化学結合部が形成されなかった金属微粒子は除去され
る。その結果、基板5上にはエネルギービームが照射さ
れた部分のみ金属微粒子1が残り、金属パターンが形成
される。〈第5図〉 以下に、本発明の金属パターンの形成方法を用いた金属
配線の形成方法および金属配線の一実施例を模式的断面
図第5図および第6図を用いて詳細に説明する。
For example, by irradiating X-ray 7 as an energy beam, the monomolecular film 4, 4 ′ made of the silane-based surfactant 2 formed on the surface of the adjacent metal fine particles 1, 1 ′ made of an aluminum silicon alloy is formed. The vinyl groups at the tips cause a polymerization reaction to form a chemical bond 8. In this way, by selectively irradiating the energy beam, the adjacent metal fine particles made of the aluminum-silicon alloy are selectively fixed to each other through the chemical bond. <FIG. 3 and FIG. 4 (however, FIG. 4 is an enlarged view within the circle B in FIG. 3)> Next, using a film made of metal fine particles selectively irradiated with an energy beam as a solvent, For example, soak in chloroform. By the immersion, the metal fine particles which are not irradiated with the energy beam and in which the chemical bond portion is not formed by the vinyl groups of the monomolecular film on the surface of the metal fine particles are removed. As a result, the metal fine particles 1 remain only on the portion of the substrate 5 irradiated with the energy beam, and a metal pattern is formed. <FIG. 5> An embodiment of the metal wiring forming method and the metal wiring using the metal pattern forming method of the present invention will be described in detail below with reference to schematic sectional views FIG. 5 and FIG. .

まず、上述の金属パターンの形成方法により金属配線を
形成する基板5上に配線に用いられる金属微粒子1から
なる金属パターンを形成する。つぎに、前記金属パター
ンが形成された基板を不活性ガス雰囲気中として、たと
えば、窒素ガス雰囲気中で摂氏400度まで加熱する。不
活性ガス中での加熱処理により、導電性を妨げるシラン
系界面活性剤2からなる単分子膜4を分解除去すること
ができ、基板5上に配線金属からなる金属微粒子1の金
属配線が形成される。〈第5図、第6図〉 本発明に用いる金属微粒子としては、アルミニウム、ア
ルミニウムシリコン合金、アルミニウム銅合金、アルミ
ニウムシリコン銅合金、プラチナ、パラジウム、チタ
ン、タンタル、クロム、スズ、タングステン、モリブデ
ン等を用いることができる。
First, a metal pattern made of the metal fine particles 1 used for wiring is formed on the substrate 5 on which the metal wiring is formed by the above-described metal pattern forming method. Next, the substrate on which the metal pattern is formed is heated in an inert gas atmosphere, for example, in a nitrogen gas atmosphere to 400 degrees Celsius. By the heat treatment in the inert gas, the monomolecular film 4 made of the silane-based surfactant 2 which hinders conductivity can be decomposed and removed, and the metal wiring of the metal fine particles 1 made of wiring metal is formed on the substrate 5. To be done. <FIG. 5 and FIG. 6> Examples of the metal fine particles used in the present invention include aluminum, aluminum silicon alloy, aluminum copper alloy, aluminum silicon copper alloy, platinum, palladium, titanium, tantalum, chromium, tin, tungsten, molybdenum, and the like. Can be used.

なお、本実施例ではシラン系界面活性剤を用いたが、水
酸基に対して結合性のある基であれば、シラン系界面活
性剤に限らない。
Although the silane-based surfactant was used in this example, the silane-based surfactant is not limited to the silane-based surfactant as long as it has a group capable of binding to a hydroxyl group.

また、本実施例ではシラン系界面活性剤の先端の官能基
としてビニル基を用いたが、他の官能基、たとえはアセ
チレン基、ジアセチレン基、エポキシ基のような重合反
応を起こすものであってもよい。
In addition, although a vinyl group was used as the functional group at the tip of the silane-based surfactant in this example, other functional groups such as acetylene group, diacetylene group, and epoxy group cause a polymerization reaction. May be.

さらにまた、本実施例ではエネルギービームとしてX線
を用いたが紫外線、遠紫外線、電子線、ガンマ線等シラ
ン系界面活性剤の先端に設けられた官能基の放射線重合
反応に応じて適宜変えられることは言うまでもない。
Furthermore, although X-rays are used as the energy beam in the present embodiment, it can be changed appropriately depending on the radiation polymerization reaction of the functional group provided at the tip of the silane-based surfactant such as ultraviolet rays, far ultraviolet rays, electron beams, and gamma rays. Needless to say.

さらにまた、本発明の実施例では加熱処理条件として摂
氏400度としたが、シラン系界面活性剤に応じて適宜除
去できうる条件に変更してもよいことは言うまでもな
い。
Furthermore, in the embodiment of the present invention, the heat treatment condition is set to 400 degrees Celsius, but it goes without saying that it may be changed to a condition that can be appropriately removed depending on the silane-based surfactant.

なお、本発明の金属パターン形成方法を用いた実施例で
は金属配線について記載したが、そのほか、金属電極、
特に、微細な金属パターンを必要とするバンプボンディ
ング、マイクロバンプボンディングなどの用途などにも
応用される。
In the examples using the metal pattern forming method of the present invention, the metal wiring is described.
In particular, it is applied to applications such as bump bonding and micro bump bonding that require a fine metal pattern.

さらにまた、本発明の実施例では、選択的にエネルギー
ビームを照射するためマスクを介したが、電子線などの
場合では、直接描画法が用いられており、本発明でも直
接描画法により選択的照射を行っても差し支えない。
Furthermore, in the embodiment of the present invention, a mask is used to selectively irradiate the energy beam, but in the case of an electron beam or the like, a direct writing method is used, and the present invention also selectively uses the direct writing method. Irradiation can be done.

発明の効果 本発明の金属パターンの製造方法とそれを用いた金属配
線の製造方法は、金属パターンの新しい形成方法を提供
するものであり、本発明の方法により金属微粒子表面に
単分子膜を形成することにより金属微粒子に対する有機
物成分いわゆる単分子膜の占める割合が極めて低くな
り、金属配線に必要は物性いわゆる比抵抗率を低くでき
る。また、本発明は金属微粒子表面を単分子膜で一様に
覆った構造になるため、その分散も非常に均一になる。
またその製造についても従来のようにスパッタ法などの
ように高価な設備を持ちうることなく金属薄膜を形成す
ることができる。さらに、従来のフォトレジストパター
ン形成、金属薄膜ドライエッチング、フォトレジスト除
去等の工程を経ずして、直接的に金属パターン、金属配
線が形成でき、本発明の産業に与える効果は大である。
EFFECTS OF THE INVENTION The method for producing a metal pattern and the method for producing a metal wiring using the same of the present invention provide a new method for forming a metal pattern, and a monomolecular film is formed on the surface of metal fine particles by the method of the present invention. By doing so, the ratio of the organic component, so-called monomolecular film, to the metal fine particles becomes extremely low, and the physical properties required for the metal wiring, so-called specific resistance, can be lowered. Further, since the present invention has a structure in which the surface of the metal fine particles is uniformly covered with a monomolecular film, the dispersion thereof is also very uniform.
Further, regarding the manufacturing thereof, it is possible to form a metal thin film without having to use expensive equipment such as a sputtering method as in the conventional case. Further, the metal pattern and the metal wiring can be directly formed without the conventional steps of forming the photoresist pattern, dry etching the metal thin film, removing the photoresist, etc., and the effect of the present invention on the industry is great.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図、第3図、第4図および第5図は本発明
の金属パターンの製造方法を説明する工程断面図、第6
図は本発明の金属配線の製造方法および金属配線を説明
する工程断面図である。 1,1′……金属微粒子、2……シラン系界面活性剤、3
……ビニル基、4,4′……単分子膜、5……基板、6…
…マスク、7……X線、8……化学結合部。
FIG. 1, FIG. 2, FIG. 3, FIG. 4 and FIG. 5 are process cross-sectional views for explaining the method for manufacturing a metal pattern of the present invention.
The drawings are process cross-sectional views for explaining the metal wiring manufacturing method and the metal wiring of the present invention. 1,1 '... Metal fine particles, 2 ... Silane-based surfactant, 3
…… Vinyl group, 4,4 ′ …… Monomolecular film, 5 …… Substrate, 6 ...
... mask, 7 ... X-ray, 8 ... chemical bond.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/3205 21/321 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area H01L 21/3205 21/321

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重合性を有し、分子末端にクロロシラン基
を有するシラン系界面活性剤と金属微粒子表面の水酸基
を反応させ、前記金属微粒子表面に前記シラン系界面活
性剤からなる単分子膜を形成する工程と前記単分子膜で
覆われた金属微粒子を金属パターンを施す基板上に成膜
する工程と、前記金属パターンを形成する部位にエネル
ギービームを選択的に照射する工程と前記エネルギービ
ームを照射しなかった部位の金属微粒子を除去する工程
とを備えてなることを特徴とする金属パターンの製造方
法。
1. A monomolecular film comprising a polymerizable silane-based surfactant having a chlorosilane group at the molecular end and a hydroxyl group on the surface of the metal fine particles, and a monomolecular film comprising the silane-based surfactant on the surface of the metal fine particles. A step of forming, a step of forming fine metal particles covered with the monomolecular film on a substrate on which a metal pattern is formed, a step of selectively irradiating an energy beam on a portion where the metal pattern is formed, and the energy beam And a step of removing fine metal particles in a portion that has not been irradiated, the method for producing a metal pattern.
【請求項2】シラン系界面活性剤が重合性を有する官能
基を含むことを特徴とする特許請求の範囲第1項記載の
金属パターンの製造方法。
2. The method for producing a metal pattern according to claim 1, wherein the silane-based surfactant contains a functional group having polymerizability.
【請求項3】シラン系界面活性剤として、CH2=CH−(C
H2)n−SiCl3(n:正の整数)で表わされる化学物質を
用いることを特徴とする特許請求の範囲第1項記載の金
属パターンの製造方法。
3. CH2 = CH- (C
H2) A chemical substance represented by n-SiCl3 (n: positive integer) is used, The manufacturing method of the metal pattern of Claim 1 characterized by the above-mentioned.
【請求項4】重合性を有し、分子の末端にクロロシラン
基を有するシラン系界面活性剤と金属微粒子表面の水酸
基を反応させ、前記金属微粒子表面に前記シラン系界面
活性剤からなる単分子膜を形成する工程と前記単分子膜
で覆われた金属微粒子を金属パターンを施す基板上に成
膜する工程と、前記金属パターンを形成する部位にエネ
ルギービームを選択的に照射する工程と前記エネルギー
ビームを照射しなかった部位の金属微粒子を除去する工
程と、加熱処理を施して前記単分子膜を除去する工程を
備えてなることを特徴とする金属パターンの製造方法。
4. A monomolecular film comprising a silane-based surfactant having polymerizability and having a chlorosilane group at the end of the molecule, and a hydroxyl group on the surface of the metal fine particles, to react the surface of the metal fine particles with the silane-based surfactant. A step of forming a metal fine particle covered with the monomolecular film on a substrate on which a metal pattern is formed, a step of selectively irradiating an energy beam to a portion where the metal pattern is formed, and the energy beam A method for producing a metal pattern, comprising: a step of removing fine metal particles in a portion not irradiated with the heat treatment; and a step of performing a heat treatment to remove the monomolecular film.
JP16006288A 1988-06-07 1988-06-28 Metal pattern manufacturing method and metal wiring manufacturing method using the same Expired - Fee Related JPH0719947B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16006288A JPH0719947B2 (en) 1988-06-28 1988-06-28 Metal pattern manufacturing method and metal wiring manufacturing method using the same
US07/361,261 US4985273A (en) 1988-06-07 1989-06-05 Method of producing fine inorganic particles
EP19890305701 EP0346074B1 (en) 1988-06-07 1989-06-06 Mass of fine particles of inorganic material and method of producing the same, ultrathin film of the inorganic fine particles and method of making the same, magnetic recording medium and method of providing the same method of manufacturing patterns of inorganic material, and method of manufacturing wirings of inorganic material
DE1989624198 DE68924198T2 (en) 1988-06-07 1989-06-06 Mass of fine particles of an inorganic material and process for its production, ultra-thin film of fine inorganic particles and process for its production, magnetic recording medium and process for its production, process for the production of motifs of inorganic material and process for the production of wirings made of inorganic material .
US07/606,620 US5277980A (en) 1988-06-07 1990-10-31 Mass of fine particles of inorganic material and a film of the fine inorganic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16006288A JPH0719947B2 (en) 1988-06-28 1988-06-28 Metal pattern manufacturing method and metal wiring manufacturing method using the same

Publications (2)

Publication Number Publication Date
JPH029196A JPH029196A (en) 1990-01-12
JPH0719947B2 true JPH0719947B2 (en) 1995-03-06

Family

ID=15707078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16006288A Expired - Fee Related JPH0719947B2 (en) 1988-06-07 1988-06-28 Metal pattern manufacturing method and metal wiring manufacturing method using the same

Country Status (1)

Country Link
JP (1) JPH0719947B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW569195B (en) 2001-01-24 2004-01-01 Matsushita Electric Ind Co Ltd Micro-particle arranged body, its manufacturing method, and device using the same
JP2007275376A (en) * 2006-04-07 2007-10-25 Takano Co Ltd Cushion for toilet seat
JP4993700B2 (en) * 2007-03-09 2012-08-08 国立大学法人 香川大学 Protective film and method for producing the same
JP5200244B2 (en) * 2007-03-09 2013-06-05 国立大学法人 香川大学 Fine particle film and manufacturing method thereof
JP4734360B2 (en) * 2008-03-03 2011-07-27 株式会社東芝 Nanoparticle thin film, method for producing nanoparticle thin film, nanoparticle thin film pattern forming method, and circuit pattern forming method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740673B2 (en) * 1974-06-19 1982-08-28
JPS59929B2 (en) * 1978-07-22 1984-01-09 オムロン株式会社 proximity switch circuit

Also Published As

Publication number Publication date
JPH029196A (en) 1990-01-12

Similar Documents

Publication Publication Date Title
Werts et al. Nanometer scale patterning of Langmuir− Blodgett films of gold nanoparticles by electron beam lithography
Herzer et al. Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates
US7875197B2 (en) Methods of etching articles via microcontact printing
JP3646784B2 (en) Thin film pattern manufacturing method and microstructure
US6270946B1 (en) Non-lithographic process for producing nanoscale features on a substrate
JP3600546B2 (en) Method for forming patterned indium zinc oxide film and indium tin oxide film by microcontact printing
DE3625340C2 (en)
EP0386784A2 (en) Permselective membrane and process for producing the same
US20090155573A1 (en) Scaffold-organized metal, alloy, semiconductor and/or magnetic clusters and electronic devices made using such clusters
JPS6153850B2 (en)
US5277980A (en) Mass of fine particles of inorganic material and a film of the fine inorganic particles
WO2003053845A2 (en) Chemical functionalization nanolithography
JPS6360891B2 (en)
US8092899B2 (en) Method of activating a silicon surface for subsequent patterning of molecules onto said surface
US5093154A (en) Process for preparing a monomolecular built-up film
JPH0719947B2 (en) Metal pattern manufacturing method and metal wiring manufacturing method using the same
JPS60501777A (en) Silicon dioxide based graft polymerization lithography mask
US20080214410A1 (en) Immobilization of discrete molecules
US20030035967A1 (en) Process for coating surfaces
JP2667742B2 (en) Photosensitive resin composition
JPH0241740B2 (en)
JPH0661160A (en) Pattern forming method
Soliman et al. Controlled Growth of Organosilane Micropatterns on Hydrophilic and Hydrophobic Surfaces Templated by Vacuum Ultraviolet Photolithography
JPH0290679A (en) Very thin metal film and manufacture thereof
JP2005230665A (en) Method for forming monomolecular film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees