JPH07197017A - Solid with water-repellent surface and method for forming the same - Google Patents

Solid with water-repellent surface and method for forming the same

Info

Publication number
JPH07197017A
JPH07197017A JP33642493A JP33642493A JPH07197017A JP H07197017 A JPH07197017 A JP H07197017A JP 33642493 A JP33642493 A JP 33642493A JP 33642493 A JP33642493 A JP 33642493A JP H07197017 A JPH07197017 A JP H07197017A
Authority
JP
Japan
Prior art keywords
water
solid
concavo
sample
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33642493A
Other languages
Japanese (ja)
Other versions
JP3487888B2 (en
Inventor
Tomohiko Onda
智彦 恩田
Takashi Shibuichi
敬 四分一
Naoki Sato
直紀 佐藤
Kaoru Tsujii
薫 辻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP33642493A priority Critical patent/JP3487888B2/en
Publication of JPH07197017A publication Critical patent/JPH07197017A/en
Application granted granted Critical
Publication of JP3487888B2 publication Critical patent/JP3487888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To improve the water repellency of a solid (a machine part, a tool, an industrial good, etc.) required to be water-repellent by forming at least a part of the surface of the solid into a specific multistage projection structure. CONSTITUTION:At least a part of a water-repellent surface of a solid is formed into a multistep projection structure which comprises a projection structure A with a larger period and a projection structure B with a smaller period and has a multiplication factor of the surface area of 5 or higher and a period of 1-10mm. The multistage projection structure is formed by mechanical process or by chemical reaction, e.g. by electrolytic plating or by precipitating crystals or agglomerating particles on the solid surface. The formation of the multistage projection structure improves the water-repellency of rainwear, kitchen utensils, sanitary goods, and other materials, tools, and industrial goods requiring water repellency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撥水性が要求される製
品の表面加工に利用する。例えば、傘、雨合羽、防水性
ビニールバッグなどの雨具、テーブル、盆、流し台など
の台所用品、おむつ、ナプキンなどの衛生品を覆うプラ
スチックフィルム、車用ワックス、道路標識などの掲示
板、農業用フィルム、光または磁気ディスク、携帯用オ
ーディオ・ビデオ機器などに利用するに適する。本発明
は、撥水表面を有する固体およびその生成方法に関す
る。
FIELD OF THE INVENTION The present invention is used for surface treatment of products requiring water repellency. For example, umbrellas, raincoats, rain gear such as waterproof vinyl bags, kitchen utensils such as tables, trays, sinks, diapers, plastic films covering sanitary goods such as napkins, car wax, bulletin boards such as road signs, agricultural films, Suitable for use on optical or magnetic disks, portable audio / video equipment, etc. The present invention relates to a solid having a water repellent surface and a method for producing the same.

【0002】[0002]

【従来の技術】従来、フッ素樹脂やシリコン樹脂などに
よって固体表面をコーティングするなど化学的処理によ
り撥水性を付与していた。それを効率的に行った具体例
として、特開平4−285199号公報に開示されてい
るポリテトラフルオロエチレンオリゴマー粒子を共析分
散した複合めっき皮膜を金属表面に形成する方法があ
る。
2. Description of the Related Art Conventionally, water repellency has been imparted by chemical treatment such as coating a solid surface with a fluororesin or a silicone resin. As a specific example of efficiently performing this, there is a method disclosed in JP-A-4-285199 in which a composite plating film in which polytetrafluoroethylene oligomer particles are co-deposited and dispersed is formed on a metal surface.

【0003】固体表面を凹凸化するといった構造的処理
によって表面の撥水性が変化することは、たとえばA.
W.Adamsonの著書「Physical Chemistry of Surfaces
(John Wiley & Sons,New York )」などに記述があり、
その応用例として、特開平4−343764号公報に開
示されている布地表面にフッ素系化合物の凸状体を付加
する方法がある。
The change in the water repellency of the surface due to the structural treatment such as roughening the surface of the solid is described in, for example, A.
W. Adamson's book "Physical Chemistry of Surfaces"
(John Wiley & Sons, New York) ", etc.,
As an application example thereof, there is a method disclosed in Japanese Patent Laid-Open No. 343764/1992, in which a convex body of a fluorine-based compound is added to the surface of the cloth.

【0004】[0004]

【発明が解決しようとする課題】前述の方法では多くの
場合十分満足する撥水性を得ることが困難であるか、あ
るいは高価なフッ化物を密度高く大量に表面に付着させ
る必要があるという問題がある。
In many cases, it is difficult to obtain sufficiently satisfactory water repellency by the above-mentioned method, or there is a problem that expensive fluoride needs to be adhered to the surface in a large amount in high density. is there.

【0005】本発明はこのような背景に行われたもので
あって、表面に微細な多段凹凸構造をもつように固体表
面を処理し、より撥水性の高い表面を得ることができる
生成方法を提供することを目的とする。
The present invention has been made against such a background, and a method for producing a solid surface having a fine multi-step concavo-convex structure to obtain a surface having higher water repellency can be obtained. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明は、表面全部ある
いはその一部が撥水性物質で形成される固体およびその
生成方法に関するものであって、表面の少なくとも一部
に、大きい周期の凹凸が形成されその凹凸構造が前記周
期より小さい周期の凹凸構造を含む多段凹凸構造を有
し、その表面積増倍因子が5以上であることを特徴とす
る。前記多段凹凸構造は、その周期が1mm以下10n
m以上であることが望ましい。
The present invention relates to a solid whose surface is wholly or partly formed of a water-repellent substance and a method for producing the same, in which at least a part of the surface has irregularities with a large period. The formed uneven structure has a multi-step uneven structure including an uneven structure having a period smaller than the above period, and the surface area multiplication factor is 5 or more. The multi-step concavo-convex structure has a period of 1 mm or less and 10 n
It is preferably m or more.

【0007】多段凹凸構造は、それを構成する大きな周
期の凹凸構造が小さい周期の凹凸構造からなり、その小
さい周期の凹凸構造がさらに小さな周期の凹凸構造から
なるというように、二つ以上の異なる周期の凹凸から構
成された構造であり、フラクタル構造はその一例であ
る。その際、凹凸構造は近似的、確率的な意味で周期的
であればよい。
The multi-step concavo-convex structure has two or more different structures, such that the concavo-convex structure having a large period comprises a concavo-convex structure having a small period, and the concavo-convex structure having a small period comprises a concavo-convex structure having a smaller period. A fractal structure is an example of such a structure that is composed of periodic irregularities. At that time, the concavo-convex structure may be periodic in an approximate and probabilistic sense.

【0008】前記多段凹凸構造は、切削加工、研削加
工、電解加工を含む機械加工、電気めっき、レーザ加工
を含む電気的加工、電気分解、化学反応、微生物反応、
拡散律速凝集を含む化学的加工、真空蒸着、リソグラフ
ィー、イオンビーム加工、プラズマ加工を含むその他の
加工、あるいは前記各加工方法を組合せた加工を施すこ
とにより形成することができる。
The multi-step concavo-convex structure includes cutting, grinding, machining including electrolytic processing, electroplating, electrical processing including laser processing, electrolysis, chemical reaction, microbial reaction,
It can be formed by performing chemical processing including diffusion-controlled agglomeration, vacuum evaporation, lithography, ion beam processing, other processing including plasma processing, or a combination of the above processing methods.

【0009】ここで、撥水性物質とは、その物質で滑ら
かな平面状の清浄表面を作ったときにその表面の液体に
対する接触角が90°以上になる物質であり、表面積増
倍因子とは、全ての凹凸に沿って計測した表面積(実表
面積)を1mm以下のスケールの凹凸を無視してならし
た平らな面の表面積で割った値である。慣用的に撥水性
という言葉を使用するが、本発明の対象は必ずしも水の
付着する表面に限定されるものでなく、アルコール、油
を含む液体と表面との接触角を増大させるために適用さ
れる。
Here, the water-repellent substance is a substance having a contact angle of 90 ° or more with respect to the liquid when a smooth flat clean surface is formed from the substance, and the surface area multiplication factor is , The surface area (actual surface area) measured along all the irregularities is divided by the surface area of a flat surface ignoring irregularities on a scale of 1 mm or less. Although the term water repellent is conventionally used, the subject of the present invention is not necessarily limited to surfaces to which water adheres, but is applied to increase the contact angle between a liquid containing alcohol, oil and the surface. It

【0010】[0010]

【作用】固体表面上の液滴の接触角は、固体−液体界
面、固体−気体界面、気体−液体界面の三種類の界面の
界面張力のつりあいによって定まる。固体表面が微細な
多段凹凸構造をとり大きな実表面積をもつようになる
と、固体表面の単位切り出し面当りの界面エネルギは、
平らな表面のときと比べ表面積増倍因子倍だけ大きくな
る。そのために、固体−液体界面および固体−気体界面
は見かけ上、非常に大きな界面張力をもつことになる。
この界面張力の増加により平らな固体表面上とは異なる
界面張力のつりあいが多段凹凸構造表面上で生じ、液滴
の接触角の増加が導かれる。この際、液滴をなす液体は
水に限らず油などの任意の液体でよいが、特に水の場合
には撥水性の増加が得られる。
The contact angle of the liquid droplet on the solid surface is determined by the balance of the interfacial tensions of the three types of interfaces: the solid-liquid interface, the solid-gas interface, and the gas-liquid interface. When the solid surface has a fine multi-step concavo-convex structure and has a large actual surface area, the interfacial energy per unit cut surface of the solid surface becomes
The surface area multiplication factor is larger than that of a flat surface. Therefore, the solid-liquid interface and the solid-gas interface apparently have very large interfacial tension.
Due to this increase of the interfacial tension, the equilibrium of the interfacial tension different from that on the flat solid surface is generated on the surface of the multi-step concavo-convex structure, which leads to the increase of the contact angle of the droplet. At this time, the liquid forming the droplets is not limited to water but may be any liquid such as oil, but particularly in the case of water, an increase in water repellency can be obtained.

【0011】そこで、固体表面上、大きい周期の凹凸構
造と、その凹凸構造の上にさらに小さいいくつかの周期
の凹凸構造を複数段有する多段凹凸構造を形成し、その
表面積増倍因子が5以上になるようにすることにより、
撥水性をさらに向上させることができ、各種産業分野の
用品に適用することができる。
Therefore, a multi-step concavo-convex structure having a large-period concavo-convex structure on the solid surface and a plurality of smaller concavo-convex structures with several smaller periods is formed on the concavo-convex structure, and the surface area multiplication factor is 5 or more. By making
The water repellency can be further improved and it can be applied to products in various industrial fields.

【0012】[0012]

【実施例】次に、本発明実施例を図面に基づいて説明す
る。図1は本発明実施例における多段凹凸構造の断面を
示す図、図2は本発明実施例における多段凹凸構造の表
面の状態を示す斜視図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a view showing a cross section of a multi-step uneven structure according to an embodiment of the present invention, and FIG. 2 is a perspective view showing a surface state of the multi-step uneven structure according to an embodiment of the present invention.

【0013】本発明実施例は、固体表面の少なくとも一
部に、大きい周期の凹凸構造Aおよびその凹凸構造自体
がさらに小さい周期の凹凸構造Bで形成された多段凹凸
構造を有し、その表面積増倍因子が5以上である撥水表
面を有する。前記多段凹凸構造は、その周期が1mm以
下10nm以上に形成される。図1および図2に示す例
は、施削加工あるいは研削加工により形成されたもので
あるが、多段凹凸構造を形成するには他の方法を用いる
ことができ、例えば、集積回路製作に用いられている真
空蒸着、リソグラフィー、イオンビーム加工、プラズマ
加工などにより形成することが可能でありレーザ加工あ
るいは印刷技術によっても形成することができる。
The embodiment of the present invention has a multi-step concavo-convex structure in which the concavo-convex structure A having a large period and the concavo-convex structure itself having a concavo-convex structure B having a smaller period are formed on at least a part of the solid surface, and the surface area is increased. It has a water repellent surface with a fold factor of 5 or more. The multi-step concavo-convex structure has a period of 1 mm or less and 10 nm or more. The examples shown in FIGS. 1 and 2 are formed by machining or grinding, but other methods can be used to form the multi-step concavo-convex structure, and for example, they are used in integrated circuit fabrication. It can be formed by vacuum vapor deposition, lithography, ion beam processing, plasma processing, etc., which can also be formed by laser processing or printing technology.

【0014】また、温度や温度勾配、化学物質の濃度や
濃度勾配、電磁場などの外部因子を制御することにより
自然発生させるものとして、電気分解、化学反応、微生
物反応などにより固体表面を溶解あるいは腐食させる方
法、電気分解や拡散律速凝集などにより固体表面に物質
を析出させる方法、微粒子凝集体を固体表面に付着させ
る方法、互いに非相溶な二種類の物質を混合し相分離を
進行させて二つの相が互いに入り組んだ相分離パターン
ができたときにどちらか片方の物質のみを溶出させる方
法、あるいは、アルキルケテンダイマーやジアルキルケ
トンなどのように融液あるいは溶液からの固化時に自然
に多段凹凸化するものを利用する方法などがある。特に
室温で固化時に自然に多段凹凸化するものは撥水塗料と
して用いることができる。
In addition, the solid surface is dissolved or corroded by electrolysis, chemical reaction, microbial reaction, etc., which are naturally generated by controlling external factors such as temperature, temperature gradient, concentration of chemical substance, concentration gradient, electromagnetic field, etc. Method, a method of precipitating a substance on the solid surface by electrolysis or diffusion-controlled aggregation, a method of adhering fine particle aggregates to the solid surface, and a method of mixing two types of substances that are incompatible with each other and promoting phase separation A method in which only one of the substances is eluted when a phase separation pattern in which two phases are intricate with each other is formed, or a multi-step unevenness is naturally formed when solidifying from a melt or solution such as alkyl ketene dimer or dialkyl ketone. There are ways to use what you do. In particular, a material that naturally has multi-level irregularities when solidified at room temperature can be used as a water-repellent coating material.

【0015】さらに、大きな周期の凹凸構造Aを機械加
工により形成し、それに腐食などの方法により小さい周
期の凹凸構造を形成することもでき、前述の各方法で形
成した多段凹凸構造表面、あるいは蓮の葉の表面などの
自然界にすでに存在している多段凹凸構造表面から金属
やエポキシ樹脂などで金型を作成し、金型そのもの、あ
るいはその金型から作成した多段凹凸構造表面のレプリ
カを用いても形成することができる。
Further, it is also possible to form the uneven structure A having a large period by machining and to form the uneven structure having a smaller period by a method such as corrosion, and to form the uneven structure surface of the multi-step uneven structure formed by each of the above-mentioned methods, or lotus lotus. Using a metal or epoxy resin, etc., to make a mold from a multi-step uneven surface that already exists in nature, such as the surface of a leaf, and using the mold itself or a replica of the multi-step uneven surface made from the mold. Can also be formed.

【0016】このようにして生成された多段凹凸構造表
面が親水性物質でできている場合には、表面の全部ある
いは一部を撥水性物質でコーティングするか、多段凹凸
構造表面が撥水性物質でできている場合には、そのまま
用いるか、あるいはさらに高機能の撥水性物質で表面の
全部あるいは一部をコーティングすることによって撥水
表面として用いる。ここで、親水性物質とは、その物質
で滑らかな平面状の清浄表面を作ったときに、その表面
の水に対する接触角が90°以下になる物質のことであ
る。
When the surface of the multi-step uneven structure thus produced is made of a hydrophilic substance, all or part of the surface is coated with a water-repellent substance, or the surface of the multi-step uneven structure is made of a water-repellent substance. When it is prepared, it is used as it is, or it is used as a water-repellent surface by coating all or part of the surface with a highly functional water-repellent substance. Here, the hydrophilic substance is a substance having a contact angle with water of 90 ° or less when a smooth, flat and clean surface is formed from the substance.

【0017】このようにして生成された多段凹凸構造の
表面積増倍因子の値は大きいほど撥水性が向上する。固
体表面上の液滴の接触角は、固体−液体界面、固体−気
体界面、気体−液体界面の三種類の界面の界面張力のつ
りあいによって定まる。固体表面が微細な多段凹凸構造
をとり大きな実表面積をもつようになると、固体表面の
単位切り出し面当りの界面エネルギは、平らな表面のと
きと比べ表面積増倍因子の倍数だけ大きくなる。その結
果、固体−液体界面および固体−気体界面は見かけ上、
非常に大きな界面張力をもつことになる。この界面張力
の増加のため、平らな固体表面上とは異なる界面張力の
つりあいが多段凹凸構造表面上で生じ、その結果、接触
角の増加、すなわち撥水性の増加がもたらされる。
The larger the value of the surface area multiplication factor of the thus formed multi-step concavo-convex structure, the better the water repellency. The contact angle of a droplet on a solid surface is determined by the equilibrium of the interfacial tensions at three types of interfaces: a solid-liquid interface, a solid-gas interface, and a gas-liquid interface. When the solid surface has a fine multi-step concavo-convex structure and has a large actual surface area, the interfacial energy per unit cut-out surface of the solid surface becomes larger by a multiple of the surface area multiplication factor than that of a flat surface. As a result, the solid-liquid interface and the solid-gas interface are apparently
It will have a very large interfacial tension. Due to this increase in interfacial tension, an equilibrium of interfacial tension different from that on a flat solid surface occurs on the surface of the multi-step uneven structure, resulting in an increase in contact angle, that is, an increase in water repellency.

【0018】前述の表面積増倍因子を測定するには、一
定容積中での吸着にともなうガスの圧力変化から固体表
面に吸着したガスの量を求める容量法を用いて、例え
ば、液体窒素温度下で多段凹凸構造表面の窒素ガスの吸
着等温線を求める。この等温線の比較的低圧側のガスの
吸着量に対してB.E.T.(無限層吸着等温式)理論
を適用してガスの単分子吸着量を求める。この吸着量
と、ガス分子の吸着時の温度における分子占有断面積か
ら単位切り出し面あたりの実表面積すなわち表面積増倍
因子を求める(参考資料、慶伊富長著 吸着(共立出
版))。
To measure the above surface area multiplication factor, the volumetric method for determining the amount of gas adsorbed on the solid surface from the pressure change of gas accompanying adsorption in a constant volume is used, for example, under the temperature of liquid nitrogen. Determine the adsorption isotherm of nitrogen gas on the surface of the multi-step uneven structure. For the adsorption amount of gas on the relatively low pressure side of this isotherm, B. E. T. (Infinite layer adsorption isotherm) The theory is applied to find the amount of monomolecular adsorption of gas. The actual surface area per unit cut-out surface, that is, the surface area multiplication factor, is determined from this adsorption amount and the molecular occupation cross-sectional area at the temperature at which gas molecules are adsorbed (reference material, Keicho Tominaga Adsorption (Kyoritsu Shuppan)).

【0019】表面の多段凹凸構造が角柱や角錐、円柱、
円錐などからなる比較的単純な構造である場合には、表
面およびいくつかの断面の光学顕微鏡写真ならびに走査
型電子顕微鏡写真等から、1mm×1mmの切り出し面
あたりの実表面積S(mm2)を直接算出することがで
きる。このSが表面積増倍因子となる。
The multi-step concavo-convex structure on the surface is a prism, a pyramid, a cylinder,
In the case of a relatively simple structure such as a cone, the actual surface area S (mm 2 ) per cut surface of 1 mm × 1 mm is obtained from the optical microscope photograph of the surface and some cross sections and the scanning electron microscope photograph. It can be calculated directly. This S becomes a surface area multiplication factor.

【0020】〔機械加工による実施例〕ここで、機械加
工により作成した試料について説明する。この試料は、
縦2cm、横2cm、厚さ1cmの直方体状のテフロン
板のひとつの表面を図1に示すような断面をもつ多段凹
凸構造表面に切削加工したもので、その表面は図2に示
すようになる。これは、図3に示すピッチamm、凸部
幅bmm、深さcmmの櫛の歯状断面をもつ一段目の凹
凸面に、ピッチ0.1mm、深さ0.2mmのV字型の
二段目の凹凸面を形成した多段凹凸構造となっている。
この多段凹凸構造テフロン表面の蒸留水に対する接触角
を測定した。
[Example by Machining] Here, a sample prepared by machining will be described. This sample is
One surface of a rectangular parallelepiped Teflon plate having a length of 2 cm, a width of 2 cm, and a thickness of 1 cm is machined into a multi-step concavo-convex structure surface having a cross section as shown in Fig. 1. The surface is as shown in Fig. 2. . This is a V-shaped two-step pattern having a pitch of 0.1 mm and a depth of 0.2 mm on the uneven surface of the first step having a tooth-shaped cross section of a comb having a pitch amm, a convex portion width bmm, and a depth cmm shown in FIG. It has a multi-step concavo-convex structure in which uneven surfaces of the eyes are formed.
The contact angle of the surface of the Teflon having the multi-step uneven structure with respect to distilled water was measured.

【0021】図4(a)、(b)に接触角測定装置の概
略を示す。前述の試験試料1を光学式接触角計(協和界
面科学(株)製、CA−A型)の試料台2上に載置し、
液滴滴下用のシリンジ3に蒸留水を0.5cc入れ、シ
リンジ3の針の先に直径1mmの液滴4を作る。液滴4
と試験試料1の間を約1cmに保ち、シンリジ3に振動
を与えて針先の液滴4を試験試料1の上に落下させる。
液滴4を落下させた後、液滴4と試験試料1との間の接
触角(θ)を測定する。
FIGS. 4A and 4B show the outline of the contact angle measuring device. The test sample 1 described above was placed on the sample stand 2 of an optical contact angle meter (CA-A type manufactured by Kyowa Interface Science Co., Ltd.),
0.5 cc of distilled water is put into the syringe 3 for dropping a droplet, and a droplet 4 having a diameter of 1 mm is formed at the tip of the needle of the syringe 3. Droplet 4
The distance between the test sample 1 and the test sample 1 is kept at about 1 cm, and the synrige 3 is vibrated to drop the droplet 4 at the needle tip onto the test sample 1.
After dropping the droplet 4, the contact angle (θ) between the droplet 4 and the test sample 1 is measured.

【0022】いくつかのテフロン試料を用いて接触角θ
を測定した実施例の結果を表1に示す。表面積増倍因子
が5以上となる試料では接触角θの大きい、良好な撥水
表面が得られている。
The contact angle θ using several Teflon samples
Table 1 shows the results of Examples in which In the sample having the surface area multiplication factor of 5 or more, a good water repellent surface having a large contact angle θ was obtained.

【0023】[0023]

【表1】 表2は、図3に示す断面を持つ一段だけの凹凸構造テフ
ロン試料を切削加工で作成し、その表面の蒸留水に対す
る接触角を同様にして測定した比較例を示したものであ
る。実施例と比べて接触角θが小さく、十分な撥水性が
得られていない。
[Table 1] Table 2 shows a comparative example in which a Teflon sample having a concavo-convex structure having only one step having the cross section shown in FIG. 3 was prepared by cutting, and the contact angle of the surface to distilled water was measured in the same manner. The contact angle θ is small as compared with the examples, and sufficient water repellency is not obtained.

【0024】[0024]

【表2】 〔電気めっきによる実施例〕つぎに、電気めっきにより
作成した試料について説明する。この試料は、亜鉛めっ
き処理で、亜鉛イオンを含む電解質溶液中に0.5〜2
g/リットルのポリヒドロキシスチレンアミノメチル化
物を酢酸中和して混合し、陰極をなす金属板上に亜鉛と
ポリマーの複合体を共折させたものである。ポリマーの
アミノ化度を0.3〜1.0にし、複合体中にポリマー
を0.01〜0.6重量パーセント混入させることによ
って、めっき表面は10〜100μmの凹凸のなかに2
〜5μmの針状構造をもつ多段凹凸構造となる。水−メ
タノール混合溶液(体積比50:50)50ccにフッ
素化モノアルキルフォスフェート(CF3 (CF2 7
CH2 CH2 OPO(OH)2 )1gを溶解して、これ
にめっき処理した試験片を浸せきすることで表面をフッ
素コーティングし、その表面の蒸留水に対する接触角を
測定したところ、接触角140度〜160度の高撥水表
面が得られた。
[Table 2] [Example by Electroplating] Next, a sample prepared by electroplating will be described. This sample was galvanized to 0.5-2 in an electrolyte solution containing zinc ions.
A polyhydroxystyrene aminomethylated product (g / l) was neutralized with acetic acid and mixed, and a composite of zinc and polymer was co-folded on a metal plate forming a cathode. By setting the amination degree of the polymer to 0.3 to 1.0 and mixing the polymer into the composite in an amount of 0.01 to 0.6% by weight, the plating surface has unevenness of 10 to 100 μm.
It becomes a multi-step concavo-convex structure having a needle-like structure of ˜5 μm. Fluorinated monoalkyl phosphate (CF 3 (CF 2 ) 7 was added to 50 cc of water-methanol mixed solution (volume ratio 50:50).
CH 2 CH 2 OPO (OH) 2 ) (1 g) was dissolved, and the surface of the test piece plated with this was immersed in fluorine to coat the surface with fluorine, and the contact angle of the surface with distilled water was measured. A highly water-repellent surface having a degree of up to 160 degrees was obtained.

【0025】前述の亜鉛めっき処理で、電解質溶液中に
ポリヒドロキシスチレンアミノメチル化物を含有させな
い場合には陰極の金属板表面は平らな亜鉛めっき表面と
なるが、比較例としてその表面を同様にフッ素コーティ
ングし、その表面の蒸留水に対する接触角を測定したと
ころ接触角は110度〜120度であった。
In the above-mentioned galvanizing treatment, when the polyhydroxystyrene aminomethylated product is not contained in the electrolyte solution, the surface of the metal plate of the cathode becomes a flat galvanized surface. When the coating was performed and the contact angle of the surface with distilled water was measured, the contact angle was 110 to 120 degrees.

【0026】〔融液成長による実施例〕図5(a)およ
び(b)はアルキルケテンダイマーおよびジアルキルケ
トンの混合物を用いた試料の製法の模式図および試料を
示す図である。この試料は、アルキルケテンダイマーを
撥水剤の母剤としジアルキルケトンを補助剤として、融
液から冷却固化されることにより得られたものである。
[Example by Melt Growth] FIGS. 5 (a) and 5 (b) are a schematic view of a method for producing a sample using a mixture of an alkyl ketene dimer and a dialkyl ketone and a diagram showing the sample. This sample was obtained by cooling and solidifying from a melt using an alkyl ketene dimer as a base material of a water repellent agent and a dialkyl ketone as an auxiliary agent.

【0027】すなわち、トルエンを溶媒として、ステア
リン酸クロライド(東京化成(株)製、純度93.4
%)にトリエチルアミン(東京化成(株)製、純度99
%)を反応温度50℃の条件下で作用させ、反応が完結
した後、反応副生成物であるトリエチルアミン塩酸塩を
熱時ろ過することで除去し、トルエンを減圧下で蒸発さ
せることにより分子量533であるアルキルケテンダイ
マーが得られる。このアルキルケテンダイマーをn−ヘ
キサン(関東化学(株)製、特級)から再結晶を行うこ
とで純度95%以上、融点65〜67℃のアルキルケテ
ンダイマーが得られる。補助剤のジアルキルケトンに
は、ステアロン(東京化成(株)製、純度約80%)を
n−ヘキサンから再結晶して使用した。融点は86〜8
7℃である。
That is, stearic acid chloride (manufactured by Tokyo Kasei Co., Ltd., purity 93.4) using toluene as a solvent.
%) Triethylamine (manufactured by Tokyo Kasei Co., Ltd., purity 99)
%) Under the condition of a reaction temperature of 50 ° C., and after the reaction is completed, the reaction by-product triethylamine hydrochloride is removed by hot filtration, and toluene is evaporated under reduced pressure to give a molecular weight of 533. An alkyl ketene dimer is obtained. This alkylketene dimer is recrystallized from n-hexane (Kanto Chemical Co., Inc., special grade) to obtain an alkylketene dimer having a purity of 95% or more and a melting point of 65 to 67 ° C. As dialkyl ketone as an auxiliary agent, stearone (manufactured by Tokyo Kasei Co., Ltd., purity about 80%) was recrystallized from n-hexane and used. Melting point is 86-8
It is 7 ° C.

【0028】撥水材としてはアルキルケテンダイマーと
ジアルキルケトンの混合物を用いた。図5中、6は撥水
材を融解させるために、撥水材の融点以上まで加熱する
ことのできる加熱装置である。7は撥水材の支持体とし
て用いたガラス板(厚さ1mm、幅26mm、長さ76
mm)である。8は撥水材である。9は撥水材を加熱融
解後、10℃/hrで冷却した試験片である。このよう
に、撥水材を一度融解させた後に冷却固化させた場合、
その表面形状は、走査型電子顕微鏡(日立製S400
0)による観察では、直径10〜100μmの比較的大
きなスケールの凹凸と、さらにその凹凸構造自身が長さ
1〜10μmの比較的小さな鱗片状の凹凸から成ってい
ることがわかった。
As the water repellent material, a mixture of alkyl ketene dimer and dialkyl ketone was used. In FIG. 5, reference numeral 6 denotes a heating device capable of heating the water repellent material up to the melting point or higher in order to melt the water repellent material. 7 is a glass plate used as a support for the water repellent material (thickness 1 mm, width 26 mm, length 76
mm). 8 is a water repellent material. Reference numeral 9 represents a test piece obtained by heating and melting the water repellent material and then cooling it at 10 ° C./hr. In this way, when the water repellent material is once melted and then cooled and solidified,
The surface shape is a scanning electron microscope (Hitachi S400
The observation by (0) revealed that the unevenness of a relatively large scale having a diameter of 10 to 100 μm and the uneven structure itself consisted of relatively small scale-like unevenness having a length of 1 to 10 μm.

【0029】このようにして作成した多段凹凸表面を持
つ撥水材の補助材であるジアルキルケトンの混合比を変
化させて、その表面の水の接触角の測定と表面形状の観
察を行った。
The contact angle of water on the surface was measured and the surface shape was observed by changing the mixing ratio of the dialkyl ketone, which is an auxiliary material of the water-repellent material having the multi-step uneven surface thus formed.

【0030】撥水材であるアルキルケテンダイマーとジ
アルキルケトン混合物の混合比と、そのときの表面での
蒸留水の接触角、およびその表面形状の関係を表3に示
す。これによると混合比が95:5、90:10、8
5:15、80:20で接触角153°〜160°が得
られ、表面における凹凸も大きい周期で10〜100μ
m、小さい周期で10〜1μmの良好な段が形成された
多段凹凸構造が得られている。また、混合比85:15
のものについては、0.5mm〜0.8mmのさらに大
きな周期の凹凸が光学顕微鏡によって観察された。
Table 3 shows the relationship between the mixing ratio of the alkyl ketene dimer as the water repellent and the dialkyl ketone mixture, the contact angle of distilled water on the surface at that time, and the surface shape. According to this, the mixing ratio is 95: 5, 90:10, 8
A contact angle of 153 ° to 160 ° was obtained at 5:15 and 80:20, and unevenness on the surface was 10 to 100 μ at a large cycle.
m, a multi-step concavo-convex structure in which good steps of 10 to 1 μm are formed with a small cycle is obtained. Also, the mixing ratio is 85:15.
As for the sample No. 1, unevenness with a larger period of 0.5 mm to 0.8 mm was observed by an optical microscope.

【0031】[0031]

【表3】 この試料に対する比較例として、試験片9の表面をカッ
ターナイフで削り、その表面を走査型電子顕微鏡(日立
製、S4000)で観察したところ凹凸構造は観察され
なかった。この凹凸構造を有さない試験片表面での水の
接触角を光学式接触角計(協和界面科学(株)製、CA
−A型)で測定したところ100〜115°であった。
[Table 3] As a comparative example for this sample, when the surface of the test piece 9 was ground with a cutter knife and the surface was observed with a scanning electron microscope (S4000, manufactured by Hitachi), no uneven structure was observed. An optical contact angle meter (Kyowa Interface Science Co., Ltd., CA
It was 100 to 115 ° as measured by (A type).

【0032】図6はアルキルケテンダイマーによる〔外
1〕の超撥水表面を示す図(走査型電子顕微鏡:SEM
写真)図7はその面上の液滴を示したもので、液滴の形
状は完全に球状を保ち撥水性にすぐれているこがわか
る。図8はアルキルケテンダイマーによる切り出し平滑
面を示す図、図9はその面上の液滴を示したもので、
〔外2〕と低く、そのために液滴の形状は半球状とな
り、撥水性の悪さがわかる。
FIG. 6 is a view showing a super water-repellent surface of [External 1] formed by an alkyl ketene dimer (scanning electron microscope: SEM).
(Photo) Figure 7 shows the droplets on the surface. It can be seen that the shape of the droplets is perfectly spherical and has excellent water repellency. FIG. 8 is a view showing a smooth surface cut out by an alkyl ketene dimer, and FIG. 9 shows droplets on the surface.
It is as low as [External 2], and therefore the shape of the droplet is hemispherical, and the poor water repellency can be seen.

【0033】[0033]

【外1】 [Outer 1]

【0034】[0034]

【外2】 〔レプリカによる実施例〕次に、試験片9の型を酢酸ビ
ニル樹脂エマルジョン系接着剤を用いて作成し、その構
造を転写した表面での接触角の測定を行った。その試料
は、30ccのビーカに酢酸ビニル樹脂エマルジョン系
接着剤を20cc入れ、その中に蒸留水の接触角が16
0°〜174°である試験片9を投入し、20トール減
圧下で脱気処理を10分間行い、常圧に戻してから酢酸
ビニル樹脂エマルジョン系接着剤を固化させた。樹脂が
完全に固化した後、試験片9のガラス面と撥水材の間を
カッターナイフを用いて切り放し、固化した樹脂に残り
付着している撥水材は40〜50℃のクロロホルムにて
手早く洗い流した。これは固化した樹脂を80℃まで加
熱して樹脂表面に残った撥水材を溶かし出してもよい。
このようにしてできた、試験片9とは逆の凹凸構造を持
つ試験片の表面を走査型電子顕微鏡(日立製、S400
0)を用いて観察したところ、その多段の凹凸構造はか
なり細部まで転写されていた。この逆の凹凸表面構造を
持つ試験片表面と蒸留水の間の接触角を光学式接触角計
(協和界面科学(株)製、CA−A型)で測定したとこ
ろ130〜140°であった。
[Outside 2] [Example by Replica] Next, a mold of the test piece 9 was prepared using a vinyl acetate resin emulsion adhesive, and the contact angle on the surface to which the structure was transferred was measured. For the sample, 20 cc of vinyl acetate resin emulsion adhesive was placed in a 30 cc beaker, and the contact angle of distilled water was 16
A test piece 9 having a temperature of 0 ° to 174 ° was put in, deaeration treatment was performed under a reduced pressure of 20 Torr for 10 minutes, the pressure was returned to normal pressure, and then the vinyl acetate resin emulsion-based adhesive was solidified. After the resin has completely solidified, the gap between the glass surface of the test piece 9 and the water repellent material is cut off with a cutter knife, and the water repellent material remaining on the solidified resin is quickly washed with chloroform at 40 to 50 ° C. Washed away. For this, the solidified resin may be heated to 80 ° C. to dissolve out the water repellent material remaining on the resin surface.
The surface of the thus-formed test piece having a concavo-convex structure opposite to that of the test piece 9 is scanned with a scanning electron microscope (Hitachi, S400
0), the multi-step concavo-convex structure was considerably transferred in detail. The contact angle between the surface of the test piece having this concavo-convex surface structure and distilled water was measured by an optical contact angle meter (CA-A type, manufactured by Kyowa Interface Science Co., Ltd.) and found to be 130 to 140 °. .

【0035】〔結晶析出による実施例〕図10(a)お
よび(b)は二種のジアルキルケトンの混合物を用いた
試料の製法を示す模式図および試料を示す図である。こ
の試料は、撥水材として分子量の異なる二種類のジアル
キルケトンを用いて溶液から結晶を析出させたものであ
る。
[Example by Crystal Precipitation] FIGS. 10 (a) and 10 (b) are a schematic diagram showing a method for producing a sample using a mixture of two kinds of dialkyl ketones and a diagram showing the sample. This sample is prepared by precipitating crystals from a solution using two kinds of dialkyl ketones having different molecular weights as a water repellent material.

【0036】撥水材としてステアロン(東京化成
(株)、純度80%)とパルミトン(東京化成(株)、
純度91%以上)の混合物を用いたもので、その混合比
は表4に示す。撥水材は0.5gをクロロホルム80c
cに溶かし、シャーレ10に入れる。また、試験片を得
るためにガラス板11をシャーレ10の底におく。この
状態から溶媒であるクロロホルムを12時間かけて蒸発
させて撥水材の結晶を析出させることで、試験片12を
得る。この試験片12の表面を走査型電子顕微鏡(日立
製、S4000)により観察したところ、試験片12の
表面構造は、直径10〜50μmの比較的大きな凹凸構
造から成っていることがわかった。また、この凹凸構造
自体も大きさ1μm程度の鱗片状の結晶の集まりである
ことがわかった。このようにしてできた多段凹凸構造を
持つジアルキルケトン系撥水材の表面での蒸留水の接触
角を光学式接触角計(協和界面科学(株)製、CA−A
型)により測定した。
As water repellent materials, stearone (Tokyo Kasei Co., Ltd., purity 80%) and palmitone (Tokyo Kasei Co., Ltd.)
A mixture having a purity of 91% or more) was used, and the mixing ratio is shown in Table 4. 0.5g of water repellent material is 80c of chloroform
Dissolve in c and put in a petri dish 10. Further, the glass plate 11 is placed on the bottom of the petri dish 10 to obtain a test piece. Chloroform as a solvent is evaporated from this state for 12 hours to precipitate crystals of the water repellent material, thereby obtaining a test piece 12. When the surface of the test piece 12 was observed with a scanning electron microscope (S4000, manufactured by Hitachi), it was found that the surface structure of the test piece 12 was composed of a relatively large uneven structure having a diameter of 10 to 50 μm. It was also found that this uneven structure itself is a collection of scale-like crystals having a size of about 1 μm. The contact angle of distilled water on the surface of the dialkylketone-based water repellent material having a multi-step concavo-convex structure thus formed is measured by an optical contact angle meter (Kyowa Interface Science Co., Ltd., CA-A).
Type).

【0037】[0037]

【表4】 これによると混合比が50:50および20:80で接
触角156°および145°が得られ、表面における凹
凸も大きい周期で10〜50μm、小さい周期で10μ
m未満の良好な段が形成された多段凹凸構造が得られて
いる。
[Table 4] According to this, a contact angle of 156 ° and 145 ° was obtained at a mixing ratio of 50:50 and 20:80, and unevenness on the surface was 10 to 50 μm in a large cycle and 10 μ in a small cycle.
A multi-step concavo-convex structure in which good steps of less than m are formed is obtained.

【0038】この試料に対する比較例として、試験片1
2の表面をカッターナイフで削り、その表面を走査型電
子顕微鏡(日立製、S4000)で観察したところ、凹
凸構造は観察されなかった。この凹凸構造を有さない試
験片表面での水の接触角を光学式接触角計(協和界面科
学(株)製、CA−A型)で測定したところ、100〜
110°であった。
As a comparative example for this sample, test piece 1
When the surface of No. 2 was scraped with a cutter knife and the surface was observed with a scanning electron microscope (S4000, manufactured by Hitachi), no uneven structure was observed. When the contact angle of water on the surface of the test piece having no uneven structure was measured with an optical contact angle meter (CA-A type manufactured by Kyowa Interface Science Co., Ltd.), it was 100-
It was 110 °.

【0039】つぎに、前述した分子吸着を利用した表面
積増倍因子の測定法により、表4中の混合比100:0
の試料と混合比50:50の試料について表面積増倍因
子を測定した。前者の試料は高撥水の得られていない平
滑表面であり、後者の試料は高撥水を実現した多段凹凸
構造表面である。
Next, the mixing ratio of 100: 0 in Table 4 was measured by the above-mentioned measuring method of the surface area multiplication factor utilizing the molecular adsorption.
The surface area multiplication factor was measured for the sample of No. 1 and the sample of the mixing ratio of 50:50. The former sample is a smooth surface where high water repellency is not obtained, and the latter sample is a multi-step concavo-convex structure surface which realizes high water repellency.

【0040】2cm×2cmに切断した試験試料20枚
をサンプルセルに封入し、ガス吸着量測定装置(湯浅ア
イオニクス(株)製オートソーブ−1、クリプトンガス
使用)を用い実表面積を測定した。試験試料には片面に
のみジアルキルケトンが塗られており、他の面はガラス
面である。ガスの総吸着量からガラス面への吸着量分を
差し引き、ジアルキルケトン総切り出し面積80cm2
あたりの実表面積を測定した結果を表5に示す。また、
そこから計算される表面積増倍因子も同表中に示してあ
る。
Twenty test samples cut into 2 cm × 2 cm were enclosed in a sample cell, and the actual surface area was measured using a gas adsorption amount measuring device (Yuasa Ionics Co., Ltd., Autosorb-1, using krypton gas). The test sample is coated with dialkyl ketone on only one side and the other side is glass. Subtract the amount adsorbed on the glass surface from the total amount of adsorbed gas, and cut out the total area of dialkyl ketone 80 cm 2
Table 5 shows the results of measuring the actual surface area of each area. Also,
The surface area multiplication factor calculated from it is also shown in the table.

【0041】これによると混合比100:0の試料で
は、実表面積103、表面積増倍因子1.3であるのに
対し、混合比50:50の試料では実表面積563、表
面積増倍因子7.0を示した。
According to this, the sample having a mixing ratio of 100: 0 has an actual surface area of 103 and a surface area multiplication factor of 1.3, whereas the sample having a mixing ratio of 50:50 has an actual surface area of 563 and a surface area multiplication factor of 7. 0 was shown.

【0042】図11(a)および(b)はジアルキルケ
トン表面上の液滴を示したもので、(a)に示す平滑表
面の場合は接触角104°で液滴の形状は半球状となる
のに対し(b)に示す多段凹凸表面の場合は、接触角1
53°でほぼ完全な球状になっている。図12は図11
(b)に示した多段凹凸構造をとったジアルキルケトン
の表面の状態を走査型電子顕微鏡(SEM)で観察した
図である。
FIGS. 11 (a) and 11 (b) show droplets on the surface of the dialkyl ketone. In the case of the smooth surface shown in FIG. 11 (a), the droplets are hemispherical at a contact angle of 104 °. On the other hand, in the case of the multi-level uneven surface shown in (b), the contact angle is 1
At 53 °, it is almost completely spherical. 12 is shown in FIG.
It is the figure which observed the state of the surface of the dialkyl ketone which took the multi-step concavo-convex structure shown in (b) with a scanning electron microscope (SEM).

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【発明の効果】以上説明したように本発明によれば、固
体表面に大きい周期の凹凸構造および小さい周期の凹凸
構造を形成して多段凹凸構造にすることにより、雨具、
台所用品、衛生品、その他撥水を要求される機材、器
具、および産業用品の撥水性をさらに向上させることが
できる効果がある。
As described above, according to the present invention, a rain gear is formed by forming a large-period concave-convex structure and a small-period concave-convex structure on a solid surface to form a multi-stage concave-convex structure.
There is an effect that the water repellency of kitchen utensils, hygiene products, other equipment, appliances, and industrial products that require water repellency can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例における機械加工により形成した
多段凹凸構造の断面を示す図。
FIG. 1 is a view showing a cross section of a multi-step concavo-convex structure formed by machining in an example of the present invention.

【図2】本発明実施例における機械加工により形成した
多段凹凸構造の表面の状態を示す斜視図。
FIG. 2 is a perspective view showing a state of a surface of a multi-step concavo-convex structure formed by machining in an example of the present invention.

【図3】比較例に使用した一段凹凸構造の断面を示す
図。
FIG. 3 is a view showing a cross section of a one-step uneven structure used in a comparative example.

【図4】(a)および(b)は接触角測定装置の要部の
構成および接触角を示す図。
4A and 4B are diagrams showing a configuration and a contact angle of a main part of a contact angle measuring device.

【図5】(a)および(b)はアルキルケテンダイマー
およびジアルキルケトンの混合物を用いた試料の製法を
示す模式図および試料を示す図。
5 (a) and 5 (b) are a schematic view showing a method for producing a sample using a mixture of an alkyl ketene dimer and a dialkyl ketone, and a diagram showing the sample.

【図6】アルキルケテンダイマーによる超撥水表面を示
す図およびその面上の液滴を示す図。
FIG. 6 is a diagram showing a super water-repellent surface by an alkyl ketene dimer and a diagram showing droplets on the surface.

【図7】アルキルケテンダイマーによる超撥水表面上の
液滴を示す図。
FIG. 7 is a diagram showing droplets on a super water repellent surface formed by an alkyl ketene dimer.

【図8】アルキルケテンダイマーによる切り出し平滑面
を示す図。
FIG. 8 is a view showing a smooth surface cut out by an alkyl ketene dimer.

【図9】アルキルケテンダイマーによる切出し平滑面上
の液滴を示す図。
FIG. 9 is a diagram showing droplets on a smooth surface cut out by an alkyl ketene dimer.

【図10】(a)および(b)は二種のジアルキルケト
ンの混合物を用いた試料の製法を示す模式図および試験
片を示す図。
10 (a) and 10 (b) are a schematic view showing a method for producing a sample using a mixture of two kinds of dialkyl ketones and a view showing a test piece.

【図11】(a)および(b)はジアルキルケトンによ
る撥水表面上の液滴の状態を示す図。
11 (a) and 11 (b) are diagrams showing a state of droplets on a water-repellent surface formed by a dialkyl ketone.

【図12】ジアルキルケトンによる高撥水表面を示す
図。
FIG. 12 is a view showing a highly water-repellent surface formed by dialkyl ketone.

【符号の説明】[Explanation of symbols]

1 試験試料 2 試料台 3 シリンジ 4 液滴 6 加熱装置 7、11 ガラス板 8 アルキルケテンダイマーおよびジアルキルケント
混合物 9、12 試験片 10 シャーレ A 大きい周期の凹凸構造 B 小さい周期の凹凸構造
1 Test sample 2 Sample stage 3 Syringe 4 Droplet 6 Heating device 7, 11 Glass plate 8 Alkyl ketene dimer and dialkyl Kent mixture 9, 12 Test piece 10 Petri dish A Large irregular structure B Small irregular structure

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月16日[Submission date] June 16, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例における機械加工により形成した
多段凹凸構造の断面を示す図。
FIG. 1 is a view showing a cross section of a multi-step concavo-convex structure formed by machining in an example of the present invention.

【図2】本発明実施例における機械加工により形成した
多段凹凸構造の表面の状態を示す斜視図。
FIG. 2 is a perspective view showing a state of a surface of a multi-step concavo-convex structure formed by machining in an example of the present invention.

【図3】比較例に使用した一段凹凸構造の断面を示す
図。
FIG. 3 is a view showing a cross section of a one-step uneven structure used in a comparative example.

【図4】(a)および(b)は接触角測定装置の要部の
構成および接触角を示す図。
4A and 4B are diagrams showing a configuration and a contact angle of a main part of a contact angle measuring device.

【図5】(a)および(b)はアルキルケテンダイマー
およびジアルキルケトンの混合物を用いた試料の製法を
示す模式図および試料を示す図。
5 (a) and 5 (b) are a schematic view showing a method for producing a sample using a mixture of an alkyl ketene dimer and a dialkyl ketone, and a diagram showing the sample.

【図6】アルキルケテンダイマーによる超撥水表面結晶
構造を示すSEM写真
FIG. 6: Super water-repellent surface crystal by alkyl ketene dimer
The SEM photograph which shows a structure .

【図7】アルキルケテンダイマーによる超撥水表面上の
液滴を示す図。
FIG. 7 is a diagram showing droplets on a super water repellent surface formed by an alkyl ketene dimer.

【図8】アルキルケテンダイマーによる切り出し平滑面
を示す図。
FIG. 8 is a view showing a smooth surface cut out by an alkyl ketene dimer.

【図9】アルキルケテンダイマーによる切出し平滑面上
の液滴を示す図。
FIG. 9 is a diagram showing droplets on a smooth surface cut out by an alkyl ketene dimer.

【図10】(a)および(b)は二種のジアルキルケト
ンの混合物を用いた試料の製法を示す模式図および試験
片を示す図。
10 (a) and 10 (b) are a schematic view showing a method for producing a sample using a mixture of two kinds of dialkyl ketones and a view showing a test piece.

【図11】(a)および(b)はジアルキルケトンによ
る撥水表面上の液滴の状態を示す図。
11 (a) and 11 (b) are diagrams showing a state of droplets on a water-repellent surface formed by a dialkyl ketone.

【図12】ジアルキルケトンによる高撥水表面結晶構造
を示すSEM写真
FIG. 12: Crystal structure of highly water-repellent surface by dialkyl ketone
SEM photograph showing .

【符号の説明】 1 試験試料 2 試料台 3 シリンジ 4 液滴 6 加熱装置 7、11 ガラス板 8 アルキルケテンダイマーおよびジアルキルケント
混合物 9、12 試験片 10 シャーレ A 大きい周期の凹凸構造 B 小さい周期の凹凸構造
[Explanation of Codes] 1 Test sample 2 Sample stage 3 Syringe 4 Droplet 6 Heating device 7, 11 Glass plate 8 Alkyl ketene dimer and dialkyl kent mixture 9, 12 Specimen 10 Petri dish A Large irregularities B small irregularities Construction

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻井 薫 栃木県宇都宮市陽東1丁目11−23 直井ハ イツ405号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kaoru Tsujii 1-11-23 Yoto, Utsunomiya City, Tochigi Prefecture Naoi Heights 405

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表面の少なくとも一部に、大きい周期の
凹凸構造が形成されその凹凸構造が前記周期より小さい
周期の凹凸構造を含む多段凹凸構造を有し、その表面積
増倍因子が5以上である撥水表面を有する固体。
1. An uneven structure having a large period is formed on at least a part of the surface, and the uneven structure has a multi-step uneven structure including an uneven structure having a period smaller than the period, and the surface area multiplication factor is 5 or more. A solid with a water repellent surface.
【請求項2】 前記多段凹凸構造は、その周期が1mm
以下10nm以上である請求項1記載の固体。
2. The multi-step concavo-convex structure has a period of 1 mm.
The solid according to claim 1, which has a thickness of 10 nm or more.
【請求項3】 固体表面に機械加工を施すことにより、
請求項1または2記載の撥水表面を有する固体を生成す
る方法。
3. By subjecting a solid surface to machining,
A method for producing a solid having a water repellent surface according to claim 1.
【請求項4】 固体表面に化学反応処理を施すことによ
り、請求項1または2記載の撥水表面を有する固体を生
成する方法。
4. A method for producing a solid having a water-repellent surface according to claim 1 or 2, by subjecting the surface of the solid to a chemical reaction.
【請求項5】 前記化学反応処理は電気めっきである請
求項4記載の撥水表面を有する固体を生成する方法。
5. The method for producing a solid having a water-repellent surface according to claim 4, wherein the chemical reaction treatment is electroplating.
【請求項6】 固体表面に結晶を析出させあるいは粒子
を凝集させることにより、請求項1または2記載の撥水
表面を有する固体を生成する方法。
6. A method for producing a solid having a water repellent surface according to claim 1 or 2, by precipitating crystals or aggregating particles on the surface of the solid.
JP33642493A 1993-12-28 1993-12-28 Solid having water-repellent surface and method for producing the same Expired - Fee Related JP3487888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33642493A JP3487888B2 (en) 1993-12-28 1993-12-28 Solid having water-repellent surface and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33642493A JP3487888B2 (en) 1993-12-28 1993-12-28 Solid having water-repellent surface and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07197017A true JPH07197017A (en) 1995-08-01
JP3487888B2 JP3487888B2 (en) 2004-01-19

Family

ID=18298992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33642493A Expired - Fee Related JP3487888B2 (en) 1993-12-28 1993-12-28 Solid having water-repellent surface and method for producing the same

Country Status (1)

Country Link
JP (1) JP3487888B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058415A1 (en) * 1999-03-25 2000-10-05 Wilhelm Barthlott Method and device for the loss-free transport of liquids
JP2005113110A (en) * 2003-09-17 2005-04-28 Keio Gijuku Surface treatment agent, treated material, and method for treating surface
JP2007507405A (en) * 2003-09-25 2007-03-29 サグレス ディスカバリー, インコーポレイテッド Fractal-forming alkyl ketene dimers for integral membrane protein crystal growth
US7455045B2 (en) 2006-08-01 2008-11-25 Aisan Kogyo Kabushiki Kaisha Fluid flow control device for internal combustion engine
JP2011518006A (en) * 2008-04-22 2011-06-23 ザ プロクター アンド ギャンブル カンパニー Disposable articles containing nanostructure-forming materials
JP2012032655A (en) * 2010-07-30 2012-02-16 Fujimori Sangyo Kk Laminate film with hologram, method for manufacturing the same and container using the same
JP2013544297A (en) * 2010-10-28 2013-12-12 スリーエム イノベイティブ プロパティズ カンパニー Super hydrophobic film
JP2018532897A (en) * 2015-10-05 2018-11-08 ビーブイダブリュ ホールディング エージー Textiles with microstructured surface and clothing comprising the same
JP2019073632A (en) * 2017-10-17 2019-05-16 住友ベークライト株式会社 Liquid-repellent film, and method for producing liquid-repellent film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6467866B2 (en) * 2014-10-29 2019-02-13 東洋製罐グループホールディングス株式会社 Plastic molding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058415A1 (en) * 1999-03-25 2000-10-05 Wilhelm Barthlott Method and device for the loss-free transport of liquids
JP2005113110A (en) * 2003-09-17 2005-04-28 Keio Gijuku Surface treatment agent, treated material, and method for treating surface
JP4635217B2 (en) * 2003-09-17 2011-02-23 学校法人慶應義塾 Surface treatment agent and material, and surface treatment method
JP2007507405A (en) * 2003-09-25 2007-03-29 サグレス ディスカバリー, インコーポレイテッド Fractal-forming alkyl ketene dimers for integral membrane protein crystal growth
US7455045B2 (en) 2006-08-01 2008-11-25 Aisan Kogyo Kabushiki Kaisha Fluid flow control device for internal combustion engine
US10071003B2 (en) 2008-04-22 2018-09-11 The Procter & Gamble Company Disposable article including a nanostructure forming material
US8870839B2 (en) 2008-04-22 2014-10-28 The Procter & Gamble Company Disposable article including a nanostructure forming material
JP2011518006A (en) * 2008-04-22 2011-06-23 ザ プロクター アンド ギャンブル カンパニー Disposable articles containing nanostructure-forming materials
JP2012032655A (en) * 2010-07-30 2012-02-16 Fujimori Sangyo Kk Laminate film with hologram, method for manufacturing the same and container using the same
JP2013544297A (en) * 2010-10-28 2013-12-12 スリーエム イノベイティブ プロパティズ カンパニー Super hydrophobic film
JP2018532897A (en) * 2015-10-05 2018-11-08 ビーブイダブリュ ホールディング エージー Textiles with microstructured surface and clothing comprising the same
US11613461B2 (en) 2015-10-05 2023-03-28 Bvw Holding Ag Textiles having a microstructured surface and garments comprising the same
JP2019073632A (en) * 2017-10-17 2019-05-16 住友ベークライト株式会社 Liquid-repellent film, and method for producing liquid-repellent film

Also Published As

Publication number Publication date
JP3487888B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
Song et al. Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method
Yu et al. Surface gradient material: from superhydrophobicity to superhydrophilicity
Kumar et al. Patterned self-assembled monolayers and meso-scale phenomena
Varshney et al. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process
Roach et al. Progess in superhydrophobic surface development
CN101544770B (en) Herstellung superhydrophober polymer
Jing et al. Frosting and defrosting on rigid superhydrohobic surface
Park et al. Transparent and superhydrophobic films prepared with polydimethylsiloxane-coated silica nanoparticles
Victor et al. A low-cost method to produce superhydrophobic polymer surfaces
Crawford et al. Superhydrophobic surfaces
JP3487888B2 (en) Solid having water-repellent surface and method for producing the same
Milella et al. Plasma nanostructuring of polymers: different routes to superhydrophobicity
Yuan et al. A novel fabrication of a superhydrophobic surface with highly similar hierarchical structure of the lotus leaf on a copper sheet
KR20140005854A (en) Hierarchically structured surfaces to control wetting characteristics
Sun et al. Electrochemical fabrication of superhydrophobic Zn surfaces
Hao et al. Design of submicron structures with superhydrophobic and oleophobic properties on zinc substrate
US10150140B2 (en) Superhydrophobic and self-cleaning substrate and a method of coating
JP2003529499A (en) Container with structured liquid-repellent and liquid-wettable subregions on the inner surface
Nikitin et al. Supercritical carbon dioxide: A reactive medium for chemical processes involving fluoropolymers
Laad et al. Fabrication techniques of superhydrophobic coatings: A comprehensive review
Hassel et al. Model systems with extreme aspect ratio, tunable geometry, and surface functionality for a quantitative investigation of the lotus effect
Liu et al. Temperature-dependent wetting characteristics of micro–nano-structured metal surface formed by femtosecond laser
Rasitha et al. Porous microcapsule-based regenerating superhydrophobic coating on 304L SS and its corrosion properties
Hu et al. Fabrication and wetting behaviour of micro/nanostructured mushroom-shaped silver pillar surface
Xu et al. Fabrication of flexible superhydrophobic biomimic surfaces

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20071031

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20081031

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees