JPH07194132A - Inverter facility - Google Patents

Inverter facility

Info

Publication number
JPH07194132A
JPH07194132A JP5335629A JP33562993A JPH07194132A JP H07194132 A JPH07194132 A JP H07194132A JP 5335629 A JP5335629 A JP 5335629A JP 33562993 A JP33562993 A JP 33562993A JP H07194132 A JPH07194132 A JP H07194132A
Authority
JP
Japan
Prior art keywords
voltage
inverter
zero
phase
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5335629A
Other languages
Japanese (ja)
Inventor
Satoo Hayade
聰雄 早出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5335629A priority Critical patent/JPH07194132A/en
Publication of JPH07194132A publication Critical patent/JPH07194132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Rectifiers (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

PURPOSE:To provide an inverter facility in which the malfunction of a protective device caused by the current and voltage of a high-order zero-phase harmonic component is prevented. CONSTITUTION:In an inverter facility provided with a plurality of PWM inverter devices 31 which are supplied with electric power from a distribution transformer, have low-voltage buses on their primary side, and supply their secondary-side outputs to such a load as the induction motor 41, etc., through connecting cables, the inverter devices 31 are connected to each other by connecting their metal sheathes MS of each phase of their secondary-side connecting cables 11R, 11S, 11T through insulated cables 12R, 12S, and 12T and grounded through a grounding resistor 13. The grounding resistor 13 suppresses the traveling of zero-phase harmonic currents or voltages contained in the secondary-side outputs of the inverter devices 31 as the malfunctioning current or voltage of protective relays on the primary side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数台のPWM形イン
バータ装置を低圧母線に接続したインバータ設備に係
り、特に高次零相高調波対策を施したインバータ設備に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter facility in which a plurality of PWM type inverter devices are connected to a low voltage bus bar, and more particularly to an inverter facility in which measures against high-order zero-phase harmonics are taken.

【0002】[0002]

【従来の技術】PWMインバータは、低次高調波を抑制
した交流出力によって誘導電動機等の負荷に供給できる
ため、交流電動機の電源にして騒音低減や高速応答制御
等に効果的となる。
2. Description of the Related Art Since a PWM inverter can supply a load such as an induction motor with an AC output in which low-order harmonics are suppressed, it can be used as a power source of the AC motor and effective for noise reduction and high-speed response control.

【0003】図4は、誘導電動機群を負荷とするインバ
ータ設備の配電系統を示す。配電用変圧器1で降圧され
た低圧母線2には多数のインバータ装置31〜3Nがフィ
ーダ結線され、各インバータ装置31〜3Nによって負荷
となる誘導電動機41〜4Nに可変電圧可変周波(VVV
F)の交流電力を供給して可変速運転を行う。
FIG. 4 shows a power distribution system of inverter equipment having an induction motor group as a load. A large number of inverter devices 3 1 to 3 N are feeder-connected to the low-voltage bus 2 stepped down by the distribution transformer 1, and a variable voltage is applied to the induction motors 4 1 to 4 N, which are loads by the inverter devices 3 1 to 3 N. Variable frequency (VVV
The AC power of F) is supplied to perform variable speed operation.

【0004】また、インバータ装置を介することなく、
低圧母線2から直接に誘導電動機5を運転する負荷構成
も設けられる。
Further, without passing through an inverter device,
A load arrangement is also provided to drive the induction motor 5 directly from the low voltage bus 2.

【0005】インバータ装置31〜3Nは、インバータ装
置31に代表して示すように、遮断器CBと交流リアク
トルACL及びフィルタFILを介してPWM形のVV
VFインバータINVに引き込み、インバータINVに
誘導電動機41の運転出力を得る。
The inverter devices 3 1 to 3 N , as represented by the inverter device 3 1 , represent a PWM type VV via a circuit breaker CB, an AC reactor ACL and a filter FIL.
It is drawn into the VF inverter INV and the operation output of the induction motor 4 1 is obtained in the inverter INV.

【0006】このような配電系統の保護手段として、イ
ンバータINVのフィーダ側に地絡過電流リレー(51
G)OCGが設けられる。また、低圧母線2には、三相
計器用変圧器GPTを介して地絡過電圧リレー(64)
OVG及び零相電圧リレー(V0)VZRが設けられ
る。
As a protection means for such a distribution system, a ground fault overcurrent relay (51
G) OCG is provided. Further, the low voltage bus 2 is connected to the ground fault overvoltage relay (64) via the transformer GPT for three-phase meters.
An OVG and zero phase voltage relay (V 0 ) VZR are provided.

【0007】[0007]

【発明が解決しようとする課題】低圧母線1から多数の
インバータ負荷及びその他の一般用負荷に配電する系統
において、PWM形インバータINVの負荷側には高次
零相高調波成分の電流・電圧が発生する。
In a system in which the low voltage bus bar 1 distributes a large number of inverter loads and other general loads, a current / voltage of a high-order zero-phase harmonic component is present on the load side of the PWM inverter INV. Occur.

【0008】この零相高調波成分は、PWM形インバー
タINVのキャリア(搬送波)周波数が高くなるほど零
相電流や零相電圧の増加として現れ、インバータの出力
段に設けられるフィルタでは除去しにくい。特に、最近
ではインバータを低騒音化するためにキャリア周波数を
高くする傾向にあり、零相高調波成分がますます高くな
ってきている。
This zero-phase harmonic component appears as an increase in zero-phase current and zero-phase voltage as the carrier frequency of the PWM inverter INV increases, and is difficult to remove with a filter provided at the output stage of the inverter. In particular, recently, there is a tendency to increase the carrier frequency in order to reduce the noise of the inverter, and the zero-phase harmonic component is becoming higher and higher.

【0009】上記の零相高調波電流・電圧は、配電母線
2側にも回り込みを起こし、地絡過電圧リレーOVGや
零相電圧リレーVZR及び地絡過電流リレーOCGの誤
動作を招く問題があった。これを以下に詳細に説明す
る。
The above-mentioned zero-phase harmonic current / voltage also spills over to the distribution bus 2 side, which causes a malfunction of the ground fault overvoltage relay OVG, the zero-phase voltage relay VZR, and the ground fault overcurrent relay OCG. This will be described in detail below.

【0010】インバータINVの負荷側に発生する高調
波零相電圧は、負荷側の接続ケーブルのキャパシタンス
及び誘導電動機IM内部の対地キャパシタンスを介して
大地を通り、配電系統に回り込む。
The harmonic zero-phase voltage generated on the load side of the inverter INV passes through the ground via the capacitance of the connection cable on the load side and the ground capacitance inside the induction motor IM, and then flows into the power distribution system.

【0011】この回り込みは、(1)抵抗接地系では接
地抵抗NGRを通って、(2)直接接地系では変圧器1
の二次中性点を通って、(3)非接地系ではインバータ
INVの一次側漂遊キャパシタンスを通って起きる。
This sneak is (1) through the ground resistance NGR in the resistance ground system, and (2) in the transformer 1 in the direct ground system.
(3) occurs in the ungrounded system through the primary side stray capacitance of the inverter INV.

【0012】この回り込みは、高調波電流・電圧がイン
バータINVに戻るという閉ループを構成して零相電流
を流し、この零相電流が接地抵抗NGRや漂遊キャパシ
タンスを通って電圧降下を起こし、これが地絡過電圧リ
レーOVGや零相電圧リレーVZRを動作させると共
に、インバータINVのフィーダの地絡過電流リレーO
CGを動作させてしまうことがある。
This sneak constitutes a closed loop in which the harmonic current / voltage returns to the inverter INV to flow a zero-phase current, and this zero-phase current causes a voltage drop through the ground resistance NGR and stray capacitance, which causes the grounding. In addition to operating the overvoltage relay OVG and the zero-phase voltage relay VZR, the ground fault overcurrent relay O of the feeder of the inverter INV is operated.
The CG may be operated.

【0013】これらの動作は、地絡が起きていないにも
拘わらず生ずるもので、誤動作になる。
These operations occur even though no ground fault has occurred, resulting in malfunctions.

【0014】本発明の目的は、高次零相高調波成分の電
流・電圧による保護装置の誤動作を防止したインバータ
設備を提供することにある。
It is an object of the present invention to provide inverter equipment which prevents malfunction of a protection device due to current / voltage of high-order zero-phase harmonic components.

【0015】[0015]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、配電用変圧器を電源とする低圧母線を一
次側とし、二次側出力を誘導電動機等の負荷に接続ケー
ブルを介して供給するPWM形インバータ装置を複数台
備えたインバータ設備において、前記各PWM形インバ
ータ装置は、それぞれ二次側接続ケーブルの各相のシー
スを互いに接続して接地抵抗を介して接地し、該接地抵
抗は前記二次側出力に含まれる零相高調波電流・電圧が
前記一次側の保護リレーの誤動作電流・電圧として回り
込むのを抑制する抵抗値にしたことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention uses a low-voltage bus that uses a distribution transformer as a power source as a primary side and a secondary side output as a connection cable to a load such as an induction motor. In the inverter equipment provided with a plurality of PWM type inverter devices to be supplied via each of the PWM type inverter devices, each of the PWM type inverter devices connects the sheaths of the respective phases of the secondary side connecting cables to each other and is grounded via a grounding resistance. The grounding resistance is set to a resistance value that suppresses the zero-phase harmonic current / voltage included in the secondary side output from flowing around as a malfunction current / voltage of the protection relay on the primary side.

【0016】また、本発明は、前記各PWM形インバー
タ別にかつ各高調波次数別に求める定電圧源から平均的
な電圧を算出し、各接続ケーブルの長さと単位容量から
平均的な容量を求め、これら平均的な電圧及び容量から
零相電流を求めて必要な前記接地抵抗の抵抗値を求める
ことを特徴とする。
According to the present invention, an average voltage is calculated from a constant voltage source obtained for each PWM inverter and each harmonic order, and an average capacitance is obtained from the length of each connecting cable and a unit capacity. It is characterized in that a zero-phase current is obtained from these average voltages and capacitances to obtain a necessary resistance value of the ground resistance.

【0017】[0017]

【作用】インバータ装置の二次側に現れる零相高調波電
流・電圧が接地系を介して一次側に回り込むのを接地抵
抗によって抑制し、一次側の保護リレーの誤動作を防止
する。
The ground resistance prevents the zero-phase harmonic current / voltage appearing on the secondary side of the inverter device from sneaking into the primary side through the ground system, and prevents malfunction of the protective relay on the primary side.

【0018】低圧母線に複数台のPWM形インバータ装
置が接続され、接地抵抗を設けたときの設備において、
インバータ装置の二次側から発生する高調波についての
等価回路は、図1に示すようになる。
In equipment in which a plurality of PWM type inverter devices are connected to the low voltage busbar and a ground resistance is provided,
An equivalent circuit for harmonics generated from the secondary side of the inverter device is as shown in FIG.

【0019】定電圧源E21〜E2MはM台のインバータの
二次側に現れるn次高調波の電圧源を示し、コンデンサ
21〜C2Mは各インバータと負荷を接続するケーブルが
持つ静電容量を示し、コンデンサC11〜C1Lは各インバ
ータの二次側の静電容量以外の静電容量を示し、抵抗C
VR1〜CVRMはケーブルシースと接地間に介挿する接
地抵抗を示す。
The constant voltage sources E 21 to E 2M represent voltage sources of nth harmonics appearing on the secondary side of the M inverters, and the capacitors C 21 to C 2M are static capacitors provided in a cable connecting each inverter to the load. Capacitors C 11 to C 1L represent capacitances other than the capacitance on the secondary side of each inverter, and the resistance C
VR 1 to CVR M represent ground resistances inserted between the cable sheath and the ground.

【0020】この等価回路から各高調波次数別に零相電
流が求められ、それぞれを重畳の理に基づき加算するこ
とにより零相電流が求められる。また、n次高調波電圧
が各インバータで異なるときは、二次側静電容量の重み
も加味して次のようにして平均的な電圧EnAVRを決定
し、このn次高調波電圧が全てのインバータに発生して
いることとして以下の式から算出する。
From this equivalent circuit, zero-phase currents are obtained for each harmonic order, and the zero-phase currents are obtained by adding them based on the principle of superposition. Further, when the nth harmonic voltage is different in each inverter, the average voltage EnAVR is determined in the following manner by taking the weight of the secondary side capacitance into consideration. It is calculated from the following formula that it is occurring in the inverter.

【0021】[0021]

【数1】 [Equation 1]

【0022】接地抵抗CVR1〜CVRMは、接続ケーブ
ルの単位長当たりに必要とする抵抗値CVR0を求めて
おき、接続ケーブルの長さに応じて各インバータの接地
抵抗を比例演算で求めことができる。例えば、ケーブル
が2倍の長さであれば1/2の抵抗値にする。このとき
の等価回路は図2に示す回路に集約される。
For the ground resistances CVR 1 to CVR M , the resistance value CVR 0 required per unit length of the connection cable is obtained in advance, and the ground resistance of each inverter is proportionally calculated according to the length of the connection cable. You can For example, if the cable is twice as long, the resistance value is halved. The equivalent circuit at this time is summarized in the circuit shown in FIG.

【0023】[0023]

【実施例】図3は、本発明の一実施例を示す要部構成図
であり、インバータ装置31と誘導電動機41のケーブル
接続部を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 is a schematic view of a main part of an embodiment of the present invention, showing a cable connecting part between an inverter device 3 1 and an induction motor 4 1 .

【0024】インバータ装置31のR,S,T相の出力
端と誘導電動機41の電源端は、3本の接続ケーブル1
R,11S,11Tによって接続される。各ケーブル1
R,11S,11TのメタルシースMSには編組線を芯
線とする絶縁ケーブル12R,12S,12Tの一端が接
続され、この絶縁ケーブルの他端は互いに接続されて接
地抵抗13を介して接地される。
The R, S, and T phase output terminals of the inverter device 3 1 and the power source terminal of the induction motor 4 1 have three connection cables 1
Connected by 1 R , 11 S and 11 T. Each cable 1
One end of an insulated cable 12 R , 12 S , 12 T having a braided wire as a core wire is connected to the metal sheath MS of 1 R , 11 S , 11 T , and the other ends of the insulated cables are connected to each other to form a ground resistance 13 Grounded through.

【0025】この接続構成によれば、インバータ装置3
1の出力に含まれる高調波電流・電圧は接続ケーブル1
R,11S,11Tの芯線とメタルシースMSとの間に
存在するキャパシタンス及び接地抵抗13を介して接地
側に流れる。
According to this connection configuration, the inverter device 3
Harmonic current and voltage contained in one of the output connection cable 1
The current flows to the ground side through the capacitance existing between the core wires of 1 R , 11 S and 11 T and the metal sheath MS and the ground resistance 13.

【0026】上記の接続構成は、他のインバータ装置3
2〜3Nと誘導電動機42〜4Nとのケーブル接続にも同様
に施される。
The above-mentioned connection configuration is applied to another inverter device 3
The same applies to the cable connection between the 2 to 3 N and the induction motor 42 to 4 N.

【0027】接地抵抗の抵抗値は、前述のことから、ケ
ーブルの三相分静電容量の単位容量当たりの直列抵抗値
を決め、そのケーブルの静電容量が2倍になるときは単
位当たりの抵抗を2個並列に接続する。
From the above, the resistance value of the ground resistance determines the series resistance value per unit capacity of the three-phase electrostatic capacity of the cable, and when the electrostatic capacity of the cable doubles, Connect two resistors in parallel.

【0028】上記の構成により、配電系統が抵抗接地系
では、接地抵抗NGRの電圧分担を二次側接地抵抗で軽
減し、また零相電流自体も軽減することによって地絡過
電圧リレーOVGと地絡過電流リレーOCGの誤動作を
防止することができる。また、零相電圧計VZRの振れ
を防止することができる。
With the above configuration, in the case where the power distribution system is the resistance ground system, the voltage sharing of the ground resistance NGR is reduced by the secondary side ground resistance, and the zero-phase current itself is also reduced to reduce the ground fault overvoltage relay OVG and the ground fault overcurrent. It is possible to prevent malfunction of the current relay OCG. Further, the swing of the zero-phase voltmeter VZR can be prevented.

【0029】直接接地系では、地絡過電圧リレーOVG
の誤動作の問題は無いが、次数の高い周波数成分におい
ては零相電圧が小さくともインピーダンスが小ささによ
っては零相電流が増加し、地絡過電流リレーOCGのフ
イルタ容量に問題が発生するが、接地抵抗の介挿によっ
て誤動作を防止できる。
In the direct grounding system, the ground fault overvoltage relay OVG
There is no problem of malfunction of the, but in the frequency component of high order, the zero-phase current increases due to the small impedance even if the zero-phase voltage is small, and there is a problem in the filter capacity of the ground fault overcurrent relay OCG, but it is grounded. A malfunction can be prevented by inserting a resistor.

【0030】非接地系では、インバータの一次側のケー
ブルの静電容量を経由して零相電流が流れると地絡過電
圧リレーOVGの誤動作の恐れがあるが、接地抵抗の介
挿によって誤動作を防止できる。地絡過電流リレーOC
Gについては零相電流が小さいため、あまり問題はな
い。
In a non-grounded system, if a zero-phase current flows through the electrostatic capacity of the cable on the primary side of the inverter, there is a risk of malfunction of the ground fault overvoltage relay OVG, but the malfunction is prevented by inserting a ground resistance. it can. Ground fault overcurrent relay OC
Regarding G, since the zero-phase current is small, there is not much problem.

【0031】[0031]

【発明の効果】以上のとおり、本発明によれば、各PW
M形インバータ装置は、それぞれ二次側接続ケーブルの
各相のシースを互いに接続して接地抵抗を介して接地
し、接地抵抗は二次側出力に含まれる零相高調波電流・
電圧が一次側の保護リレー側に回り込むのを抑制するよ
うにしたため、PWM形インバータのキャリアによる高
次零相高調波によって低圧母線側になるインバータ装置
の一次側の各種リレーが誤動作するのを防止できる効果
がある。
As described above, according to the present invention, each PW
The M-type inverter device connects the sheaths of the respective phases of the secondary side connecting cables to each other and grounds them via the grounding resistance, which is the zero phase harmonic current contained in the secondary side output.
Since the voltage has been suppressed from sneaking into the protection relay side on the primary side, it prevents malfunction of various relays on the primary side of the inverter device that are on the low voltage bus side due to high-order zero-phase harmonics generated by the PWM inverter carrier. There is an effect that can be done.

【0032】また、接地抵抗は、各PWM形インバータ
別にかつ各高調波次数別に求める定電圧源から平均的な
電圧を算出し、各接続ケーブルの長さと単位容量から平
均的な容量を求め、これら平均的な電圧及び容量から零
相電流を求めて必要な接地抵抗値を求めるため、ケーブ
ル長変更による接地抵抗の変更等を確実容易にする効果
がある。
The ground resistance is calculated by calculating the average voltage from the constant voltage source obtained for each PWM inverter and for each harmonic order, and the average capacitance is obtained from the length of each connecting cable and the unit capacitance. Since the zero-phase current is obtained from the average voltage and the capacitance to obtain the required ground resistance value, there is an effect that the ground resistance can be changed easily by changing the cable length.

【図面の簡単な説明】[Brief description of drawings]

【図1】複数台インバータにおける高調波電流・電圧に
関係する等価回路。
FIG. 1 is an equivalent circuit related to harmonic current and voltage in multiple inverters.

【図2】図1を集約した等価回路。FIG. 2 is an equivalent circuit in which FIG. 1 is integrated.

【図3】本発明の一実施例を示す要部構成図。FIG. 3 is a configuration diagram of main parts showing an embodiment of the present invention.

【図4】インバータ設備の配電系統図。FIG. 4 is a distribution system diagram of the inverter equipment.

【符号の説明】[Explanation of symbols]

1…配電用変圧器 2…低圧母線 31、3N…PWM形インバータ装置 41、4N…誘導電動機 11R、11S、11T…接続ケーブル 12R、12S、12T…絶縁ケーブル 13…接地抵抗 MS…メタルシース OCG…地絡過電流リレー OVG…地絡過電圧リレー VZR…零相電圧計1 ... distribution transformer 2 ... low bus 3 1, 3 N ... PWM-type inverter 4 1, 4 N ... induction motor 11 R, 11 S, 11 T ... connection cable 12 R, 12 S, 12 T ... insulated cable 13 ... Ground resistance MS ... Metal sheath OCG ... Ground fault overcurrent relay OVG ... Ground fault overvoltage relay VZR ... Zero-phase voltmeter

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02P 7/74 G Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display area H02P 7/74 G

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 配電用変圧器を電源とする低圧母線を一
次側とし、二次側出力を誘導電動機等の負荷に接続ケー
ブルを介して供給するPWM形インバータ装置を複数台
備えたインバータ設備において、前記各PWM形インバ
ータ装置は、それぞれ二次側接続ケーブルの各相のシー
スを互いに接続して接地抵抗を介して接地し、該接地抵
抗は前記二次側出力に含まれる零相高調波電流・電圧が
前記一次側の保護リレーの誤動作電流・電圧として回り
込むのを抑制する抵抗値にしたことを特徴とするインバ
ータ設備。
1. Inverter equipment comprising a plurality of PWM type inverter devices, each of which has a low-voltage bus, which uses a distribution transformer as a power source, as a primary side, and which supplies a secondary side output to a load such as an induction motor via a connecting cable. The PWM type inverter devices connect the sheaths of the respective phases of the secondary side connecting cables to each other and ground them via a grounding resistance, and the grounding resistance is a zero-phase harmonic current included in the secondary side output. Inverter equipment characterized in that the voltage is set to a resistance value that prevents the voltage from flowing around as a malfunctioning current / voltage of the protection relay on the primary side.
【請求項2】 前記各PWM形インバータ別にかつ各高
調波次数別に求める定電圧源から平均的な電圧を算出
し、各接続ケーブルの長さと単位容量から平均的な容量
を求め、これら平均的な電圧及び容量から零相電流を求
めて必要な前記接地抵抗の抵抗値を求めることを特徴と
するインバータ設備。
2. An average voltage is calculated from a constant voltage source obtained for each PWM inverter and for each harmonic order, and an average capacitance is obtained from the length of each connecting cable and a unit capacitance. Inverter equipment, wherein a zero-phase current is obtained from a voltage and a capacitance to obtain a necessary resistance value of the ground resistance.
JP5335629A 1993-12-28 1993-12-28 Inverter facility Pending JPH07194132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5335629A JPH07194132A (en) 1993-12-28 1993-12-28 Inverter facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5335629A JPH07194132A (en) 1993-12-28 1993-12-28 Inverter facility

Publications (1)

Publication Number Publication Date
JPH07194132A true JPH07194132A (en) 1995-07-28

Family

ID=18290735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5335629A Pending JPH07194132A (en) 1993-12-28 1993-12-28 Inverter facility

Country Status (1)

Country Link
JP (1) JPH07194132A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006353075A (en) * 2005-05-16 2006-12-28 Honda Motor Co Ltd Control circuit device
JP2010130704A (en) * 2008-11-25 2010-06-10 Mitsubishi Electric Corp Startup device for generator
JP2012108080A (en) * 2010-11-19 2012-06-07 Hasegawa Denki Kogyo Kk Ground fault detector for ungrounded ac circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006353075A (en) * 2005-05-16 2006-12-28 Honda Motor Co Ltd Control circuit device
JP4680042B2 (en) * 2005-05-16 2011-05-11 本田技研工業株式会社 Control circuit device
JP2010130704A (en) * 2008-11-25 2010-06-10 Mitsubishi Electric Corp Startup device for generator
JP2012108080A (en) * 2010-11-19 2012-06-07 Hasegawa Denki Kogyo Kk Ground fault detector for ungrounded ac circuit

Similar Documents

Publication Publication Date Title
Hesse Circulating currents in paralleled untransposed multicircuit lines: I-numerical evaluations
Skibinski et al. System design of adjustable speed drives, part 2: System simulation and ac line interactions
Smith A practical approach in substation capacitor bank applications to calculating, limiting, and reducing the effects of transient currents
MXPA00011820A (en) Power-factor correction arrangement.
US5047890A (en) Differential current protection circuits
JPH07194132A (en) Inverter facility
JP2000261958A (en) Protective device for grounding current suppressing device and grounding suppressing method
EP0900464B1 (en) Reduction of harmonics in ac machines
CN113678337A (en) Battery inverter system
Liew Nuisance trippings of residual current circuit breakers or ground fault protectors of power sources connected to computer and electronic loads
JPH1118487A (en) Grounding treatment method for conductive sheath of output cable of inverter device
JPH0630525A (en) Three-phase alternating-current power supply apparatus of electronic apparatus
CN216599009U (en) Single-phase filter circuit and filter
SU955359A1 (en) Device for three-phase network consecutive compensation
US10666088B2 (en) Inductive element protection in a power supply system
PL188063B1 (en) Disconnecting member for an overvoltage protection device and layout of overvoltage protection device components, including such disconnecting member, in a distribution cubicle
Khan et al. System and equipment problems associated with variable frequency drives in the pulp and paper industry
EP1183763A1 (en) An electrical machine winding ground-fault protection system
JP3080307B2 (en) How to prevent accidents caused by earth leakage breakers
US1969541A (en) Electrical protective system
JPS6362979B2 (en)
Hyvarinen Aircraft electric power system performance as affected by transmission line impedances
JPS6346713A (en) Transformer for two phase/three phase conversion
US1973242A (en) Protection of electric systems
Liu Research on Protection of Transformer from Very Fast Transient Over-Voltage