JPH07194027A - Uninterruptible power supply apparatus - Google Patents

Uninterruptible power supply apparatus

Info

Publication number
JPH07194027A
JPH07194027A JP5330069A JP33006993A JPH07194027A JP H07194027 A JPH07194027 A JP H07194027A JP 5330069 A JP5330069 A JP 5330069A JP 33006993 A JP33006993 A JP 33006993A JP H07194027 A JPH07194027 A JP H07194027A
Authority
JP
Japan
Prior art keywords
power supply
load
secondary battery
voltage
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5330069A
Other languages
Japanese (ja)
Inventor
Minoru Hirata
稔 平田
Naotoshi Yugawa
直俊 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5330069A priority Critical patent/JPH07194027A/en
Publication of JPH07194027A publication Critical patent/JPH07194027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To eliminate a loss caused by the forward voltage drop of a discharge diode in an uninterruptible power supply apparatus using a secondary battery. CONSTITUTION:An uninterruptible power supply apparatus is composed of a DC power supply apparatus 1 which outputs a DC voltage, a series connection unit which is composed of a current limiter resistor 3 and a secondary battery 4 and is connected to the output side of the power supply apparatus 1 in parallel and a load 6 which is connected to the power supply apparatus l and the series connection unit in parallel. A MOS-FET 51 is connected to the current limiter resistor 3 in parallel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通信端末その他に用い
られる無停電電源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an uninterruptible power supply used for communication terminals and others.

【0002】[0002]

【従来の技術】電池便覧(電池便覧編集委員会 編,編
集代表 松田好晴,竹原善一郎 平成2年8月20日発
行 丸善 図3・5・40 279頁)に記載される
ような図4に示す従来の無停電電源回路は、交流電源8
を整流した電源1の出力に負荷6と二次電池4とが並列
に接続されており、常時は電源装置1から負荷6に電力
供給するとともに、電流制限抵抗3を通して定電流で二
次電池4を充電している。一方、負荷6の容量が電源装
置1の容量を超える時や電源装置1の停電時や故障時な
どの電源電圧が断たれたときには、二次電池4から電流
制限抵抗3をダイオ−ド12を用いて迂回させて負荷6
へ電力を供給していた。この迂回ダイオ−ド12を用い
ることによって、直流電源装置1が停止した場合でも無
瞬断で負荷6に電力を供給することができる。
2. Description of the Related Art A battery manual (edited by the battery manual editorial committee, edited by Yoshiharu Matsuda, Zenichiro Takehara, published August 20, 1990, Maruzen, FIG. 3, 5.40, page 279) is shown in FIG. The conventional uninterruptible power supply circuit shown is an AC power supply 8
The load 6 and the secondary battery 4 are connected in parallel to the output of the power source 1 that has been rectified, and the power is constantly supplied from the power source device 1 to the load 6 and the secondary battery 4 is fed at a constant current through the current limiting resistor 3. Is charging. On the other hand, when the capacity of the load 6 exceeds the capacity of the power supply device 1 or when the power supply voltage is cut off at the time of power failure or failure of the power supply device 1, the secondary battery 4 and the current limiting resistor 3 to the diode 12 are connected. Use to detour and load 6
Was supplying power to. By using this bypass diode 12, it is possible to supply power to the load 6 without interruption even when the DC power supply device 1 is stopped.

【0003】二次電池の一つであるニッケル−カドミウ
ム電池(ニッカド電池)の放電特性を図3に示す。ニッ
カド電池では実線Vbに示すように横軸の放電時間tに
対して縦軸の端子電圧Vbは、放電終期までほぼ一定で
あり、放電寿命末期に端子電圧の急激な降下が生じる。
このような特性の電池を迂回ダイオ−ド12を介して放
電した場合に、この迂回ダイオ−ド12において順方向
電圧降下Vf1が生じるため、負荷6には二次電池4の
端子電圧から迂回ダイオ−ド12の順方向電圧降下Vf
1に相当する差電圧△Vだけ低下した電圧が印加され
る。この印加電圧を破線Vinに示す。ここで、例え
ば、5セルのニッカド電池を用いた二次電池4の端子電
圧が6Vの場合、二次電池4の端子電圧に占める順方向
電圧降下Vf1の比率は10%以上にもなり、ダイオ−
ド12での損失により電池のエネルギ−効率の低下や発
熱の問題が生じる。さらに、二次電池4の端子電圧が6
Vよりさらに低い場合には、電池の端子電圧に占める順
方向電圧降下Vf1の比率はさらに大きくなるととも
に、消費電流(放電電流)が大きいときは迂回ダイオ−
ド12による電力損失が大きくなり放熱フィン等を使用
する必要が生じるため小型化に向かないことがある。ま
た、負荷6側では二次電池4の放電寿命末期において、
端子電圧の急激な降下により装置が誤動作するのを防止
する目的で、入力電圧Vinを電圧監視装置などを用い
て監視し、入力電圧Vinが負荷の動作可能電圧の下限
値にまで低下したことを検出して、二次電池の容量がな
くなる前に負荷の停止処理を行っている。この場合、迂
回ダイオ−ド12があると入力電圧Vinは順方向電圧
降下Vf1分だけ負荷の動作可能電圧の下限値Vdに早
く到達することになる。したがって、二次電池4による
バックアップ時間は図3に示す電池の端子電圧Vdが下
限値Vdまで低下する時刻t2から入力電圧Vinが下
限値Vdまで低下する時刻t1へと短くなる問題があっ
た。
FIG. 3 shows the discharge characteristics of a nickel-cadmium battery (NiCd battery) which is one of the secondary batteries. In the nickel-cadmium battery, as indicated by the solid line Vb, the terminal voltage Vb on the vertical axis with respect to the discharge time t on the horizontal axis is almost constant until the end of discharge, and a sharp drop in the terminal voltage occurs at the end of discharge life.
When a battery having such characteristics is discharged through the bypass diode 12, a forward voltage drop Vf1 occurs in the bypass diode 12, so that the load 6 receives the bypass diode from the terminal voltage of the secondary battery 4 in the load 6. -Forward voltage drop Vf of terminal 12
A voltage reduced by the difference voltage ΔV corresponding to 1 is applied. This applied voltage is shown by the broken line Vin. Here, for example, when the terminal voltage of the secondary battery 4 using a 5-cell nickel-cadmium battery is 6V, the ratio of the forward voltage drop Vf1 to the terminal voltage of the secondary battery 4 is 10% or more. −
The loss in the battery 12 causes a problem of lowering the energy efficiency of the battery and heat generation. Furthermore, the terminal voltage of the secondary battery 4 is 6
When it is lower than V, the ratio of the forward voltage drop Vf1 to the terminal voltage of the battery is further increased, and when the consumption current (discharge current) is large, the detour diode-
Since the power loss due to the battery 12 becomes large and it becomes necessary to use a radiation fin or the like, it may not be suitable for downsizing. On the load 6 side, at the end of the discharge life of the secondary battery 4,
In order to prevent the device from malfunctioning due to a sharp drop in the terminal voltage, the input voltage Vin is monitored using a voltage monitoring device or the like, and it is confirmed that the input voltage Vin has dropped to the lower limit value of the load operable voltage. The load is stopped before the secondary battery capacity is detected. In this case, when the bypass diode 12 is provided, the input voltage Vin reaches the lower limit value Vd of the operable voltage of the load earlier by the amount of the forward voltage drop Vf1. Therefore, there is a problem that the backup time by the secondary battery 4 is shortened from time t2 when the terminal voltage Vd of the battery drops to the lower limit value Vd to time t1 when the input voltage Vin drops to the lower limit value Vd shown in FIG.

【0004】さらに、無停電電源装置として、特願平1
−238437号公報に示される負荷に並列に接続され
た蓄電池と、蓄電池を充電する充電器と、負荷に直流電
流を供給する整流器と、蓄電池と負荷との間に設けたス
イッチ素子と、停電検知器とからなり、交流電源の停電
を検知することによって前記スイッチ素子を介して前記
蓄電池から負荷へ電力を供給することが知られている。
この方式によれば、スイッチ素子の順方向電圧降下の小
さな無停電電源装置を得ることができるが、蓄電池を充
電するための充電器が別途必要となるばかりでなく、停
電検知器をも必要とするもので、回路構成が複雑になる
ばかりでなく、価格も高額となるものであった。
Further, as an uninterruptible power supply device, Japanese Patent Application No.
Storage battery connected in parallel to a load, a charger for charging the storage battery, a rectifier for supplying a DC current to the load, a switch element provided between the storage battery and the load, and a power failure detection It is known that power is supplied from the storage battery to the load via the switch element by detecting a power failure of the AC power supply.
According to this method, it is possible to obtain an uninterruptible power supply with a small forward voltage drop of the switch element, but not only a separate charger for charging the storage battery is required, but also a power failure detector is required. However, not only is the circuit configuration complicated, but the price is also high.

【0005】[0005]

【発明が解決しようとする課題】この発明は前述した従
来の問題点に鑑みてなされたもので、その目的は、電源
装置1が停止して二次電池4からバックアップを行った
ときに、無瞬断で負荷に電力供給を行うスイッチ機能を
有し、かつそのスイッチ素子の電力損失を最小限に抑
え、二次電池4によるバックアップ時間を長くする、二
次電池を用いた無停電電源装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to eliminate the problem when the power supply device 1 is stopped and backup is performed from the secondary battery 4. An uninterruptible power supply device using a secondary battery, which has a switch function for supplying power to a load by an instantaneous interruption, minimizes the power loss of the switch element, and extends the backup time by the secondary battery 4. To provide.

【0006】[0006]

【課題を解決するための手段】そこで前記課題を解決す
るための手段として、放電時に電流制限抵抗3をショ−
トする迂回ダイオ−ド12の代わりにMOSFETを用
いたスイッチを電流制限抵抗3に並列に介挿し、このス
イッチを二次電池から負荷へ電力供給するときにのみオ
ンさせるようにした。
Therefore, as a means for solving the above-mentioned problems, the current limiting resistor 3 is short-circuited during discharging.
A switch using a MOSFET instead of the bypass diode 12 is inserted in parallel with the current limiting resistor 3 so that the switch is turned on only when power is supplied from the secondary battery to the load.

【0007】[0007]

【作用】直流電源装置が動作状態である場合、前記MO
SFETスイッチはオフし、直流電流制限抵抗を迂回し
て電池が充電されるのを防止している。またこのとき、
MOSFET寄生のダイオ−ドは、逆バイアスされて充
電電流は正常に制限される。直流電源装置が非動作状態
である場合、前記MOSFETスイッチはオンし、二次
電池から負荷へ電力供給を行う。MOSFETのオン抵
抗は小さいため、二次電池からの電流の大部分はMOS
FETを通過し、MOSFETにおける電圧降下も抑え
られ、損失も少ない。またMOSFETスイッチがオフ
からオンへ移行するときに、MOSFETの寄生ダイオ
−ドは順バイアスされるため、MOSFETスイッチが
完全にオンしなくても寄生ダイオ−ドを経由して、無瞬
断で電力供給が可能となる。
When the DC power supply device is in operation, the MO
The SFET switch is turned off to bypass the DC current limiting resistor and prevent the battery from being charged. Also at this time,
The MOSFET parasitic diode is reverse biased and the charging current is normally limited. When the DC power supply device is in a non-operating state, the MOSFET switch is turned on and power is supplied from the secondary battery to the load. Since the on-resistance of MOSFET is small, most of the current from the secondary battery is MOS.
It passes through the FET, the voltage drop in the MOSFET is suppressed, and the loss is small. Further, when the MOSFET switch shifts from off to on, the parasitic diode of the MOSFET is forward-biased. Therefore, even if the MOSFET switch is not completely turned on, power can be supplied via the parasitic diode without interruption. Supply is possible.

【0008】[0008]

【実施例】図1は、本発明の原理図を示しており、電源
装置1は、交流電源8(AC100V)を整流して負荷
6の動作電力及び二次電池4の充電電力を供給する。二
次電池4は、充電電流を制限する電流制限抵抗3と直列
に接続され、逆流防止ダイオード7を介して電源装置1
の出力に接続される。電流制限抵抗3に並列にスイッチ
制御回路2によって制御されるオン抵抗の極めて小さい
スイッチ5が接続される。電源装置1が動作時は、スイ
ッチ制御回路2によって、スイッチ5はOFFし、電源
装置1から逆流防止ダイオード7および電流制限抵抗3
を通して二次電池4が充電される。電源装置1が非動作
時は、スイッチ制御回路2の働きによってスイッチ5は
ONし、このスイッチ5を介して負荷6へ電力を供給す
る。スイッチ5は、オン抵抗が極めて小さいとともに動
作速度も極めて早いことが必要であり、リレー接点とす
ることができる。
1 shows the principle of the present invention, in which a power supply device 1 rectifies an AC power supply 8 (AC 100 V) to supply operating power for a load 6 and charging power for a secondary battery 4. The secondary battery 4 is connected in series with the current limiting resistor 3 that limits the charging current, and the power supply device 1 is connected via the backflow prevention diode 7.
Connected to the output of. A switch 5 having an extremely small on-resistance controlled by the switch control circuit 2 is connected in parallel with the current limiting resistor 3. When the power supply device 1 is operating, the switch 5 is turned off by the switch control circuit 2, and the backflow prevention diode 7 and the current limiting resistor 3 are removed from the power supply device 1.
The secondary battery 4 is charged through. When the power supply device 1 is not operating, the switch 5 is turned on by the operation of the switch control circuit 2, and power is supplied to the load 6 via the switch 5. The switch 5 needs to have an extremely low on-resistance and an extremely high operating speed, and can be a relay contact.

【0009】以下、本発明の一実施例を図2を用いて詳
細に説明する。図2は、本発明に係る二次電池の充放電
回路の概略構成を示している。図1に示したスイッチ5
としてMOSFET51が接続され、スイッチ制御回路
2として直列に接続された抵抗値R1の抵抗9,抵抗値
R2の抵抗10が接続される。MOSFET51はPチ
ャネルタイプを使用し、ゲ−トは直流電源装置1の出力
に直列抵抗9,10からなるバイアス回路2を通して接
続される。ドレインは2次電池4の+極側に接続され、
ソ−スは直流電源装置1出力の+極側に接続される。直
流電源装置1が動作して出力電圧を発生する時、負荷6
へ電力を供給するとともに、電流制限抵抗3を通してC
/50〜C/20の微小電流にて二次電池4を連続充電
する。このときMOSFET51のゲ−トには、直流電
源装置1の出力電圧V1を抵抗9と抵抗10で分圧した
電圧(V1・R1/(R1+R2))が印加されるの
で、MOSFET51のゲ−ト・ソ−ス間電圧VGSは下
記(1)式で示すように分圧電圧から逆流阻止ダイオー
ド7の順方向電圧降下Vf2を差引いた値となる。 VGS=V1×(R1/(R1+R2))−Vf2 …(1) 抵抗9と抵抗10の値を適切に選択すればVGS≒0とす
ることができ、VGS≒0とすればMOSFET51はオ
フとなる。またこの状態ではMOSFET51の寄生ダ
イオ−ド11は逆バイアスされているので、オフのまま
である。
An embodiment of the present invention will be described in detail below with reference to FIG. FIG. 2 shows a schematic configuration of a charging / discharging circuit of a secondary battery according to the present invention. Switch 5 shown in FIG.
Is connected to the MOSFET 51, and the switch control circuit 2 is connected in series with the resistor 9 having the resistance value R1 and the resistor 10 having the resistance value R2. The MOSFET 51 uses a P-channel type, and the gate is connected to the output of the DC power supply device 1 through a bias circuit 2 composed of series resistors 9 and 10. The drain is connected to the positive electrode side of the secondary battery 4,
The source is connected to the + pole side of the output of the DC power supply device 1. When the DC power supply 1 operates to generate an output voltage, the load 6
Power to C and through the current limiting resistor 3
The secondary battery 4 is continuously charged with a small current of / 50 to C / 20. At this time, a voltage (V1.R1 / (R1 + R2)) obtained by dividing the output voltage V1 of the DC power supply device 1 by the resistors 9 and 10 is applied to the gate of the MOSFET 51. The source-to-source voltage VGS is a value obtained by subtracting the forward voltage drop Vf2 of the reverse current blocking diode 7 from the divided voltage as shown in the following equation (1). VGS = V 1 × (R1 / (R1 + R2)) − Vf2 (1) VGS≈0 can be obtained by appropriately selecting the values of the resistors 9 and 10. If VGS≈0, the MOSFET 51 is turned off. Become. Further, in this state, the parasitic diode 11 of the MOSFET 51 is reverse-biased and therefore remains off.

【0010】次に直流電源1が停電等により非動作状態
となった時、MOSFET51の寄生ダイオ−ド11は
順バイアスされるのでオンし、電池4は、寄生ダイオ−
ド11を通して負荷6へ無瞬断に電流を供給する。この
ときMOSFET51のゲ−ト電圧は0Vであり、ソ−
ス電圧は二次電池4の端子電圧Vbから寄生ダイオ−ド
11の順電圧降下Vf3を引いた値となるため、MOS
FET51のゲ−ト・ソ−ス間電圧は下記(2)式で示
す値となる。 VGS=−(Vb−Vf3) (2) (2)式において、VGSはマイナスとなるためMOSF
ET51はオンする。MOSFET51がオンしてしま
えばオン抵抗(ドレイン・ソ−ス間の抵抗)は非常に小
さくなるため、二次電池4からの電流の大部分はMOS
FET51のドレイン・ソ−ス間を通過する。これによ
り、負荷6側に供給される電圧は電池電圧4とほぼ等し
くなる。従来技術において迂回ダイオード12としてシ
ョットキ−ダイオ−ドを用いた場合、順方向電圧降下は
0.55Vであるが、本発明ではスイッチ5としてMO
SFET51を使用すれば順方向電圧降下をゼロに近づ
けることが出来るため、パワ−ロスを小さくすることが
出来る。
Next, when the DC power supply 1 becomes inoperative due to a power failure or the like, the parasitic diode 11 of the MOSFET 51 is forward biased and is turned on, and the battery 4 is connected to the parasitic diode.
The current is supplied to the load 6 without interruption through the gate 11. At this time, the gate voltage of the MOSFET 51 is 0V,
The MOS voltage becomes a value obtained by subtracting the forward voltage drop Vf3 of the parasitic diode 11 from the terminal voltage Vb of the secondary battery 4, so that
The gate-source voltage of the FET 51 has a value represented by the following equation (2). VGS =-(Vb-Vf3) (2) In the formula (2), VGS is negative, so MOSF
ET51 turns on. Once the MOSFET 51 is turned on, the on-resistance (the resistance between the drain and the source) becomes very small, so most of the current from the secondary battery 4 is MOS.
It passes between the drain and the source of the FET 51. As a result, the voltage supplied to the load 6 side becomes substantially equal to the battery voltage 4. When a Schottky diode is used as the bypass diode 12 in the prior art, the forward voltage drop is 0.55 V, but in the present invention, the switch 5 is an MO switch.
If the SFET 51 is used, the forward voltage drop can be brought close to zero, and the power loss can be reduced.

【0011】図3に電池の放電特性を示す。放電カ−ブ
Vbは二次電池4の端子電圧Vbを示し、放電カ−ブV
inは二次電池4の端子電圧Vbからダイオ−ドの順方
向電圧降下Vf1を引いた値すなわち負荷への入力電圧
Vbを示す。直流電源装置1が非動作状態の時負荷6に
供給される電圧は、MOSFET51がオンする前は寄
生ダイオ−ド経由となるため放電カ−ブVinの上を推
移するが、オンしてしまえばMOSFET51による順
方向電圧降下はほぼゼロのため、放電カ−ブVbの上を
推移することになる。二次電池4を繰り返して使用する
ためには、負荷6側等に電圧監視回路を設けて入力電圧
Vinを監視し、電池の容量がなくなる前に停止処理を
行う必要がある。放電終止電圧Vdは、ニッカド電池の
場合1〜1.1V/セル(5セルの場合5〜5.5V)
の範囲で設定される。迂回ダイオ−ド12の順方向電圧
降下Vf1の影響がある放電カーブVinでは時刻t1
までしか使用できないが、迂回ダイオード12の順方向
電圧降下Vf1の影響のない放電カ−ブVbでは時刻t
2まで使用することができる。この時間差は、使用する
電池容量や負荷電流により異なるが、1800mAhの
電池容量で0.2A程度の負荷電流の場合、t2として
9時間弱のバックアップ時間が期待でき、t1より30
分程度バックアップ時間を延ばすことができる。
FIG. 3 shows the discharge characteristics of the battery. The discharge curve Vb indicates the terminal voltage Vb of the secondary battery 4, and the discharge curve Vb
in indicates a value obtained by subtracting the forward voltage drop Vf1 of the diode from the terminal voltage Vb of the secondary battery 4, that is, the input voltage Vb to the load. The voltage supplied to the load 6 when the DC power supply device 1 is in the non-operating state passes through the parasitic diode before the MOSFET 51 is turned on, and therefore changes above the discharge curve Vin, but once it is turned on. Since the forward voltage drop due to the MOSFET 51 is almost zero, it will change above the discharge curve Vb. In order to use the secondary battery 4 repeatedly, it is necessary to provide a voltage monitoring circuit on the load 6 side or the like to monitor the input voltage Vin and perform a stop process before the battery capacity runs out. The discharge end voltage Vd is 1 to 1.1 V / cell in the case of a nicad battery (5-5.5 V in the case of 5 cells).
It is set in the range of. At the discharge curve Vin affected by the forward voltage drop Vf1 of the bypass diode 12, time t1
Although it can only be used up to time t, at the discharge curve Vb which is not affected by the forward voltage drop Vf1 of the bypass diode 12, the time t
Up to 2 can be used. This time difference varies depending on the battery capacity and load current used, but with a battery current of 1800 mAh and a load current of about 0.2 A, a backup time of a little less than 9 hours can be expected as t2, which is 30 hours from t1.
The backup time can be extended by about a minute.

【0012】次に負荷6の容量が直流電源装置1の容量
を超えたときには、直流電源装置1の出力電圧V1が低
下する。すると、寄生ダイオード11は順方向にバイア
スされ、二次電池4は寄生ダイオード11を介して負荷
6へ向けて放電し負荷の増大分を分担する。
Next, when the capacity of the load 6 exceeds the capacity of the DC power supply device 1, the output voltage V1 of the DC power supply device 1 decreases. Then, the parasitic diode 11 is biased in the forward direction, and the secondary battery 4 discharges toward the load 6 via the parasitic diode 11 to share the increased load.

【0013】[0013]

【発明の効果】本発明によれば、上述のようにMOSF
ETを用いたスイッチを電流制限抵抗と並列に介挿し、
電源装置が停止した時にこのスイッチをオンさせるよう
にしたので、電源装置が動作中にMOSFETを通して
電池へ充電電流が流れることがなく、電流制限抵抗で制
御された充電電流で細流充電することができる。また、
スイッチとして用いるMOSFETのオン抵抗はダイオ
−ドに比べて十分に小さいので、スイッチでの電圧降下
を抑えることができ、損失も少なくできる。すなわち、
従来技術において迂回ダイオード12としてショットキ
−ダイオ−ドを用いた場合、順方向電圧降下は0.55
Vであるが、本発明ではスイッチ5としてMOSFET
51を使用すれば順方向電圧降下をゼロに近づけること
が出来るため、パワ−ロスを小さくすることが出来る。
さらに、負荷に対し二次電池の端子電圧にほぼ等しい電
圧を供給することができるため、負荷の動作時間を延ば
すことができるという効果がある。また、MOSFET
がオフからオンヘ移行する時にMOSFETの寄生ダイ
オ−ドを通して負荷に二次電池から供給できるため、無
瞬断でバックアップが可能となる。
According to the present invention, as described above, the MOSF
Insert a switch using ET in parallel with the current limiting resistor,
Since this switch is turned on when the power supply stops, the charging current does not flow to the battery through the MOSFET while the power supply is operating, and trickle charging can be performed with the charging current controlled by the current limiting resistor. . Also,
Since the on resistance of the MOSFET used as a switch is sufficiently smaller than that of the diode, the voltage drop at the switch can be suppressed and the loss can be reduced. That is,
When a Schottky diode is used as the bypass diode 12 in the prior art, the forward voltage drop is 0.55.
V, but in the present invention, a MOSFET is used as the switch 5.
When 51 is used, the forward voltage drop can be brought close to zero, so that the power loss can be reduced.
Furthermore, since a voltage approximately equal to the terminal voltage of the secondary battery can be supplied to the load, there is an effect that the operation time of the load can be extended. Also MOSFET
Can be supplied from the secondary battery to the load through the parasitic diode of the MOSFET when transitioning from OFF to ON, so backup can be performed without interruption.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の動作原理を示す概念図。FIG. 1 is a conceptual diagram showing the operating principle of the present invention.

【図2】本発明の一実施例による無停電電源装置の要部
構成。
FIG. 2 is a main part configuration of an uninterruptible power supply according to an embodiment of the present invention.

【図3】二次電池の放電特性を示すグラフ図。FIG. 3 is a graph showing a discharge characteristic of a secondary battery.

【図4】従来の無停電電源装置の要部構成図。FIG. 4 is a configuration diagram of a main part of a conventional uninterruptible power supply.

【符号の説明】[Explanation of symbols]

1 直流電源装置 2 スイッチ制御回路 3 電流制限抵抗 4 二次電池 5 スイッチ 6 負荷 7 逆流阻止ダイオード 8 交流電源(AC100V) 9,10 分圧抵抗 11 MOSFETの寄生ダイオード 12 迂回ダイオード 1 DC power supply device 2 Switch control circuit 3 Current limiting resistor 4 Secondary battery 5 Switch 6 Load 7 Reverse current blocking diode 8 AC power supply (AC100V) 9, 10 Voltage dividing resistor 11 MOSFET parasitic diode 12 Detour diode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 直流電圧を出力する直流電源装置と、該
直流電源装置の出力に並列に接続された電流制限回路お
よび二次電池の直列接続体と前記直流電源装置の出力お
よび前記直列接続体に並列に接続された負荷とからな
り、前記直流電源装置の出力電圧が断たれたときまたは
前記負荷の容量が前記直流電源装置の容量を超えたとき
に前記二次電池から前記負荷へ無瞬断で電力を供給する
無停電電源装置において、 前記電流制限回路に並列にMOSFETからなる出力ス
イッチを設けたことを特徴とする無停電電源装置。
1. A DC power supply device that outputs a DC voltage, a series connection body of a current limiting circuit and a secondary battery connected in parallel to the output of the DC power supply device, an output of the DC power supply device, and the series connection body. And a load connected in parallel with the DC power supply, the output voltage of the DC power supply is cut off, or the capacity of the load exceeds the capacity of the DC power supply, the secondary battery to the load without a moment An uninterruptible power supply device for supplying power when disconnected, wherein an output switch formed of a MOSFET is provided in parallel with the current limiting circuit.
【請求項2】 MOSFETからなる出力スイッチのゲ
ートに直流電源装置の出力電圧を分圧した電圧が印加さ
れる請求項1に記載の無停電電源装置。
2. The uninterruptible power supply device according to claim 1, wherein a voltage obtained by dividing the output voltage of the DC power supply device is applied to the gate of the output switch formed of a MOSFET.
JP5330069A 1993-12-27 1993-12-27 Uninterruptible power supply apparatus Pending JPH07194027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5330069A JPH07194027A (en) 1993-12-27 1993-12-27 Uninterruptible power supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5330069A JPH07194027A (en) 1993-12-27 1993-12-27 Uninterruptible power supply apparatus

Publications (1)

Publication Number Publication Date
JPH07194027A true JPH07194027A (en) 1995-07-28

Family

ID=18228438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5330069A Pending JPH07194027A (en) 1993-12-27 1993-12-27 Uninterruptible power supply apparatus

Country Status (1)

Country Link
JP (1) JPH07194027A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0923184A2 (en) * 1997-12-11 1999-06-16 Fanuc Ltd Outage management emergency power supply device
CN1310396C (en) * 2002-08-02 2007-04-11 华为技术有限公司 Power supply switching circuit for detection
AT509967A1 (en) * 2010-06-01 2011-12-15 Siemens Ag POWER SUPPLY AND METHOD FOR OPERATING THE POWER SUPPLY
WO2017169395A1 (en) * 2016-03-31 2017-10-05 株式会社デンソー Power supply system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0923184A2 (en) * 1997-12-11 1999-06-16 Fanuc Ltd Outage management emergency power supply device
EP0923184A3 (en) * 1997-12-11 2000-11-15 Fanuc Ltd Outage management emergency power supply device
CN1310396C (en) * 2002-08-02 2007-04-11 华为技术有限公司 Power supply switching circuit for detection
AT509967A1 (en) * 2010-06-01 2011-12-15 Siemens Ag POWER SUPPLY AND METHOD FOR OPERATING THE POWER SUPPLY
AT509967B1 (en) * 2010-06-01 2015-09-15 Siemens Ag POWER SUPPLY AND METHOD FOR OPERATING THE POWER SUPPLY
US9774214B2 (en) 2010-06-01 2017-09-26 Siemens Aktiengesellschaft Power supply and method for operating the power supply
WO2017169395A1 (en) * 2016-03-31 2017-10-05 株式会社デンソー Power supply system
JP2017184538A (en) * 2016-03-31 2017-10-05 株式会社デンソー Power supply system
US10862324B2 (en) 2016-03-31 2020-12-08 Denso Corporation Power supply system

Similar Documents

Publication Publication Date Title
US5828202A (en) Battery apparatus
US7659692B2 (en) Rechargeable battery pack for a power tool having an interruptor for prevention of overcharging
CN101183794B (en) Battery pack
US8508190B2 (en) Assembled battery system and assembled battery protection device
US7626360B2 (en) Charge-pump biased battery protection circuit
KR101030885B1 (en) Secondary battery
JP3174770B2 (en) Method and apparatus for monitoring self-discharge of a secondary battery after completion
US7652450B2 (en) Secondary battery charging device
JP3665574B2 (en) Charge / discharge control circuit and rechargeable power supply
JP2007068264A (en) Charger
JPH08140281A (en) Charger
JPH06276696A (en) Over-discharge protective circuit of secondary battery
JPH10117443A (en) Overcharge and over-discharge preventive device for secondary battery
JPH09289738A (en) Battery monitoring circuit
US11139662B2 (en) Balance circuits for battery cells
JPH07194027A (en) Uninterruptible power supply apparatus
JP2008042964A (en) Secondary battery protective device
JPH08237872A (en) Charge or discharge protective apparatus for secondary cell
CN211127212U (en) Light amplifier based on lithium battery power supply
JP3726339B2 (en) Secondary battery charging device, control circuit thereof, and charging processing method
JPH1023683A (en) Charger
KR930003792B1 (en) Casing shoe air conditioning system
JP2004304976A (en) Charger of secondary battery
US20220368141A1 (en) Secondary battery protection circuit, battery pack, battery system, and method for protecting secondary battery
JPH0970145A (en) Constant-voltage charger