JPH07193325A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH07193325A
JPH07193325A JP33050093A JP33050093A JPH07193325A JP H07193325 A JPH07193325 A JP H07193325A JP 33050093 A JP33050093 A JP 33050093A JP 33050093 A JP33050093 A JP 33050093A JP H07193325 A JPH07193325 A JP H07193325A
Authority
JP
Japan
Prior art keywords
semiconductor
light emitting
emitting device
region
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33050093A
Other languages
Japanese (ja)
Inventor
So Otoshi
創 大歳
Naoki Kayane
直樹 茅根
Masamichi Yamanishi
正道 山西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Hitachi Ltd
Original Assignee
Hiroshima University NUC
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Hitachi Ltd filed Critical Hiroshima University NUC
Priority to JP33050093A priority Critical patent/JPH07193325A/en
Publication of JPH07193325A publication Critical patent/JPH07193325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To provide a semiconductor light emitting element capable of operating in low current stable for return light. CONSTITUTION:Within a microresonator type light emitting element wherein a quantum well light emitting layer 6 is held between semiconductor multilayer films (Bragg reflectors) 4, 11, n-type impurities are added to this quantum well layer 6. At this time, since the photoabsorption into the light emitting layer 6 can be notably reduced, the microresonator type light emitting element can be operated in low current. Through these procedures, the title high performance semiconductor light emitting device whereto the light source for an optical fiber gyrocompass and a photo-interconnect is applicable can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバジャイロあ
るいは光インターコネクトなどの光源に適用される半導
体発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device applied to a light source such as an optical fiber gyro or an optical interconnect.

【0002】[0002]

【従来の技術】量子井戸層が半導体多層膜(ブラッグ反
射器)で挟まれたマイクロ共振器型光素子は公知である
〔文献:「コヒーレンスと量子光学VI」(ジェー・エッ
チ・エバリーほか編集)プレナムプレス、ニューヨーク
(1990)1249〜1257頁(山本喜久ほか
著)〕。しかし、量子井戸層あるいは量子井戸層に接し
た半導体層には不純物は添加されていない、いわゆるア
ンドープ層になっている。
2. Description of the Related Art A microcavity type optical device in which a quantum well layer is sandwiched between semiconductor multilayer films (Bragg reflectors) is known [Reference: "Coherence and Quantum Optics VI" (edited by J. Etch Eberly et al.). Plenum Press, New York (1990) 1249-1257 (Kihisa Yamamoto et al.)]. However, impurities are not added to the quantum well layer or the semiconductor layer in contact with the quantum well layer, which is a so-called undoped layer.

【0003】[0003]

【発明が解決しようとする課題】マイクロ共振器型光素
子は、低電流動作が期待されているが、高反射率を有す
る多層膜で発光層が挟まれているため、発光層にわずか
な吸収があっても、動作電流が増大してしまうという問
題がある。
The microresonator type optical element is expected to operate at a low current, but since the light emitting layer is sandwiched by the multilayer films having a high reflectance, the light emitting layer is slightly absorbed. However, there is a problem that the operating current increases.

【0004】また、光ファイバジャイロの光源に、半導
体レーザを用いると大きな雑音が発生するという問題が
ある。光ファイバジャイロは、リング状のファイバを右
回りする光と左回りする光の位相差を測定することで、
回転角度を検出するセンサである。このシステムに通常
の半導体レーザを用いると、半導体レーザでは時間的コ
ヒーレンシイが高いため、光学系要素端面からの反射光
や光ファイバ中での後方レイリー散乱光などの戻り光が
信号光と干渉し大きな雑音を発生する。
Further, when a semiconductor laser is used as the light source of the optical fiber gyro, there is a problem that a large noise is generated. An optical fiber gyro measures the phase difference between the clockwise and counterclockwise light in a ring-shaped fiber,
It is a sensor that detects a rotation angle. When a normal semiconductor laser is used in this system, the semiconductor laser has high temporal coherency, so that the reflected light from the end face of the optical system element and the return light such as the backward Rayleigh scattered light in the optical fiber interfere with the signal light. Generates a lot of noise.

【0005】さらに、コンピュータ内の信号接続に光接
続(光インターコネクション)を導入することによっ
て、コンピュータの性能が大幅に向上できる可能性があ
る。しかし、従来の発光素子は動作電流がmA(ミリア
ンペア)のオーダーであるため、光インターコネクト光
源で必要な素子の集積化等が困難であった。
Further, by introducing an optical connection (optical interconnection) into a signal connection in the computer, there is a possibility that the performance of the computer can be greatly improved. However, since the operation current of the conventional light emitting element is on the order of mA (milliampere), it is difficult to integrate the elements necessary for the optical interconnect light source.

【0006】本発明の目的は、上記問題を解決し、戻り
光に対して安定であり、動作電流の極めて低い半導体発
光素子を提供することにある。
An object of the present invention is to solve the above problems and to provide a semiconductor light emitting device which is stable against return light and has an extremely low operating current.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、所定の半導体基板上に、少なくとも第1半導体と
該第1半導体よりも屈折率の大きな第2半導体を周期的
に積層してなる第1半導体領域と、少なくとも第3半導
体と該第3半導体よりも屈折率の大きな第4半導体を周
期的に積層してなる第2半導体領域と、少なくとも電子
と正孔が発光再結合を生じる第5半導体からなる第3半
導体領域が上記第1半導体領域と上記第2半導体領域と
間に挟まれており、上記第2半導体と上記第4半導体が
上記第3半導体領域に接しており、上記第3半導体領域
の実効的な屈折率の大きさが、上記第2半導体と上記第
4半導体の屈折率に比べ小さく、半導体内での発光波長
をλとしたとき第3半導体領域の厚さdが0.4λ≦d
≦0.6λの関係を満たしている構造において、上記第
5半導体もしくは該第5半導体に接した上記第3半導体
領域内の半導体層の少なくとも一部にn型不純物が添加
されていることを特徴とする面発光型の半導体発光装置
を考案した。
In order to achieve the above object, at least a first semiconductor and a second semiconductor having a refractive index larger than that of the first semiconductor are periodically laminated on a predetermined semiconductor substrate. And a second semiconductor region formed by periodically stacking at least a third semiconductor and a fourth semiconductor having a refractive index larger than that of the third semiconductor, and at least electrons and holes cause radiative recombination. A third semiconductor region made of a fifth semiconductor is sandwiched between the first semiconductor region and the second semiconductor region, the second semiconductor and the fourth semiconductor are in contact with the third semiconductor region, and The effective refractive index of the third semiconductor region is smaller than the refractive indices of the second semiconductor and the fourth semiconductor, and the thickness d of the third semiconductor region when the emission wavelength in the semiconductor is λ. Is 0.4λ ≦ d
In a structure satisfying a relation of ≦ 0.6λ, an n-type impurity is added to at least a part of the fifth semiconductor or the semiconductor layer in the third semiconductor region in contact with the fifth semiconductor. A surface emitting type semiconductor light emitting device was devised.

【0008】上記の半導体発光装置において、上記第5
半導体もしくは該第5半導体に接した上記第3半導体領
域内の半導体層の少なくとも一部に添加されているn型
不純物の濃度を1×1018〔/cm3〕以上にすること
によって、本目的は効果的に達成できる。また、上記の
半導体光装置において、動作電流を発振しきい値以下に
することで大きな効果が得られる。
In the above semiconductor light emitting device, the fifth
By adjusting the concentration of the n-type impurity added to at least a part of the semiconductor layer in the third semiconductor region in contact with the semiconductor or the fifth semiconductor to 1 × 10 18 [/ cm 3 ] or more, Can be achieved effectively. Further, in the above semiconductor optical device, a great effect can be obtained by setting the operating current to be equal to or lower than the oscillation threshold.

【0009】さらに、本目的を達成する他の構造とし
て、所定の半導体基板上に、少なくとも第1半導体と該
第1半導体よりも屈折率の大きな第2半導体を周期的に
積層してなる第1半導体領域と、少なくとも第3半導体
と該第3半導体よりも屈折率の大きな第4半導体を周期
的に積層してなる第2半導体領域と、少なくとも電子と
正孔が発光再結合を生じる第5半導体からなる第3半導
体領域が上記第1半導体領域と上記第2半導体領域と間
に挟まれており、上記第1半導体と上記第3半導体が上
記第3半導体領域に接しており、上記第3半導体領域の
実効的な屈折率の大きさが、上記第1半導体と上記第3
半導体の屈折率に比べ大きく、半導体内での発光波長を
λとしたとき第3半導体領域の厚さdが0.9λ≦d≦
1.1λの関係を満たしている構造において、上記第5
半導体もしくは該第5半導体に接した上記第3半導体領
域内の半導体層の少なくとも一部にn型不純物が添加さ
れていることを特徴とする面発光型の半導体発光装置を
考案した。また、本半導体発光装置において、第5半導
体もしくは該第5半導体に接した上記第3半導体領域内
の半導体層の少なくとも一部に添加されているn型不純
物の濃度を1×1018〔/cm3〕以上にすることによ
って効果的に目的を達成できる。また、動作電流を発振
しきい値以下にすることで大きな効果が得られる。
Further, as another structure for achieving the object, a first semiconductor is formed by periodically stacking at least a first semiconductor and a second semiconductor having a refractive index larger than that of the first semiconductor on a predetermined semiconductor substrate. A semiconductor region, a second semiconductor region formed by periodically stacking at least a third semiconductor and a fourth semiconductor having a refractive index larger than that of the third semiconductor, and a fifth semiconductor in which at least electrons and holes cause radiative recombination. A third semiconductor region consisting of is sandwiched between the first semiconductor region and the second semiconductor region, the first semiconductor and the third semiconductor are in contact with the third semiconductor region, and the third semiconductor region is The effective refractive index magnitudes of the regions are determined by the first semiconductor and the third semiconductor.
It is larger than the refractive index of the semiconductor, and the thickness d of the third semiconductor region is 0.9λ ≦ d ≦, where λ is the emission wavelength in the semiconductor.
In the structure satisfying the relation of 1.1λ,
A surface-emitting type semiconductor light emitting device is devised, wherein an n-type impurity is added to at least a part of the semiconductor layer in the third semiconductor region in contact with the semiconductor or the fifth semiconductor. In the present semiconductor light emitting device, the concentration of the n-type impurity added to at least a part of the fifth semiconductor or the semiconductor layer in the third semiconductor region in contact with the fifth semiconductor may be 1 × 10 18 [/ cm 2]. 3 ] By the above, the purpose can be effectively achieved. Further, a great effect can be obtained by setting the operating current to be equal to or lower than the oscillation threshold.

【0010】さらに、上記に記載した半導体発光装置を
光源に用いた光ファイバジャイロシステム、および同半
導体発光装置を光インターコネクト用光源に適用したコ
ンピュータシステムを考案した。
Further, an optical fiber gyro system using the above-described semiconductor light emitting device as a light source, and a computer system in which the semiconductor light emitting device is applied to a light source for optical interconnection were devised.

【0011】[0011]

【作用】半導体レーザのしきい電流Ithは、一般に、レ
ート方程式(速度方程式)を解くことにより、
The threshold current I th of the semiconductor laser is generally obtained by solving the rate equation (velocity equation)

【0012】[0012]

【数1】 Ith=ensp/τphβ ……(1) で与えることができる。ここで、eは素電荷、nspは反
転分布パラメータ、τphは光子寿命、βは自然放出光が
発光モードに結合する割合を表す。通常、屈折率導波型
レーザでは、このβの値は10-5程度である。しかし、
マイクロ共振器型発光素子の場合、導波路構造が井戸面
内(x−y面とする)において対称ならばβの値は理想
的には0.5にすることができ、しきい電流を通常のレ
ーザに比べ4〜5桁低減できる可能性がある。これは、
例えば図2に示すマイクロ共振器型発光素子の場合、真
空場の定在波27の腹の位置に量子井戸層23がくるよ
うに、ブラッグ反射鏡で挟まれた共振器25の長さdが
素子内部での発光波長λに等しく(d=λ)なっている
ことに起因している。しかし、従来のマイクロ共振器構
造では、量子井戸層23に不純物が添加されていない
(すなわち、アンドープ)ため、量子井戸層自体での光
再吸収が大きい。このことは、反転分布パラメータnsp
が大きいことに対応しており、(1)式により、しきい
電流が上昇することになる。なお図2において、2はn
型低屈折率層、3はn型高屈折率層、9はp型高屈折率
層、10はp型低屈折率層、21はn型ブラッグ反射
器、22は高屈折率層、24は高屈折率層、26はp型
ブラッグ反射器である。
## EQU1 ## I th = en sp / τ ph β (1) can be given. Here, e is the elementary charge, n sp is the population inversion parameter, τ ph is the photon lifetime, and β is the ratio of spontaneous emission light coupling to the emission mode. Normally, in a refractive index guided laser, the value of β is about 10 −5 . But,
In the case of a micro-resonator type light emitting device, if the waveguide structure is symmetrical in the well plane (assumed to be the xy plane), the value of β can be ideally set to 0.5, and the threshold current is usually There is a possibility that it can be reduced by 4 to 5 orders of magnitude compared to the laser of. this is,
For example, in the case of the microresonator type light emitting device shown in FIG. 2, the length d of the resonator 25 sandwiched by Bragg reflectors is such that the quantum well layer 23 is located at the antinode of the standing wave 27 of the vacuum field. This is due to the fact that it is equal to the emission wavelength λ inside the element (d = λ). However, in the conventional microresonator structure, since the quantum well layer 23 is not doped with impurities (that is, undoped), light reabsorption in the quantum well layer itself is large. This means that the population inversion parameter n sp
Corresponds to a large value, and the threshold current rises according to equation (1). In FIG. 2, 2 is n
Type low refractive index layer, 3 is an n type high refractive index layer, 9 is a p type high refractive index layer, 10 is a p type low refractive index layer, 21 is an n type Bragg reflector, 22 is a high refractive index layer, and 24 is The high refractive index layer 26 is a p-type Bragg reflector.

【0013】マイクロ共振器型発光素子は、しきい値以
下の動作電流においても空間的コヒーレンシイが高いの
で、発光ダイオードとしても有望である。よって、次
に、しきい値以下の動作範囲を含めた発光特性について
述べる。図3は、レート方程式を解くことで求めた、放
射レートS/τphとポンピングレートPの関係の計算結
果である。ただし、Sは光子数、Pは単位時間に活性層
へ注入される電子数であり、動作電流IとはI=ePの
関係にある。また、図3の計算では量子井戸層はGaA
s(厚さLz=10nm)、光子寿命τphは10ps、
体積Vは10-13cm3、βは0.5を仮定している。グ
ラフは、それぞれ、点線が従来のアンドープの場合、破
線がpドープ、実線がnドープの場合を示している。こ
こで、ドープ量は共に5×1018cm-3であり、不純物
から供給された過剰キャリアは100%量子井戸層に存
在するものと仮定している。図から明らかに、n型不純
物を量子井戸層へ添加することにより、大幅にポンピン
グレートすなわち動作電流を低減できることがわかる。
これは、n型不純物を量子井戸層自体あるいはその近傍
にドーピングすることにより、電子が過剰に量子井戸層
に存在すること起因している。つまり、電子は有効質量
が小さく、伝導帯の広いエネルギー範囲に渡って電子が
存在するため、光吸収によって価電子帯の電子が伝導帯
へ遷移するレートが大幅に低下するからである。実際、
nドープ構造では反転分布パラメータnspは理想値1に
近い値となっている。
The micro-resonator type light emitting device has high spatial coherency even at an operating current below a threshold value, and is therefore promising as a light emitting diode. Therefore, next, the light emission characteristics including the operation range below the threshold value will be described. FIG. 3 is a calculation result of the relationship between the radiation rate S / τ ph and the pumping rate P obtained by solving the rate equation. However, S is the number of photons, P is the number of electrons injected into the active layer per unit time, and the operating current I has a relation of I = eP. In the calculation of FIG. 3, the quantum well layer is GaA.
s (thickness Lz = 10 nm), photon lifetime τ ph is 10 ps,
It is assumed that the volume V is 10 -13 cm 3 and β is 0.5. In the graphs, the dotted line shows the case of conventional undoped, the broken line shows the case of p-doped, and the solid line shows the case of n-doped. Here, it is assumed that the doping amounts are both 5 × 10 18 cm −3 , and the excess carriers supplied from the impurities are present in 100% quantum well layers. It is clear from the figure that the pumping rate, that is, the operating current can be significantly reduced by adding the n-type impurity to the quantum well layer.
This is because electrons are excessively present in the quantum well layer by doping the n-type impurity into the quantum well layer itself or in the vicinity thereof. In other words, electrons have a small effective mass, and electrons exist over a wide energy range of the conduction band, so that the rate at which electrons in the valence band transit to the conduction band due to light absorption is significantly reduced. In fact
In the n-doped structure, the population inversion parameter n sp has a value close to the ideal value 1.

【0014】以上述べたように、n型不純物を量子井戸
層自体、あるいはその近傍にドーピングすることによ
り、低い電流で動作するマイクロ共振器型発光素子が実
現できる。
As described above, by doping an n-type impurity into the quantum well layer itself or in the vicinity thereof, a micro-resonator type light emitting device which operates at a low current can be realized.

【0015】また、図3から明らかなように、発振しき
い値以下の領域において、nドープ構造の優位性はより
顕著になる。従って、動作電流がしきい値以下である発
光ダイオードとして本発明の素子を用いると、より大き
な効果がある。特に、次に述べる光ファイバジャイロへ
の応用では、戻り光に対して安定となるように、発光ダ
イオードとして動作させた方が望ましい。
Further, as is apparent from FIG. 3, the superiority of the n-doped structure becomes more remarkable in the region below the oscillation threshold. Therefore, when the device of the present invention is used as a light emitting diode whose operating current is less than or equal to the threshold value, there is a greater effect. In particular, in the application to the optical fiber gyro described below, it is desirable to operate as a light emitting diode so as to be stable against return light.

【0016】光ファイバジャイロの光源として、戻り光
に対して安定に動作する時間的コヒーレンシイの低い発
光素子が要求されている。本発明の発光素子は動作電流
に関わらず指向性が極めて良い。また、動作電流をしき
い値以下に設定すれば、時間的コヒーレンシイを低くで
きる。従って、本発明の発光素子を発光ダイオードとし
て光ファイバジャイロの光源に適用すれば、戻り光に対
して安定であり、かつ高効率なシステムを構成すること
ができる。また、時間的コヒーレンシイが低いことによ
り、外部共振器が形成されないので、出力が安定になる
という利点がある。これは、また同時に波長ゆらぎによ
る出力不安定性を除去できることにもなる。
As a light source for an optical fiber gyro, a light emitting element having a low temporal coherency that operates stably with respect to return light is required. The light emitting element of the present invention has extremely good directivity regardless of the operating current. Further, if the operating current is set below the threshold value, temporal coherency can be lowered. Therefore, if the light emitting element of the present invention is applied to a light source of an optical fiber gyro as a light emitting diode, a system that is stable with respect to returning light and highly efficient can be configured. In addition, since the temporal coherency is low, an external resonator is not formed, so that there is an advantage that the output becomes stable. This also makes it possible to eliminate output instability due to wavelength fluctuations.

【0017】[0017]

【実施例】【Example】

(実施例1)本発明の第1の実施例を図1を用いて説明
する。まず、本発明の半導体発光装置の作製方法につい
て述べる。
(Embodiment 1) A first embodiment of the present invention will be described with reference to FIG. First, a method for manufacturing the semiconductor light emitting device of the present invention will be described.

【0018】n−GaAs(100)面の基板1上に、
分子線エピタキシ(MBE)法により、n−AlAsの
低屈折率層2とn−Ga0.8Al0.2Asの高屈折率層3
を25周期積層し、n型ブラッグ反射器4を形成する。
ただし、各層の厚さは素子内部での波長λの1/4とす
る。また、ドーパントはSiであり、ドナー濃度ND
3×1018〔/cm3〕とする。次に、アンドープAl
As層5、nドープGaAs量子井戸層(厚さ10n
m、ドナー濃度5×1018〔/cm3〕)6、アンドー
プAlAs層7から成る共振器8を設ける。ただし、共
振器8の厚さはλ/2とする。続けて、P−Ga0.8
0.2Asの高屈折率層9(厚さλ/4、アクセプタ濃
度NA=4×1018〔/cm3〕)とp−AlAsの低屈
折率層10(厚さλ/4、NA=4×1018〔/c
3〕)を20周期積層し、p型ブラッグ反射器11を
形成する。また、電極との接触抵抗を下げるため、p−
GaAsキャップ層12を設ける。最後に、AuGeN
i−Cr−Auを蒸着してn型電極13を、また、Ti
−Mo−Auを蒸着してp型電極14を形成し、通常の
エッチング法によりp型電極の一部を除去することによ
り3μmφの円形の出射窓15を設け、図1に示す実施
例の半導体発光装置を作製する。
On the substrate 1 of n-GaAs (100) surface,
By the molecular beam epitaxy (MBE) method, a low refractive index layer 2 of n-AlAs and a high refractive index layer 3 of n-Ga 0.8 Al 0.2 As
Are laminated for 25 cycles to form the n-type Bragg reflector 4.
However, the thickness of each layer is 1/4 of the wavelength λ inside the element. The dopant is Si and the donor concentration N D is 3 × 10 18 [/ cm 3 ]. Next, undoped Al
As layer 5, n-doped GaAs quantum well layer (thickness: 10 n
m, donor concentration 5 × 10 18 [/ cm 3 ]) 6, and a resonator 8 composed of an undoped AlAs layer 7. However, the thickness of the resonator 8 is λ / 2. Continuously, P-Ga 0.8 A
l 0.2 As high-refractive index layer 9 (thickness λ / 4, acceptor concentration N A = 4 × 10 18 [/ cm 3 ]) and p-AlAs low-refractive index layer 10 (thickness λ / 4, N A = 4 × 10 18 [/ c
m 3 ]) are laminated for 20 cycles to form the p-type Bragg reflector 11. In addition, in order to reduce the contact resistance with the electrode, p-
A GaAs cap layer 12 is provided. Finally, AuGeN
i-Cr-Au is deposited to form the n-type electrode 13 and Ti.
-Mo-Au is vapor-deposited to form the p-type electrode 14, and a part of the p-type electrode is removed by an ordinary etching method to provide a circular emission window 15 of 3 [mu] m [phi], and the semiconductor of the embodiment shown in FIG. A light emitting device is manufactured.

【0019】上記実施例の装置において、10μA以下
の低電流動作が可能である。また、光ファイバージャイ
ロの光源として本実施例の半導体発光装置を用いること
により、戻り光に対して安定なシステムを構成できる。
また上記実施例では共振器8の厚さをλ/2としたが、
この厚さは0.4λ〜0.6λの範囲であれば同様の効
果を得ることができる。
The device of the above embodiment can operate at a low current of 10 μA or less. Further, by using the semiconductor light emitting device of the present embodiment as the light source of the optical fiber gyro, it is possible to construct a stable system against return light.
In the above embodiment, the thickness of the resonator 8 is λ / 2,
The same effect can be obtained if the thickness is in the range of 0.4λ to 0.6λ.

【0020】(実施例2)本発明の第2の実施例を図4
と図5を用いて説明する。図5は図4の多層領域の断面
図である。まず、本発明の半導体発光装置の作製方法に
ついて述べる。
(Embodiment 2) A second embodiment of the present invention is shown in FIG.
Will be described with reference to FIG. FIG. 5 is a cross-sectional view of the multi-layer region of FIG. First, a method for manufacturing the semiconductor light emitting device of the present invention will be described.

【0021】図4に示すn−GaAs(100)面の基
板1上に、MBE法により、図5に示すn−AlAsの
低屈折率層31(厚さλ/4、ドナー濃度ND=3×1
18〔/cm3〕)とn−GaAsの高屈折率層(厚さ
λ/4、ND=3×1018〔/cm3〕)を25.5周期
積層し、n型ブラッグ反射器33を形成する。次に、ア
ンドープGa0.8Al0.2As層34、nドープIn0.2
Ga0.8As歪み量子井戸層(厚さ7nm、ドナー濃度
5×1018〔/cm3〕)35、アンドープ層Ga0.8
0.2As層36から成る共振器37を設ける。ただ
し、共振器37の厚さはλとする。続けて、p−AlA
sの低屈折率層38(厚さλ/4、NA=4×10
18〔/cm3〕)とp−GaAsの高屈折率層39(厚
さλ/4、NA=4×1018〔/cm3〕)を20.5周
期積層し、p型ブラック反射器40を形成する。また、
電極との接触抵抗を下げるため、p−GaAsキャップ
層12を設ける。
On the n-GaAs (100) plane substrate 1 shown in FIG. 4, a low refractive index layer 31 (thickness λ / 4, donor concentration N D = 3 of n-AlAs shown in FIG. 5 is formed by the MBE method. × 1
0 18 [/ cm 3 ]) and a high refractive index layer of n-GaAs (thickness λ / 4, N D = 3 × 10 18 [/ cm 3 ]) are laminated for 25.5 periods to form an n-type Bragg reflector. 33 is formed. Next, the undoped Ga 0.8 Al 0.2 As layer 34 and the n-doped In 0.2
Ga 0.8 As strained quantum well layer (thickness 7 nm, donor concentration 5 × 10 18 [/ cm 3 ]) 35, undoped layer Ga 0.8 A
A resonator 37 composed of a 0.2 As layer 36 is provided. However, the thickness of the resonator 37 is λ. Continuously, p-AlA
s low refractive index layer 38 (thickness λ / 4, N A = 4 × 10
18 [/ cm 3 ]) and a high refractive index layer 39 of p-GaAs (thickness λ / 4, N A = 4 × 10 18 [/ cm 3 ]) are laminated for 20.5 periods to form a p-type black reflector. 40 is formed. Also,
The p-GaAs cap layer 12 is provided to reduce the contact resistance with the electrodes.

【0022】実施例1の場合、導波路構造が量子井戸面
内(x−y面内)で対称であるため、光偏向方向がx−
y面内で自由であり、自然放出光が発光モードに結合す
る割合βの最大値は0.5になる。一方、図4の構造
は、さらに、βの値を向上させるために、エッチングに
よりメサ形状を楕円形(長軸の長さ4μm、短軸の長さ
2μm)にする。ここで、エッチングはn型ブラッグ反
射器33に到達するように行う。最後に、AuGeNi
−Cr−Auを蒸着してn型電極13を設け、さらに、
メサの側部をポリイミド41で埋め込んだ後、Ti−M
o−Auを蒸着してp型電極14を形成する。
In the case of Example 1, since the waveguide structure is symmetrical in the quantum well plane (in the xy plane), the light deflection direction is x-.
It is free in the y-plane, and the maximum value of the ratio β at which spontaneous emission light is coupled to the emission mode is 0.5. On the other hand, in the structure of FIG. 4, in order to further improve the value of β, the mesa shape is made into an ellipse (long axis length 4 μm, short axis length 2 μm) by etching. Here, the etching is performed so as to reach the n-type Bragg reflector 33. Finally, AuGeNi
-Cr-Au is vapor-deposited to provide the n-type electrode 13, and
After embedding the side of the mesa with polyimide 41, Ti-M
The p-type electrode 14 is formed by evaporating o-Au.

【0023】上記実施例の装置ではメサ構造になってい
るため、発光領域の体積が実施例1よりも実効的に小さ
い。よって、1μA以下の低電流動作が可能である。ま
た、光ファイバージャイロの光源として本実施例の半導
体発光装置を用いることにより、戻り光に対して安定な
システムを構成できる。また上記実施例では共振器37
の厚さをλとしたが、この厚さは0.9λ〜1.1λの
範囲であれば同様の効果を得ることができる。
Since the device of the above embodiment has the mesa structure, the volume of the light emitting region is effectively smaller than that of the first embodiment. Therefore, low current operation of 1 μA or less is possible. Further, by using the semiconductor light emitting device of the present embodiment as the light source of the optical fiber gyro, it is possible to construct a stable system against return light. Further, in the above embodiment, the resonator 37
Although the thickness is set to λ, the same effect can be obtained if the thickness is in the range of 0.9λ to 1.1λ.

【0024】なお本発明は、実施例に示した以外の構造
にも有効である。例えば、素子の直列抵抗を低減するた
めに、ブラッグ反射器を形成している高屈折率層と低屈
折率層の間にグレーデッド層(組成が徐々に変化した
層)を設けた構造にも適用できる。また、本実施例で示
した以外の材料、例えば波長1.2〜1.6μmが得ら
れるInGaAsP/InP系や0.3〜0.6μmの
波長が実現できるII−VI族の材料でも有効である。
The present invention is also effective for structures other than those shown in the embodiments. For example, in order to reduce the series resistance of the device, a structure in which a graded layer (layer whose composition is gradually changed) is provided between the high refractive index layer and the low refractive index layer forming the Bragg reflector is also available. Applicable. Further, materials other than those shown in the present embodiment, for example, InGaAsP / InP system which can obtain a wavelength of 1.2 to 1.6 μm and II-VI group materials which can realize a wavelength of 0.3 to 0.6 μm are also effective. is there.

【0025】[0025]

【発明の効果】本発明によれば、量子井戸型発光層にn
型不純物が高ドープされているので、発光層自体での光
吸収量を低減できる。従って、マイクロ共振器型発光素
子の動作電流を大幅に低減できる。さらに、本発明の発
光素子は戻り光に対して安定であり、光出力の変動も少
ないため、本発光素子を光ファイバージャイロや光イン
ターコネクトが導入されているコンピュータシステムに
適用することで、システムの高性能化が図れる。
According to the present invention, the quantum well type light emitting layer has an n-type structure.
Since the type impurities are highly doped, the amount of light absorption in the light emitting layer itself can be reduced. Therefore, the operating current of the micro-resonator type light emitting device can be significantly reduced. Further, since the light emitting element of the present invention is stable with respect to return light and has little fluctuation in optical output, application of the light emitting element to a computer system in which an optical fiber gyro or an optical interconnect is introduced makes it possible to improve system performance. Performance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の半導体発光装置の断面図。FIG. 1 is a sectional view of a semiconductor light emitting device according to an embodiment of the present invention.

【図2】従来型半導体発光装置の多層領域の断面図。FIG. 2 is a cross-sectional view of a multi-layer region of a conventional semiconductor light emitting device.

【図3】発光レートとポンピングレートの関係を示す計
算図。
FIG. 3 is a calculation diagram showing a relationship between a light emission rate and a pumping rate.

【図4】本発明の実施例の半導体発光装置の断面図。FIG. 4 is a sectional view of a semiconductor light emitting device according to an embodiment of the present invention.

【図5】図4の多層領域の断面図。5 is a cross-sectional view of the multi-layer region of FIG.

【符号の説明】[Explanation of symbols]

1…n型基板、2,31…n型低屈折率層、3,32…
n型高屈折率層、4,21,33…n型ブラッグ反射
器、5,7…低屈折率層、6,35…nドープ量子井戸
層、8,25,37…共振器、9,39…p型高屈折率
層、10,38…p型低屈折率層、11,26,40…
p型ブラッグ反射器、12…p型キャップ層、13…n
型電極、14…p型電極、15…出射窓、22,24,
34,36…高屈折率層、23…アンドープ量子井戸
層、27…真空場の定在波、41…ポリイミド。
1 ... n type substrate, 2,31 ... n type low refractive index layer, 3,32 ...
n-type high refractive index layer, 4, 21, 33 ... n-type Bragg reflector, 5, 7 ... low refractive index layer, 6, 35 ... n-doped quantum well layer, 8, 25, 37 ... resonator, 9, 39 ... p-type high refractive index layer, 10, 38 ... p-type low refractive index layer 11, 26, 40 ...
p-type Bragg reflector, 12 ... p-type cap layer, 13 ... n
Mold electrode, 14 ... P-type electrode, 15 ... Exit window, 22, 24,
34, 36 ... High refractive index layer, 23 ... Undoped quantum well layer, 27 ... Standing wave in vacuum field, 41 ... Polyimide.

フロントページの続き (72)発明者 山西 正道 広島県東広島市鏡山一丁目4番1号Continued Front Page (72) Masamichi Yamanishi 1-4-1, Kagamiyama, Higashihiroshima City, Hiroshima Prefecture

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】所定の半導体基板上に、少なくとも第1半
導体と該第1半導体よりも屈折率の大きな第2半導体を
周期的に積層してなる第1半導体領域と、少なくとも第
3半導体と該第3半導体よりも屈折率の大きな第4半導
体を周期的に積層してなる第2半導体領域と、上記第1
半導体領域と上記第2半導体領域との間に挟まれた少な
くとも電子と正孔が発光再結合を生じる第5半導体から
なる第3半導体領域とを有し、上記第2半導体と上記第
4半導体は上記第3半導体領域に接しており、上記第3
半導体領域の実効的な屈折率の大きさは上記第2半導体
と上記第4半導体の屈折率に比べ小さく、半導体内での
発光波長をλとしたとき上記第3半導体領域の厚さdが
0.4λ≦d≦0.6λの関係を満たしており、上記第
5半導体もしくは該第5半導体に接した上記第3半導体
領域内の半導体層の少なくとも一部にn型不純物が添加
されていることを特徴とする半導体発光装置。
1. A first semiconductor region formed by periodically stacking at least a first semiconductor and a second semiconductor having a refractive index larger than that of the first semiconductor on a predetermined semiconductor substrate, at least a third semiconductor, and A second semiconductor region formed by periodically stacking a fourth semiconductor having a refractive index larger than that of the third semiconductor;
At least an electron and a hole sandwiched between the semiconductor region and the second semiconductor region include a third semiconductor region made of a fifth semiconductor that causes radiative recombination, and the second semiconductor and the fourth semiconductor are Is in contact with the third semiconductor region,
The effective refractive index of the semiconductor region is smaller than the refractive indices of the second semiconductor and the fourth semiconductor, and the thickness d of the third semiconductor region is 0 when the emission wavelength in the semiconductor is λ. .4λ ≦ d ≦ 0.6λ, and n-type impurities are added to at least a part of the fifth semiconductor or the semiconductor layer in the third semiconductor region in contact with the fifth semiconductor. And a semiconductor light emitting device.
【請求項2】上記第5半導体もしくは該第5半導体に接
した上記第3半導体領域内の半導体層の少なくとも一部
に添加されているn型不純物の濃度が1×1018〔/c
3〕以上であることを特徴とする請求項1記載の半導
体発光装置。
2. The concentration of the n-type impurity added to at least a part of the semiconductor layer in the third semiconductor region in contact with the fifth semiconductor or the fifth semiconductor is 1 × 10 18 [/ c
m 3 ] or more, The semiconductor light emitting device according to claim 1, wherein
【請求項3】動作電流が発振しきい値以下であることを
特徴とする請求項1又は2記載の半導体発光装置。
3. The semiconductor light emitting device according to claim 1, wherein the operating current is equal to or lower than the oscillation threshold value.
【請求項4】所定の半導体基板上に、少なくとも第1半
導体と該第1半導体よりも屈折率の大きな第2半導体を
周期的に積層してなる第1半導体領域と、少なくとも第
3半導体と該第3半導体よりも屈折率の大きな第4半導
体を周期的に積層してなる第2半導体領域と、上記第1
半導体領域と上記第2半導体領域との間に挟まれた少な
くとも電子と正孔が発光再結合を生じる第5半導体から
なる第3半導体領域とを有し、上記第1半導体と上記第
3半導体は上記第3半導体領域に接しており、上記第3
半導体領域の実効的な屈折率の大きさは、上記第1半導
体と上記第3半導体の屈折率に比べ大きく、半導体内で
の発光波長をλとしたとき第3半導体領域の厚さdが
0.9λ≦d≦1.1λの関係を満たしており、上記第
5半導体もしくは該第5半導体に接した上記第3半導体
領域内の半導体層の少なくとも一部にn型不純物が添加
されていることを特徴とする半導体発光装置。
4. A first semiconductor region formed by periodically stacking at least a first semiconductor and a second semiconductor having a refractive index larger than that of the first semiconductor on a predetermined semiconductor substrate, at least a third semiconductor and the third semiconductor region. A second semiconductor region formed by periodically stacking a fourth semiconductor having a refractive index larger than that of the third semiconductor;
At least an electron and a hole sandwiched between the semiconductor region and the second semiconductor region include a third semiconductor region made of a fifth semiconductor that causes radiative recombination, and the first semiconductor and the third semiconductor are Is in contact with the third semiconductor region,
The effective refractive index of the semiconductor region is larger than the refractive indices of the first semiconductor and the third semiconductor, and the thickness d of the third semiconductor region is 0 when the emission wavelength in the semiconductor is λ. .9λ ≦ d ≦ 1.1λ, and n-type impurities are added to at least a part of the fifth semiconductor or the semiconductor layer in the third semiconductor region in contact with the fifth semiconductor. And a semiconductor light emitting device.
【請求項5】上記第5半導体もしくは該第5半導体に接
した上記第3半導体領域内の半導体層の少なくとも一部
に添加されているn型不純物の濃度が1×1018〔/c
3〕以上であることを特徴とする請求項4記載の半導
体発光装置。
5. The concentration of the n-type impurity added to at least a part of the semiconductor layer in the third semiconductor region in contact with the fifth semiconductor or the fifth semiconductor has a concentration of 1 × 10 18 [/ c].
m 3 ] or more, the semiconductor light emitting device according to claim 4.
【請求項6】動作電流が発振しきい値以下であることを
特徴とする請求項4又は5記載の半導体発光装置。
6. The semiconductor light emitting device according to claim 4, wherein the operating current is equal to or lower than an oscillation threshold value.
【請求項7】請求項1乃至5のいずれかに記載の半導体
発光装置を光源に用いた光ファイバジャイロシステム。
7. An optical fiber gyro system using the semiconductor light emitting device according to claim 1 as a light source.
【請求項8】請求項1乃至5のいずれかに記載の半導体
発光装置を光インターコネクト用光源に用いたコンピュ
ータシステム。
8. A computer system using the semiconductor light emitting device according to claim 1 as a light source for an optical interconnect.
JP33050093A 1993-12-27 1993-12-27 Semiconductor light emitting device Pending JPH07193325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33050093A JPH07193325A (en) 1993-12-27 1993-12-27 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33050093A JPH07193325A (en) 1993-12-27 1993-12-27 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH07193325A true JPH07193325A (en) 1995-07-28

Family

ID=18233323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33050093A Pending JPH07193325A (en) 1993-12-27 1993-12-27 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH07193325A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232631A (en) * 1996-02-27 1997-09-05 Sumitomo Chem Co Ltd 3-5 compound semiconductor light emitting device
EP1035621A1 (en) * 1999-02-11 2000-09-13 CSEM Centre Suisse d'Electronique et de Microtechnique S.A. - Recherche et Développement A semiconductor laser device and method for fabrication thereof
JP2002185043A (en) * 2001-10-19 2002-06-28 Sumitomo Chem Co Ltd Method of manufacturing class iii-v compound semiconductor light-emitting element
JP2006041013A (en) * 2004-07-23 2006-02-09 Yokohama National Univ Light control element, light emitting element, and optical circuit device
JP2009239176A (en) * 2008-03-28 2009-10-15 Dowa Electronics Materials Co Ltd Light emitting element
US7881358B2 (en) 2006-12-27 2011-02-01 Nec Corporation Surface emitting laser
US7974328B2 (en) 2007-03-22 2011-07-05 Nec Corporation Surface-emission type semiconductor laser
JP2011166108A (en) * 2010-01-15 2011-08-25 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical scanner, and image forming apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232631A (en) * 1996-02-27 1997-09-05 Sumitomo Chem Co Ltd 3-5 compound semiconductor light emitting device
EP1035621A1 (en) * 1999-02-11 2000-09-13 CSEM Centre Suisse d'Electronique et de Microtechnique S.A. - Recherche et Développement A semiconductor laser device and method for fabrication thereof
JP2002185043A (en) * 2001-10-19 2002-06-28 Sumitomo Chem Co Ltd Method of manufacturing class iii-v compound semiconductor light-emitting element
JP2006041013A (en) * 2004-07-23 2006-02-09 Yokohama National Univ Light control element, light emitting element, and optical circuit device
US7881358B2 (en) 2006-12-27 2011-02-01 Nec Corporation Surface emitting laser
US7974328B2 (en) 2007-03-22 2011-07-05 Nec Corporation Surface-emission type semiconductor laser
JP2009239176A (en) * 2008-03-28 2009-10-15 Dowa Electronics Materials Co Ltd Light emitting element
JP2011166108A (en) * 2010-01-15 2011-08-25 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical scanner, and image forming apparatus

Similar Documents

Publication Publication Date Title
US5212706A (en) Laser diode assembly with tunnel junctions and providing multiple beams
US6320893B1 (en) Surface emitting semiconductor laser
US5416044A (en) Method for producing a surface-emitting laser
US6782032B2 (en) Semiconductor laser, ray module using the same and ray communication system
CA2049448C (en) Vertical cavity type vertical to surface transmission electrophotonic device
JP3052552B2 (en) Surface emitting semiconductor laser
US20090161716A1 (en) Laser diode
JPH06196681A (en) Light-receiving-and-emitting integrated element
EP0565374B1 (en) Vertical-to-surface transmission electrophotonic device
US6472691B2 (en) Distributed feedback semiconductor laser device
JPH10233557A (en) Semiconductor light emitting element
JP3219823B2 (en) Semiconductor light emitting device
US4941025A (en) Quantum well semiconductor structures for infrared and submillimeter light sources
JP4497859B2 (en) Surface emitting semiconductor laser device, optical transmission module, and optical transmission system
US7907653B2 (en) Vertical cavity surface emitting laser device and vertical cavity surface emitting laser array
JPH07193325A (en) Semiconductor light emitting device
US5852625A (en) Distributed feedback semiconductor laser
US20020146053A1 (en) Surface emitting semiconductor laser device
US5956364A (en) Vertical cavity surface emitting laser with shaped cavity mirror and method of fabrication
JP5381692B2 (en) Semiconductor light emitting device
JP4134366B2 (en) Surface emitting laser
JPH07307525A (en) Surface emission semiconductor laser
JP2901921B2 (en) Semiconductor laser device
US20010017871A1 (en) High-power semiconductor laser device in which near-edge portions of active layer are removed
JP2007299895A (en) Surface emitted laser element, surface emitted laser array having the same, electronic photographing system having surface emitted laser element or surface emitted laser array, optical interconnection system having surface emitted laser element or surface emitted laser array, and optical communication system having surface emitted laser element or surface emitted laser array