JPH07192891A - Manufacture of low iron-loss grain oriented silicon steel plate and plasma generating device - Google Patents

Manufacture of low iron-loss grain oriented silicon steel plate and plasma generating device

Info

Publication number
JPH07192891A
JPH07192891A JP5335638A JP33563893A JPH07192891A JP H07192891 A JPH07192891 A JP H07192891A JP 5335638 A JP5335638 A JP 5335638A JP 33563893 A JP33563893 A JP 33563893A JP H07192891 A JPH07192891 A JP H07192891A
Authority
JP
Japan
Prior art keywords
plasma
steel plate
oriented silicon
silicon steel
plasma flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5335638A
Other languages
Japanese (ja)
Other versions
JP3174451B2 (en
Inventor
Michiro Komatsubara
道郎 小松原
Masayoshi Ishida
昌義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP33563893A priority Critical patent/JP3174451B2/en
Publication of JPH07192891A publication Critical patent/JPH07192891A/en
Application granted granted Critical
Publication of JP3174451B2 publication Critical patent/JP3174451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Plasma Technology (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To reduce the iron loss by radiating sheet-like plasma at a high convergency to the surface of a grain oriented silicon steel plate, to which the final finish annealing is already performed, and finely dividing a magnetic domain. CONSTITUTION:An opening 1a of a positive electrode 1 is formed into a rectangular shape, and a tip part of a negative electrode 2 is formed straight, and a direct current power source 3 is applied between the positive electrode 1 and the negative electrode 2. Heat plasma is generated between the tip of the positive electrode 1 and the tip of the negative electrode 2. At this stage, the carrier gas supplied through a lead-in pipe 5 works as a carrier of plasma flow, and convergency of plasma can be improved by the cooling by the carrier gas. The plasma flow is formed into a sheet-like plasma by scanning of a magnetic field by a magnetic field generating device 4, and radiated toward the surface of the steel plate S from the opening 1a. When the convergent plasma flame P is radiated on the surface of a grain oriented silicon steel plate, to which the final finish annealing is already performed, a magnetic domain can be finely divided. Radiation efficiency of plasma flame P is thereby improved, and since the stability of the radiation efficiency is increased to obtain a steel plate S having the excellent magnetic characteristic and the excellent film-coated characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、最終仕上焼鈍済の方
向性けい素鋼板の表面に、線状に熱歪みを付与して磁区
の細分化を図り、鉄損のより一層低減しようとする技術
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention intends to further reduce iron loss by subdividing magnetic domains by linearly applying thermal strain to the surface of grain-finished silicon steel sheet that has undergone final annealing. It is about technology.

【0002】[0002]

【従来の技術】方向性けい素鋼板は、主として変圧器、
その他の電気機器の鉄心として利用され、その磁化特性
が優れていること、とくに鉄損(最大磁束密度1.7 T,
50Hzの周波数で交番に磁化した時の鉄損であるW17/50
や最大磁束密度1.5 T,60Hz の周波数で交番に磁化した
時の鉄損であるW15/60 で代表される) が低いことが要
求されている。
2. Description of the Related Art Grain-oriented silicon steel sheets are mainly used for transformers,
It is used as an iron core for other electrical equipment and has excellent magnetization characteristics, especially iron loss (maximum magnetic flux density 1.7 T,
Iron loss when alternatingly magnetized at a frequency of 50Hz W 17/50
And a maximum magnetic flux density of 1.5 T, which is an iron loss when alternately magnetized at a frequency of 60 Hz (represented by W 15/60 ), is required to be low.

【0003】そのためには、第一に、鋼板中の二次再結
晶粒を (110)[001] 方位 (通常、ゴス方位と呼称され
る) に高度に揃えることが必要であり、第二には、最終
製品の鋼中に存在する不純物や析出物をできるだけ減少
させる必要がある。
For that purpose, first, it is necessary to highly align the secondary recrystallized grains in the steel sheet with the (110) [001] orientation (usually referred to as the Goss orientation), and secondly It is necessary to reduce impurities and precipitates existing in the final product steel as much as possible.

【0004】かかる配慮の基に製造される方向性けい素
鋼板は、今日まで大きくの改善努力によって、その鉄損
値も年を追って改善され、最近では板厚0.23mmの製品で
17 /50 の値が、0.83w/kg,W15/60 の値が0.35w/lb
の低鉄損のものが得られている。
[0004] oriented silicon steel sheet to be produced to such a consideration of the group, by efforts to improve significantly until today, the iron loss value is also improved year to year, W 17/50 product with a thickness of 0.23mm in recent years Value is 0.83w / kg, W 15/60 value is 0.35w / lb
Low iron loss is obtained.

【0005】ところで、近年、鋼板の表面に対し物理的
な手段で不均一性を導入し、磁区の幅を細分化して鉄損
を低減する技術が開発されてきた。
By the way, in recent years, a technique has been developed in which non-uniformity is introduced into the surface of a steel sheet by physical means to subdivide the width of magnetic domains to reduce iron loss.

【0006】例えば、特公昭57-2252 号公報には、最終
製品板の表面に、圧延方向にほぼ直角にレーザービーム
を数mm間隔で照射し、鋼板表層に高転位密度領域を導入
することにより磁区の幅を微細化し鉄損を低減する技術
が提案されている。
For example, in Japanese Examined Patent Publication No. 57-2252, a surface of a final product sheet is irradiated with a laser beam at intervals of several mm at a substantially right angle to the rolling direction to introduce a high dislocation density region into the surface layer of the steel sheet. Techniques have been proposed to reduce the width of magnetic domains to reduce iron loss.

【0007】また、特開昭62-96617号公報には、プラズ
マ炎を局部的に鋼板の表層に放射しこれによって磁区の
幅を微細化して鉄損の低減を図る技術が提案されてい
る。
Further, Japanese Patent Application Laid-Open No. 62-96617 proposes a technique for locally radiating a plasma flame to the surface layer of a steel sheet to thereby miniaturize the width of magnetic domains to reduce iron loss.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特公昭
57-2252 号公報に開示されているようにパルスレーザー
を照射する方法や特開昭59-33802号公報に開示されてい
るような連続レーザーを照射する方法では、鋼板表面の
絶縁被膜が剥離し、変圧器等において短絡による機器の
損傷を招くため再コーティングが不可欠である他、レー
ザー励起用ランプの寿命が長くないことや鋼板表面の色
調の変化に従ってレーザー光の吸収率の変動が不可避で
あるためにその効果が一定でない欠点があった。
[Problems to be Solved by the Invention]
In the method of irradiating a pulse laser as disclosed in JP-A-57-2252 and the method of irradiating a continuous laser as disclosed in JP-A-59-33802, the insulating film on the surface of the steel sheet is peeled off. Recoating is indispensable because it causes equipment damage due to short circuit in transformers, etc., and laser light absorption rate fluctuations are unavoidable due to the fact that the life of the laser excitation lamp is not long and the color tone of the steel plate surface changes. Therefore, there was a drawback that the effect was not constant.

【0009】これに対して、特開昭62-96617号公報に開
示されているプラズマ炎の放射技術は、レーザーを照射
する場合のような問題の解決をある程度避けることはで
きるけれども、鋼板の鉄損低減効果の安定性の確保と絶
縁被膜の剥離, 脱落を回避するまでには至っていなのが
現状であった。
On the other hand, the plasma flame radiating technique disclosed in Japanese Patent Laid-Open No. 62-96617 can avoid the problem of laser irradiation to some extent, but it is a steel sheet steel. The current situation is that the stability of the loss reduction effect is ensured and the peeling and dropping of the insulating coating is avoided.

【0010】その理由は、プラズマ炎の安定性が悪いた
めであり、以下に述べるように、プラズマ炎の収束性の
変動によって突発的な欠陥が発生するためであった。
The reason for this is that the stability of the plasma flame is poor, and as described below, a sudden defect occurs due to fluctuations in the convergence of the plasma flame.

【0011】すなわち、従来から使用されているプラズ
マ発生装置は先端部分にオリフィスを有するトーチを備
えた構造になっていて (図2参照) 、これによって発生
する熱プラズマは円筒状のジェットであり、鋼板表面に
プラズマが放射されるとその部分は円状となるため、鋼
板にプラズマ炎を放射するに当たっては、それを線状
に、しかも板の長手方向である圧延方向に対してほぼ直
交する向きに放射すべく、かかるトーチを移動させる必
要があることにより、以下の2点が問題となっていた。
That is, the conventional plasma generator has a structure with a torch having an orifice at its tip (see FIG. 2), and the thermal plasma generated by this is a cylindrical jet, When plasma is radiated onto the surface of the steel sheet, that part becomes circular.Therefore, when radiating the plasma flame onto the steel sheet, it should be oriented linearly and in a direction substantially orthogonal to the rolling direction, which is the longitudinal direction of the sheet. Since it is necessary to move the torch in order to irradiate the light, the following two points have been problems.

【0012】まず、第1の問題としては、プラズマ流の
収束性が悪いのでトーチの先端から鋼板表面に至るまで
の間の間隔を0.3 〜1.0 mm程度に制御しなければなら
ず、この調整が不十分である場合、例えば上記の間隔が
大き過ぎる場合には、プラズマ炎の放射による鉄損低減
効果が得られず、逆に間隔が小さ過ぎる場合には、鋼板
表面の絶縁被膜が剥離、脱落するといった不具合があっ
た。
First, as the first problem, since the convergence of the plasma flow is poor, the interval between the tip of the torch and the surface of the steel plate must be controlled to about 0.3 to 1.0 mm. If it is insufficient, for example, if the above interval is too large, the effect of reducing iron loss due to plasma flame radiation cannot be obtained, and conversely, if the interval is too small, the insulating coating on the steel plate surface peels off or falls off. There was a problem such as doing.

【0013】第2の問題としては、プラズマトーチを鋼
板の長手方向に移動させる場合、トーチの先端から鋼板
表面に至るまでの距離を一定に保つように調整する必要
があるため、その移動速度が極めて遅いものとならざる
を得ず、処理効率が極めて悪かった。
The second problem is that when the plasma torch is moved in the longitudinal direction of the steel sheet, it is necessary to adjust the distance from the tip of the torch to the surface of the steel sheet so that the moving speed is constant. It had to be extremely slow and the processing efficiency was extremely poor.

【0014】このような状況下で、現実的な処理効率を
確保しようとすれば、プラズマトーチの設置個数を増や
すのが有効であるが、数百本のトーチを付設した設備を
実際に稼働させた場合には、個々のトーチの位置調整、
電圧制御、キャリアガスの流量制御、さらには維持管理
が大変であり、稼働率が却って急激に低下する一方で、
鋼板の磁気特性の不良や絶縁被膜の剥離、脱落といった
品質不良を引き起こすことが懸念された。
Under such circumstances, it is effective to increase the number of installed plasma torches in order to secure a realistic processing efficiency, but it is necessary to actually operate equipment equipped with several hundred torches. Position adjustment of individual torches,
Voltage control, carrier gas flow rate control, and even maintenance are difficult, and while the operating rate declines sharply,
It was feared that the magnetic properties of the steel sheet would be poor and that the insulating coating would be peeled off or dropped.

【0015】この発明の目的は、プラズマ炎を放射する
際にしばしば発生する鉄損低減効果の不安定さ、絶縁被
膜の剥離, 脱落による欠陥の発生、さらには、本質的に
高能率化を図ることができないという問題に対してこれ
を解決し、極めて低い鉄損を有する方向性けい素鋼板を
得ることができる方法および装置を提案するところにあ
る。
The object of the present invention is to achieve the instability of the iron loss reducing effect that often occurs when radiating a plasma flame, the generation of defects due to the peeling and dropping of the insulating coating, and the essentially higher efficiency. This is to solve the problem of being unable to do so, and propose a method and apparatus capable of obtaining a grain-oriented silicon steel sheet having extremely low iron loss.

【0016】[0016]

【課題を解決するための手段】この発明は、最終仕上焼
鈍済の方向性けい素鋼板の表面に、磁界の作用下に高度
に収束させたシート状のプラズマ炎を放射して磁区の細
分化を図ることを特徴とする低鉄損方向性けい素鋼板の
製造方法 (第1発明) である。
According to the present invention, a sheet-shaped plasma flame highly converged under the action of a magnetic field is radiated on the surface of a grain-finished grain-finished silicon steel sheet subjected to final finish annealing to subdivide magnetic domains. Is a method for manufacturing a low iron loss grain-oriented silicon steel sheet (first invention).

【0017】また、この発明は、鋼板の板幅方向に沿っ
て延びたスリット状の開口を有する陽極とこの陽極の開
口に望んで配置される陰極とを備え、該開口部分から最
終仕上焼鈍済の方向性けい素鋼板に向けてプラズマ炎を
放射する装置であって、上記装置に、陽極および陰極の
先端部分を取り囲む磁界発生装置を配置してなる、プラ
ズマ発生装置 (第2発明) である。
Further, the present invention comprises an anode having a slit-shaped opening extending along the plate width direction of the steel sheet, and a cathode optionally arranged in the opening of the anode, and finally finish-annealed from the opening portion. Is a device for radiating a plasma flame toward a grain-oriented silicon steel sheet, and is a plasma generator (second invention) in which a magnetic field generator surrounding the tip portions of the anode and the cathode is arranged in the device. .

【0018】さて、図1にこの発明に従う装置の構成を
示す。図中1は陽極であって、この陽極1には鋼板Sの
幅方向に沿って延びるスリット状の開口 (オリフィス)
1aを有する。
Now, FIG. 1 shows the structure of the apparatus according to the present invention. In the figure, reference numeral 1 denotes an anode, and the anode 1 has a slit-shaped opening (orifice) extending along the width direction of the steel plate S.
Have 1a.

【0019】また、2は陰極であり、この陰極2は陽極
1の開口1aにのぞむように配置され、陽極1と陰極2
とによってプラズマトーチを構成する。また3は陽極1
と陰極2との間に配置される直流電源、4は、陽極1お
よび陰極2の先端部分を取り囲む磁界発生装置であっ
て、この磁界発生装置4は交流電源4aを有する。5は
プラズマトーチ内にキャリアガスを供給するための導入
管、そして6は陽極1と陰極2との間に配置される絶縁
物である。
Reference numeral 2 is a cathode, and this cathode 2 is arranged so as to look into the opening 1a of the anode 1.
And form a plasma torch. 3 is the anode 1
A DC power supply 4 arranged between the cathode 2 and the cathode 2 is a magnetic field generator surrounding the tip portions of the anode 1 and the cathode 2, and the magnetic field generator 4 has an AC power supply 4a. Reference numeral 5 is an introduction pipe for supplying a carrier gas into the plasma torch, and 6 is an insulator arranged between the anode 1 and the cathode 2.

【0020】上記の構成になるリニア型の装置において
は、陽極1の開口1aが矩形状に、また、陰極2の先端
部分も直線状になっており、これらの間に直流電圧を印
加することによって陽極1の先端と陰極2先端との一部
の間で熱プラズマを発生させる。導入管5より供給され
たキャリアガスはプラズマ流の担い手になるとともに、
それによる冷却によってプラズマの収束性が高められる
一方、磁界発生装置4による磁界の走査によってシート
状のプラズマ (図1のP) となって開口1aから鋼板S
の表面へ向けて放射される。
In the linear type device having the above structure, the opening 1a of the anode 1 is rectangular and the tip portion of the cathode 2 is also linear, and a DC voltage should be applied between them. A thermal plasma is generated between the tip of the anode 1 and a portion of the tip of the cathode 2. The carrier gas supplied from the introduction pipe 5 becomes a carrier of the plasma flow,
While the converging property of the plasma is improved by the cooling by the cooling, the sheet-shaped plasma (P in FIG. 1) is formed by the scanning of the magnetic field by the magnetic field generator 4, and the steel plate S is passed through the opening 1a.
Is emitted toward the surface of.

【0021】[0021]

【作用】従来のプラズマトーチにて発生する熱プラズマ
は、プラズマ内の温度分布が大きく、鋼板の長手方向に
沿ってトーチを移動させる場合にもこの温度分布を解消
することはできない。また、かかるトーチを複数個配列
した配列した場合にも当然、鋼板の長手方向に温度分布
が発生し、これが熱歪分布となり鉄損低減効果の不均一
をもたらしていたが、この発明によれば、熱プラズマを
スリット状にできるためその温度分布は均一であり、板
の長手方向における熱歪分布も非常に小さくなる。
The thermal plasma generated by the conventional plasma torch has a large temperature distribution in the plasma, and this temperature distribution cannot be eliminated even when the torch is moved along the longitudinal direction of the steel sheet. Further, even when a plurality of such torches are arranged, naturally, a temperature distribution is generated in the longitudinal direction of the steel sheet, which results in a thermal strain distribution, resulting in non-uniformity of the iron loss reducing effect. Since the thermal plasma can be formed in a slit shape, its temperature distribution is uniform, and the thermal strain distribution in the longitudinal direction of the plate is extremely small.

【0022】また、この発明においては、磁界の走査
(揺動) によってプラズマをシート状にできるので、板
の幅方向においてトーチを移動させる必要がなくなると
同時にトーチと鋼板表面との距離を大きくできるので高
速で走行するような鋼板を対象とするような場合におい
てもその長手方向に極めて短時間でプラズマ炎を放射す
ることができ、鉄損の改善効果の安定化、絶縁被膜の剥
離, 脱落の防止を図ることができるだけでなく、設備の
簡素化 (プラズマトーチが少なくてすむ) 、電気回路系
の単純化が可能であり、さらにキャリアガス流の制御、
装置の位置の調整あるはその維持管理が極めて容易とな
る。
In the present invention, the magnetic field scanning is performed.
Since the plasma can be made into a sheet shape by (swing), it is not necessary to move the torch in the width direction of the plate, and at the same time the distance between the torch and the surface of the steel plate can be increased. Even in such cases, plasma flame can be radiated in the longitudinal direction in an extremely short time, stabilizing the improvement effect of iron loss, preventing peeling and dropping of the insulating coating, and simplifying the equipment. (Requires less plasma torch), simplification of electric circuit system, control of carrier gas flow,
Adjustment or maintenance of the position of the device becomes extremely easy.

【0023】磁界の印加によってプラズマ炎の拡散が抑
制される機構は下記のとおりである。磁界を印加しない
場合、プラズマを構成する粒子間の衝突((a)同種粒
子間衝突(イオン対イオンまたは電子対電子)と(b)
異種の粒子間の衝突(イオン対電子、イオン対中性原
子、または電子対中性原子))とによって各種粒子が拡
散していく。すなわち、同種粒子の場合、クーロン反発
力によって運動方向を変えた後、2つの粒子の質量中心
をプラズマ炎の中心として、プラズマ炎から遠ざかる方
向へ移動して、これが拡散の駆動力となる。
The mechanism by which the diffusion of the plasma flame is suppressed by applying the magnetic field is as follows. When no magnetic field is applied, collisions between particles forming plasma ((a) collisions between particles of the same kind (ion pair ions or electron pair electrons) and (b))
Various particles diffuse due to collision between different kinds of particles (ion pair electron, ion pair neutral atom, or electron pair neutral atom). That is, in the case of the same kind of particles, after changing the motion direction by the Coulomb repulsive force, the mass centers of the two particles are moved in the direction away from the plasma flame with the center of the mass of the plasma flame as the driving force for diffusion.

【0024】また異種の粒子間の衝突の場合、イオン対
電子の衝突により中性電子となるか、各速度を反対にし
て飛び出す。その際、質量の違いから電子は大きく跳ね
飛び大きく拡散していくが、イオンは電子との頻繁な衝
突の結果わずかに移動するにすぎない。さらにイオンと
中性原子との衝突の場合には中性原子の速度とは無関係
にイオンは最初の位置から遠ざかってしまう。
Further, in the case of collision between different kinds of particles, they become neutral electrons due to collision of ion-pair electrons, or jump out with their respective velocities reversed. At that time, the electrons bounce greatly due to the difference in mass and diffuse widely, but the ions move only slightly as a result of frequent collisions with the electrons. Furthermore, in the case of collision between an ion and a neutral atom, the ion moves away from the initial position regardless of the velocity of the neutral atom.

【0025】このように、各種衝突によってイオンなら
びに電子は本質的にプラズマ炎中心から遠ざかる方向へ
移動して拡散していくが、ここで磁界が存在する場合、
磁界に垂直な平面において、イオンならびに電子は磁力
線を中心として旋回運動をしている。この時、上記の各
種、衝突の結果、イオンならびに電子の速度と向きは変
化するが、その後は、衝突前と異なる磁力線を軸として
旋回運動を継続するので、衝突後もプラズマ炎の中心か
ら遠ざかることはない。かかる機構によって各種粒子の
拡散が抑制され、プラズマ炎の収束性が向上するわけで
ある。したがって、印加する磁界の向きはプラズマ炎の
方向と平行であることが必要で、この磁界は、プラズマ
発生装置の陽極および陰極の先端部分を取り囲む電導体
のコイルに電流を流すことによって発生させることがで
きる。
Thus, due to various collisions, the ions and electrons essentially move in the direction away from the center of the plasma flame and diffuse, but when a magnetic field exists,
In the plane perpendicular to the magnetic field, the ions and electrons make a swirling motion around the lines of magnetic force. At this time, the speed and direction of the ions and electrons change as a result of the above various collisions, but after that, since the swirling motion continues around the magnetic field line different from that before the collision, it keeps away from the center of the plasma flame even after the collision. There is no such thing. This mechanism suppresses the diffusion of various particles and improves the convergence of the plasma flame. Therefore, it is necessary that the direction of the applied magnetic field is parallel to the direction of the plasma flame, and this magnetic field is generated by passing a current through a coil of an electric conductor that surrounds the tips of the anode and cathode of the plasma generator. You can

【0026】次に、この発明に適合する鋼板の製造要領
について説明する。
Next, a description will be given of a method for manufacturing a steel plate suitable for the present invention.

【0027】この発明に適合する素材は、公知の製鋼
法、たとえば転炉、電気炉などによって製鋼し、さらに
造塊から分塊法または連続鋳造法などによってスラブ
(鋼片)としたのち、熱間圧延によって熱延コイルが適用
できる。
A material suitable for the present invention is produced by a known steelmaking method, for example, a converter, an electric furnace, etc., and further, a slab is produced from an ingot by a lumping method or a continuous casting method.
A hot rolled coil can be applied by hot rolling after making (steel).

【0028】上記の熱延コイルは、Siを2.0 〜4.5 %程
度含有する組成になるものであることが不可欠である。
というのは、Siが2.0 %未満では鉄損の劣化が大きく、
一方、4.5 %を超えると冷間加工性が劣化するからであ
る。その他の成分については方向性けい素鋼板の素材成
分であればいずれも適用可能である。
It is essential that the above hot rolled coil has a composition containing about 2.0 to 4.5% of Si.
The reason is that if the Si content is less than 2.0%, the iron loss is significantly deteriorated.
On the other hand, if it exceeds 4.5%, the cold workability deteriorates. As for the other components, any of the material components of the grain-oriented silicon steel sheet can be applied.

【0029】上記の熱延コイルは、最終目標板厚になる
まで冷間圧延するが、かかる冷間圧延は1回もしくは中
間焼鈍を挟む2回の冷間圧延を行う。この冷間圧延に際
しては、必要に応じて熱延板焼鈍や冷間圧延に替わる温
間圧延や圧延パス間において時効処理を施すこともでき
る。
The above hot-rolled coil is cold-rolled until it reaches the final target plate thickness, and such cold-rolling is performed once or twice between the intermediate annealings. In this cold rolling, if necessary, an aging treatment may be performed between warm rolling and hot rolling in place of cold rolling, or between rolling passes.

【0030】最終板厚に仕上げた冷延鋼板は脱炭焼鈍を
兼ねた1次再結晶焼鈍に供し、その後、焼鈍分離剤を鋼
板表面に塗布しコイル状に巻き取ってから最終仕上焼鈍
に供する。最終仕上焼鈍においては、2次再結晶が進行
し鋼板の結晶組織が完成していくとともに、鋼板内のS
やN等の有害不純物が除去される純化現象が進行してい
き、さらに鋼板の表面にはセラミックス多結晶質の絶縁
被膜が形成される。
The cold-rolled steel sheet finished to the final thickness is subjected to primary recrystallization annealing that also serves as decarburization annealing, and then an annealing separator is applied to the surface of the steel sheet and wound into a coil, and then subjected to final finishing annealing. . In the final finish annealing, secondary recrystallization proceeds to complete the crystal structure of the steel sheet, and
A purification phenomenon in which harmful impurities such as N and N are removed progresses, and a ceramic polycrystalline insulating film is formed on the surface of the steel sheet.

【0031】最終仕上焼鈍後は、未反応分離剤を鋼板表
面より除去してから、平滑化処理を施すが、この時、必
要に応じて絶縁コーティングを塗布、焼き付けるように
してもよい。
After the final finish annealing, the unreacted separating agent is removed from the surface of the steel sheet and then a smoothing treatment is carried out. At this time, an insulating coating may be applied and baked if necessary.

【0032】プラズマ炎の放射は、最終仕上焼鈍後であ
れば、いずれの段階でも、その効果を有するが、通常、
絶縁コーティングの焼付け後に行うのがよい。
The radiation of the plasma flame has the effect at any stage after the final finish annealing, but normally,
It is better to do it after baking the insulating coating.

【0033】プラズマ炎の放射に際して、最も効率のよ
い鉄損低減効果を得るには、プラズマ炎の線の厚さを20
〜1000μm 程度とするのがよく、その方向は板を横切る
向きであればよいが、より大きな効果を期待するには板
の長手方向に直交する向きとする。
In order to obtain the most effective iron loss reduction effect when the plasma flame is radiated, the thickness of the plasma flame wire is set to 20.
Approximately 1000 μm is preferable, and the direction should be a direction that crosses the plate, but in order to expect a greater effect, the direction should be orthogonal to the longitudinal direction of the plate.

【0034】プラズマ炎の板の長手方向に沿う放射間隔
は、最も効果が現れる3〜30mm程度とする。
The radiation interval along the longitudinal direction of the plate of the plasma flame is set to about 3 to 30 mm where the effect is most exerted.

【0035】プラズマトーチと鋼板表面との距離は、0.
1 〜50mmの範囲内で行う。
The distance between the plasma torch and the surface of the steel plate is 0.
Perform within the range of 1 to 50 mm.

【0036】プラズマ炎の放射は、鋼板の巻きもどし中
(走行している状態) の平面状態で行うようにしてもよ
く、またドラム等への巻き付け中の曲面状態で行うよう
にしてもよく、この点についてはとくに限定されない。
The radiation of the plasma flame is generated during the unwinding of the steel plate.
It may be performed in a flat state (while traveling) or may be performed in a curved state while being wound around a drum or the like, and this point is not particularly limited.

【0037】[0037]

【実施例】C:0.078 %, Si:3.26%, Mn:0.068 %,
P:0.01%、S:0.004 %, Se:0.019 %, Sb:0.026
%, N:0.0075%を含有する鋼スラブを1420℃の温度で
10分間加熱均熱したのち、熱間圧延により1.7 mmの熱延
コイルとし、次いでこれを1150℃で30秒間の焼鈍を施し
てからミストを用いて急冷、酸洗し、180 ℃の温度のも
とでゼンジマーミルにより厚さ0.19mmまで圧延し、さら
にH2:50%、露点:60℃, N2バランスの雰囲気下、850
℃,90 秒間の脱炭焼鈍を施し、TiO25%を含有するMgO
を塗布したのちコイル状に巻き取り最終仕上焼鈍に供し
た。最終仕上焼鈍の条件は、840 ℃で40時間のN2中での
保持と25%N2と75%H2の雰囲気で10℃/hr の速度で1200
℃までの昇温とH2中での1200℃,10 時間の保持とその後
の冷却を含むものである。最終仕上焼鈍後は、コイル表
面の未反応焼鈍分離剤を除去したのち、50%コロイダル
シリカと50%のりん酸マグネシウムを主成分とする張力
絶縁コーティングを塗布し平たん化処理を兼ねて800 ℃
で焼付け処理を施した。
Example: C: 0.078%, Si: 3.26%, Mn: 0.068%,
P: 0.01%, S: 0.004%, Se: 0.019%, Sb: 0.026
%, N: 0.0075% steel slab at a temperature of 1420 ℃
After heating and soaking for 10 minutes, a hot rolled coil of 1.7 mm is hot-rolled, annealed at 1150 ° C for 30 seconds, then rapidly cooled with a mist, pickled, and heated at 180 ° C. And then rolled to a thickness of 0.19mm with a Zenzimer mill, and further, H 2 : 50%, dew point: 60 ° C, N 2 balanced atmosphere, 850
MgO containing 5% TiO 2 after decarburization annealing at 90 ℃ for 90 seconds
Was applied and then wound into a coil and subjected to final annealing. The conditions for the final finish annealing are as follows: holding in N 2 at 840 ° C for 40 hours and 1200 ° C at a rate of 10 ° C / hr in an atmosphere of 25% N 2 and 75% H 2.
It includes heating up to ℃, holding at 1200 ℃ in H 2 for 10 hours, and then cooling. After the final finish annealing, after removing the unreacted annealing separator on the coil surface, a tension insulating coating containing 50% colloidal silica and 50% magnesium phosphate as the main components was applied to the flattening treatment at 800 ° C.
It was baked in.

【0038】上記の要領にて得たコイルにつき、上掲図
1に示し装置を用いて下記の条件でプラズマ炎を放射し
て磁区の細分化処理を行い、コイルの10箇所について磁
気特性、絶縁被膜の剥離, 脱落状況について調査した。
その結果を通常の磁区細分化処理を行った場合の結果と
ともに表1に示す。
With respect to the coil obtained in the above manner, a plasma flame was radiated under the following conditions using the device shown in FIG. The state of peeling and falling of the coating was investigated.
The results are shown in Table 1 together with the results when the usual magnetic domain subdivision processing was performed.

【0039】条件 トーチの電圧:30V トーチの電流:50000 A トーチの出力:1500 kW トーチ先端からコイル表面に至るまでの距離:15mm コイルの通板速度:30m/min 磁場の印加条件 磁束密度:5000ガウス キャリア
ガス:Ar コイルの長手方向におけるプラズマ炎の放射間隔:5mm プラズマ炎の照射幅 (線の幅) :150 μm
Conditions Torch voltage: 30 V Torch current: 50000 A Torch output: 1500 kW Distance from torch tip to coil surface: 15 mm Coil passing speed: 30 m / min Magnetic field application condition Magnetic flux density: 5000 Gaussian carrier gas: Ar coil radiation interval in the longitudinal direction of the coil: 5 mm Plasma flame irradiation width (line width): 150 μm

【0040】[0040]

【表1】 [Table 1]

【0041】従来の処理条件 図2に示したトーチを20列にしてコイルの長手方向に5
個並べてトーチを機械的にコイルの幅方向に移動させて
プラズマ炎を放射 トーチの電圧:45V トーチの電流:3000A トーチの出力:135 kW トーチ先端からコイル表面に至るまでの距離:0.5 mm コイルの通板速度:10m/min キャリアガス:Ar コイルの長手方向におけるプラズマ炎の放射間隔:5mm プラズマ炎の放射幅 (線の幅) :150 μm
Conventional processing conditions The torch shown in FIG.
The torch is mechanically moved in the width direction of the coil to radiate the plasma flame side by side. Torch voltage: 45 V Torch current: 3000 A Torch output: 135 kW Distance from torch tip to coil surface: 0.5 mm Plate passing speed: 10 m / min Carrier gas: Ar Radiation interval of plasma flame in longitudinal direction of coil: 5 mm Radiation width of plasma flame (line width): 150 μm

【0042】表1より明らかなように、この発明に従っ
て処理したコイルは磁気特性の改善効果が大きく、被膜
の剥離, 脱落も全くなく品質が安定していたのに対し
て、従来の要領に従って処理したものについては品質の
ばらつきがみられた。
As is clear from Table 1, the coil treated according to the present invention had a great effect of improving the magnetic characteristics, and the quality was stable without peeling or dropping of the coating film. There was a variation in the quality of the processed products.

【0043】[0043]

【発明の効果】かくして、この発明によれば、プラズマ
炎の放射効率を改善することができるだけでなく放射効
果の安定性が増すため磁気特性、被膜特性の優れた方向
性けい素鋼板の安定供給が可能となる。
As described above, according to the present invention, not only the radiation efficiency of the plasma flame can be improved, but also the stability of the radiation effect is increased, so that the stable supply of the grain-oriented silicon steel sheet having excellent magnetic characteristics and coating characteristics can be obtained. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に従う装置の構成説明図である。FIG. 1 is a structural explanatory view of an apparatus according to the present invention.

【図2】従来方式の装置の構成を示した図である。FIG. 2 is a diagram showing a configuration of a conventional device.

【符号の説明】[Explanation of symbols]

1 陽極 1a オリフィス 2 陰極 3 直流電源 4 磁界発生装置 5 ガス導入孔 6 絶縁物 S 鋼板 P プラズマ炎 1 Anode 1a Orifice 2 Cathode 3 DC power supply 4 Magnetic field generator 5 Gas introduction hole 6 Insulator S Steel plate P Plasma flame

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 最終仕上焼鈍済の方向性けい素鋼板の表
面に、収束性の高いシート状のプラズマ炎を放射して磁
区の細分化を図ることを特徴とする低鉄損方向性けい素
鋼板の製造方法。
1. A low iron loss grain-oriented silicon characterized by radiating a highly convergent sheet-like plasma flame to subdivide magnetic domains on the surface of a grain-finished grain-oriented silicon steel sheet subjected to final finish annealing. Steel plate manufacturing method.
【請求項2】 鋼板の板幅方向に沿って延びたスリット
状の開口を有する陽極とこの陽極の開口に望んで配置さ
れる陰極とを備え、該開口部分から最終仕上焼鈍済の方
向性けい素鋼板に向けてプラズマ炎を放射する装置であ
って、 上記装置に、陽極および陰極の先端部分を取り囲む磁界
発生装置を配置してなる、プラズマ発生装置。
2. A directional silica which is provided with an anode having a slit-shaped opening extending along the plate width direction of a steel sheet and a cathode which is arranged in the opening of the anode as desired, and from which the final finish annealing has been completed. A plasma generator for radiating a plasma flame toward a plain steel plate, which comprises a magnetic field generator surrounding the tip portions of the anode and the cathode.
JP33563893A 1993-12-28 1993-12-28 Method for producing low iron loss oriented silicon steel sheet and plasma generator Expired - Fee Related JP3174451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33563893A JP3174451B2 (en) 1993-12-28 1993-12-28 Method for producing low iron loss oriented silicon steel sheet and plasma generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33563893A JP3174451B2 (en) 1993-12-28 1993-12-28 Method for producing low iron loss oriented silicon steel sheet and plasma generator

Publications (2)

Publication Number Publication Date
JPH07192891A true JPH07192891A (en) 1995-07-28
JP3174451B2 JP3174451B2 (en) 2001-06-11

Family

ID=18290842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33563893A Expired - Fee Related JP3174451B2 (en) 1993-12-28 1993-12-28 Method for producing low iron loss oriented silicon steel sheet and plasma generator

Country Status (1)

Country Link
JP (1) JP3174451B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081297A1 (en) * 2004-02-25 2005-09-01 Hiroshima Industrial Promotion Organization Thin film heat treating method, heat treating device, thin-film semiconductor device manufacturing method, and electro-optic device
JP2018508647A (en) * 2014-12-24 2018-03-29 ポスコPosco Oriented electrical steel sheet and manufacturing method thereof
WO2020255552A1 (en) 2019-06-17 2020-12-24 Jfeスチール株式会社 Grain-oriented electromagnetic steel plate and production method therefor
KR20220070293A (en) 2019-12-25 2022-05-30 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
WO2022255172A1 (en) 2021-05-31 2022-12-08 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
WO2022255014A1 (en) 2021-05-31 2022-12-08 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
WO2022255013A1 (en) 2021-05-31 2022-12-08 Jfeスチール株式会社 Grain-oriented electrical steel sheet

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081297A1 (en) * 2004-02-25 2005-09-01 Hiroshima Industrial Promotion Organization Thin film heat treating method, heat treating device, thin-film semiconductor device manufacturing method, and electro-optic device
JP2018508647A (en) * 2014-12-24 2018-03-29 ポスコPosco Oriented electrical steel sheet and manufacturing method thereof
US11180819B2 (en) 2014-12-24 2021-11-23 Posco Grain-oriented electrical steel plate and production method therefor
US11866796B2 (en) 2019-06-17 2024-01-09 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method therefor
WO2020255552A1 (en) 2019-06-17 2020-12-24 Jfeスチール株式会社 Grain-oriented electromagnetic steel plate and production method therefor
KR20220009449A (en) 2019-06-17 2022-01-24 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
KR20220070293A (en) 2019-12-25 2022-05-30 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
WO2022255172A1 (en) 2021-05-31 2022-12-08 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
WO2022255013A1 (en) 2021-05-31 2022-12-08 Jfeスチール株式会社 Grain-oriented electrical steel sheet
KR20230164165A (en) 2021-05-31 2023-12-01 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet
KR20230167105A (en) 2021-05-31 2023-12-07 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet
KR20230173168A (en) 2021-05-31 2023-12-26 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet
WO2022255014A1 (en) 2021-05-31 2022-12-08 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP3174451B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
US8657968B2 (en) Grain-oriented electrical steel sheet and method of manufacturing the same
WO2013099219A1 (en) Device for improving core loss in grain-oriented electrical steel sheet
JPH05335128A (en) Manufacturing method of low iron-loss unidirectional silicon steel plate having excellent noise characteristic
JP5471839B2 (en) Method for producing grain-oriented electrical steel sheet
JP2022027234A (en) Directional electromagnetic steel plate
US4545828A (en) Local annealing treatment for cube-on-edge grain oriented silicon steel
JP3174451B2 (en) Method for producing low iron loss oriented silicon steel sheet and plasma generator
JP2012172191A (en) Production method for grain-oriented magnetic steel sheet
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JP6465048B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0772300B2 (en) Method for manufacturing low iron loss grain oriented silicon steel sheet
JPH062042A (en) Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
US20030180554A1 (en) Unidirectional silicon steel sheet of ultra-low iron loss and method for production thereof
KR0134088B1 (en) Low iron loss grain oriented silicon steel sheets & method of producing the same
WO2023195470A1 (en) Oriented electromagnetic steel sheet and method for producing same
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JPH0222423A (en) Iron loss reduction continuous treating equipment for grain oriented silicon steel sheet
JPH05179355A (en) Production of low-iron loss unidirectionally oriented silicon steel sheet
JPH04362139A (en) Manufacture of low core loss grain-oriented electrical steel sheet excellent in flatness degree
JPH0543944A (en) Manufacture of low iron loss grain-oriented silicon steel sheet
JPH05311241A (en) Manufacture of low core loss grain-oriented silicon steel sheet and irradiation device for electron beam
JPH10183312A (en) Grain oriented silicon steel sheet low in core loss and excellent in strain resisting characteristic and execution characteristic, and manufacture therefor
JP7040584B1 (en) A method for forming a groove on the surface of a metal strip and a method for manufacturing a grain-oriented electrical steel sheet.
JPH1017931A (en) Production of grain oriented silicon steel sheet
JPH0543945A (en) Manufacture of low iron loss grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees