JPH07192749A - Electrolyte flow-through type cell - Google Patents

Electrolyte flow-through type cell

Info

Publication number
JPH07192749A
JPH07192749A JP5347574A JP34757493A JPH07192749A JP H07192749 A JPH07192749 A JP H07192749A JP 5347574 A JP5347574 A JP 5347574A JP 34757493 A JP34757493 A JP 34757493A JP H07192749 A JPH07192749 A JP H07192749A
Authority
JP
Japan
Prior art keywords
battery
electric circuit
electrolytic solution
electrolyte
flow type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5347574A
Other languages
Japanese (ja)
Other versions
JP3193992B2 (en
Inventor
Kosuke Kurokawa
浩助 黒川
Takeshi Nozaki
健 野崎
Izumi Tsuda
泉 津田
Taketaka Wada
雄高 和田
Yuichi Akai
勇一 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Ebara Corp filed Critical Agency of Industrial Science and Technology
Priority to JP34757493A priority Critical patent/JP3193992B2/en
Publication of JPH07192749A publication Critical patent/JPH07192749A/en
Application granted granted Critical
Publication of JP3193992B2 publication Critical patent/JP3193992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To maintain current efficiency in a high level and reduce pump operating power for electrolyte circulation to enhance system efficiency by controlling electrolyte circulation by the opening-closing control of an automatic valve, and controlling output terminal voltage by the opening-closing control of an electric circuit switch. CONSTITUTION:An electrolyte flow-through type cell has a plurality of cell stacks (for example, 6 cell stacks), an electrolyte supplied to each negative electrode chamber of the cell stacks 1-6 is stored in a negative electrolyte tank 7, and circulated by a pump 9. Each output of cell stacks 1-6 is connected in series, and each connecting part of the cell stacks 106 is connected to an output terminal 12 through electric circuit switches 1b-6b. A controller 11 closes only the specified one switch of the switches 1b-6b according to output voltage or charging voltage. In addition, the controller 11 controls so as to close the positive side from the cell stack corresponding to the closed electric circuit switch, for example if the electric circuit switch 4b is closed, so as to close electrically operating valves 5a, 6a, 5b, 6b, 6c, 5d, 6d of the cell stacks 5, 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解液流通型電池に関
するもので、特に充放電に使用する電池スタック数を適
宜変更し高水準の電流効率を維持し、かつ、電解液循環
用のポンプ動力を低減しシステム効率の向上を図った電
解液流通型電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte flow type battery, and particularly to a pump for circulating an electrolyte solution which maintains a high level of current efficiency by appropriately changing the number of battery stacks used for charging and discharging. The present invention relates to an electrolyte flow type battery that reduces power and improves system efficiency.

【0002】[0002]

【従来技術】従来の電解液流通型電池の例として、レド
ックスフロ−電池について説明する。図7にレドックス
フロ−電池のセルの構造を示す。図示するようにレドッ
クスフロ−電池は、隔膜100cにより仕切られた正極
室100a及び負極室100bを有する電解液流通型電
解槽100、正極電解液タンク101、負極電解液タン
ク102、正極電解液を正極室100aに供給するポン
プ103、負極電解液を負極室100bに供給するポン
プ104及びそれらを接続する管で構成されている。ま
た、正極室100aには正電極100d、負極室100
bには負電極100eがそれぞれ設けられている。
2. Description of the Related Art A redox flow battery will be described as an example of a conventional electrolyte flow type battery. FIG. 7 shows the structure of a redox flow battery cell. As shown in the figure, the redox flow battery has an electrolytic solution flow type electrolytic cell 100 having a positive electrode chamber 100a and a negative electrode chamber 100b partitioned by a diaphragm 100c, a positive electrode electrolytic solution tank 101, a negative electrode electrolytic solution tank 102, and a positive electrode electrolytic solution. It is composed of a pump 103 for supplying the chamber 100a, a pump 104 for supplying the negative electrode electrolytic solution to the negative electrode chamber 100b, and a pipe connecting them. In addition, the positive electrode chamber 100a includes a positive electrode 100d and a negative electrode chamber 100.
Negative electrodes 100e are provided on b.

【0003】電解液としてクロムイオン塩酸溶液と鉄イ
オン塩酸溶液を使用する鉄−クロム電池を例に説明す
る。正極電解液タンク101には鉄イオン塩酸溶液が貯
えられ、同液はポンプ103によって正極室100aと
正極電解液タンク101とを循環する。負極電解液タン
ク102にはクロムイオン塩酸溶液が貯えられ、同液は
ポンプ104によって負極室100bと負極電解液タン
ク102とを循環する。
An iron-chromium battery using a chromium ion hydrochloric acid solution and an iron ion hydrochloric acid solution as an electrolytic solution will be described as an example. The iron ion hydrochloric acid solution is stored in the positive electrode electrolytic solution tank 101, and the solution is circulated between the positive electrode chamber 100 a and the positive electrode electrolytic solution tank 101 by the pump 103. A chromium ion hydrochloric acid solution is stored in the negative electrode electrolytic solution tank 102, and the solution is circulated between the negative electrode chamber 100b and the negative electrode electrolytic solution tank 102 by the pump 104.

【0004】上記構成のレドックスフロ−電池におい
て、正電極100d及び負電極100eの間に電圧を印
加して充電を行うと、正極室100aでは、 この状態で電気エネルギ−が貯蔵される。放電の場合
は、この逆の反応が起こり外部に電力を取り出すことが
出来る。
In the redox flow battery having the above structure, when a voltage is applied between the positive electrode 100d and the negative electrode 100e to perform charging, in the positive electrode chamber 100a, In this state, electric energy is stored. In the case of discharge, the opposite reaction occurs and electric power can be extracted to the outside.

【0005】レドックスフロ−型電池では、充電または
放電は、上記に示すように、電解液が組成変化すること
で進行し、各セル内の電極自体は変化しないため、充電
又は放電中に、必要に応じて使用セル数を変更すること
が可能となる。特開昭61−193375号公報及び、
特開平1−146269号公報に開示された技術はレド
ックスフロ−電池の上記に示す特徴を利用して、積層し
たレドックスフロ−電池本体にトリミング端子を設け
て、充電/放電運転中に使用セル数を切り替えて電圧調
整を行うものである。
In the redox flow type battery, charging or discharging proceeds as the composition of the electrolytic solution changes as described above, and the electrodes themselves in each cell do not change. Therefore, charging or discharging is required during charging or discharging. It is possible to change the number of cells used according to. Japanese Patent Laid-Open No. 61-193375 and
The technology disclosed in Japanese Patent Laid-Open No. 1-146269 utilizes the above-described characteristics of the redox flow battery, and provides trimming terminals on the body of the redox flow battery that is stacked, and the number of cells used during charge / discharge operation. Is switched to adjust the voltage.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この従
来の方法ではレドックスフロ−電池電圧を調整すること
は可能だが、運転中に不使用セルが生ずることにより電
流効率が低下し、更に、不使用セルに電解液を供給する
ポンプ動力が増加することによりシステム効率が低下す
ると云う問題がある。即ち、充電又は放電中に使用セル
数を切り替える場合、不使用セルに電解液を供給し続け
ると、セル内電極上で電解液の自己放電が進行し電流効
率の低下を招く。また不使用セルに対して無用な電解液
を供給することになるためポンプ動力の損失も増大する
ことになる(図2参照)。特に、規模が大きく、電池セ
ル数が複数個設定されるシステムでは、上記の影響が大
きくなり、ポンプ動力を含めたシステム効率が低下する
と云う問題点がある。
However, although it is possible to adjust the redox flow battery voltage by this conventional method, the current efficiency is lowered due to the generation of unused cells during operation, and further, the unused cells are There is a problem that the system efficiency decreases due to an increase in pump power for supplying the electrolytic solution to the. That is, when the number of used cells is switched during charging or discharging, if the electrolytic solution is continuously supplied to the unused cells, the self-discharge of the electrolytic solution progresses on the in-cell electrodes, resulting in a decrease in current efficiency. Further, since unnecessary electrolyte is supplied to the unused cells, the loss of pump power also increases (see FIG. 2). In particular, in a system having a large scale and a plurality of battery cells set, there is a problem that the above-mentioned influence becomes great and system efficiency including pump power is lowered.

【0007】本発明は上述の点に鑑みてなされたもの
で、上記問題点を除去し、複数個の電池スタック(複数
個の電池セルを積層化したもの)よりなる電池システム
において、使用スタック数を必要に応じて切り替える場
合に、電路接続スイッチおよび電解液供給用電動バルブ
を適宜切り替え可能とすることで、電解液流通型電池の
電流効率の低下を防止すると共にポンプ消費動力を低減
し、ポンプ動力を含めたシステム効率を向上させた電解
液流通型電池を提供することを目的とする。
The present invention has been made in view of the above points, and eliminates the above-mentioned problems, and in a battery system including a plurality of battery stacks (a plurality of battery cells stacked), the number of stacks used By switching the electric circuit connection switch and the electric valve for supplying the electrolytic solution as needed, the current consumption of the electrolytic flow type battery can be prevented from decreasing and the power consumption of the pump can be reduced. It is an object of the present invention to provide an electrolyte flow type battery with improved system efficiency including power.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
本発明の請求項1の発明は、隔膜で分けられた正極室及
び負極室からなる電池セルを積層してなる複数個の電池
スタック1〜6と、各極室に電解液を循環させるポンプ
9,10を有する電解液流通型電池において、図1に示
すように前記電池スタック1〜6の電解液流入口と流出
口の管に電動バルブ1a〜6a,1b〜6b,1c〜6
c,1d〜6dを設けると共に、各電池スタック1〜6
の出力を直列に接続し各接続部の出力を電路開閉器1f
〜6fを介して出力端子12に導くように構成し、該電
動バルブの開閉制御により前記電解液の循環を制御する
と共に、前記電路開閉器の開閉制御により出力端子12
の電圧を制御する制御部11を設けたことを特徴とす
る。
In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention comprises a plurality of battery stacks 1 in which battery cells each having a positive electrode chamber and a negative electrode chamber separated by a diaphragm are stacked. ˜6, and an electrolyte flow type battery having pumps 9 and 10 for circulating the electrolyte in each electrode chamber, as shown in FIG. 1, electric power is applied to the electrolyte inlet and outlet pipes of the battery stacks 1 to 6. Valves 1a to 6a, 1b to 6b, 1c to 6
c, 1d to 6d, and each of the battery stacks 1 to 6
The output of each is connected in series, and the output of each connection part is the electric circuit switch 1f.
Through 6f, the circulation of the electrolytic solution is controlled by the opening / closing control of the electric valve, and the output terminal 12 is controlled by the opening / closing control of the electric path switch.
It is characterized in that a control unit 11 for controlling the voltage is provided.

【0009】また、請求項2の発明は、前記制御部は充
電用電源の電気特性または、負荷特性に応じて前記電解
液流通型電池の電流効率及びシステム効率が最適になる
ように前記電路開閉器1f〜6f及び電動バルブ1a〜
6a,1b〜6b,1c〜6c,1d〜6dを開閉制御
ができることを特徴とする。
According to a second aspect of the present invention, the control unit opens and closes the electric circuit so that the current efficiency and system efficiency of the electrolyte flow type battery are optimized according to the electrical characteristics or the load characteristics of the charging power source. 1f-6f and electric valve 1a-
6a, 1b to 6b, 1c to 6c, 1d to 6d can be controlled to be opened and closed.

【0010】また、請求項3の発明は、前記充電用電源
が太陽電池であり、制御部は該太陽電池の電気特性に合
わせて発電効率が最適になるように前記電路開閉器及び
電動バルブの開閉制御をすることを特徴とする。
According to a third aspect of the present invention, the charging power source is a solar cell, and the controller controls the electric circuit switch and the electric valve so that the power generation efficiency is optimized in accordance with the electric characteristics of the solar cell. It is characterized by performing opening / closing control.

【0011】[0011]

【作用】本発明は上記構成を採用することにより、レド
ックスフロ−電池は、充放電の際、上述のように電解液
が組成変化するのみで、電池内部の電極自身は全く変化
しないことを特徴とする。従って、充電中または放電中
に使用する電池スタック1〜6を任意に選択することが
出来る。例えば、電池スタック1〜6を使用して電解液
流通型電池の充電を実施し、放電に際しては、電池スタ
ック1〜4だけを使用すると云った運用パタ−ンが可能
となる。即ち、充電時は電路開閉器6fのみを閉状態
(接続状態)とし、放電時は4fのみを閉状態とすれば
よい。
According to the present invention, by adopting the above-mentioned constitution, the redox flow battery is characterized in that only the composition of the electrolytic solution is changed during charging and discharging as described above, and the electrodes themselves inside the battery are not changed at all. And Therefore, the battery stacks 1 to 6 used during charging or discharging can be arbitrarily selected. For example, it is possible to perform an operation pattern in which battery stacks 1 to 6 are used to charge an electrolyte flow type battery and only battery stacks 1 to 4 are used for discharging. That is, only the electric circuit switch 6f is closed (connected state) during charging, and only 4f is closed during discharging.

【0012】また、充電又は放電に関与しない電池スタ
ックに対して、電解液を供給し続けると余分のポンプ動
力を消費するため(図2参照)、全体のシステム効率が
低下し電池内部の電極上で、電解液の自己放電が進行し
やすく電流効率が低下するが、各電池スタック1〜6の
電解液流入口と流出口の管に電動バルブを設けることに
より、使用しない電池スタックに対しては制御部11は
該電動バルブを閉じて電解液の供給を停止することによ
り、これらの効率の低下を防止できる。
Further, if the electrolytic solution is continuously supplied to the battery stack that is not involved in charging or discharging, extra pump power is consumed (see FIG. 2), so that the overall system efficiency is lowered and the electrode inside the battery is deteriorated. Thus, the self-discharge of the electrolytic solution is likely to proceed and the current efficiency is reduced. However, by providing an electric valve in the electrolytic solution inlet and outlet pipes of each of the battery stacks 1 to 6, The control unit 11 can prevent the efficiency from being lowered by closing the electric valve to stop the supply of the electrolytic solution.

【0013】また、各電池スタック1〜6の出力を直列
に接続し各接続部の出力を電路開閉器1f〜6fを介し
て出力端子12に導くように構成することにより、全体
の電池電圧を該電路開閉器1f〜6fの開閉で調整可能
としたことで、例えば後述するように、太陽電池等の電
気特性に合わせることにより発電効率を高めることがで
きる。また、負荷需要に応じた出力電圧を設定すること
ができる。
Further, by connecting the outputs of the respective battery stacks 1 to 6 in series and guiding the outputs of the respective connecting portions to the output terminal 12 via the electric path switches 1f to 6f, the total battery voltage is reduced. By adjusting the opening / closing of the electric circuit switches 1f to 6f, the power generation efficiency can be increased by adjusting the electric characteristics of the solar cell or the like, for example, as described later. Also, the output voltage can be set according to the load demand.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。図1は本発明の電解液流通型電池の構成
を示す図である。図示するように本発明の電解液流通型
電池は複数の電池スタック(本図では6個)1〜6を有
し、各電池スタック1〜6の負極室に供給される電解液
は負極液タンク7に貯えられ、ポンプ9により循環する
ように配管され、更に各電池スタック1〜6の入口と出
口には電解液の流れを制御するための電動バルブ1c〜
6c、1d〜6dが設けられている。各電池スタック1
〜6の正極室に供給される電解液は正極液タンク8に貯
えられ、ポンプ10により循環するように配管され、更
に各電池スタック1〜6の入口と出口には電解液の流れ
を制御するための電動バルブ1a〜6a、1b〜6bが
設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram showing the configuration of an electrolyte flow type battery of the present invention. As shown in the figure, the electrolytic solution flow type battery of the present invention has a plurality of battery stacks (six in this figure) 1 to 6, and the electrolytic solution supplied to the negative electrode chambers of the battery stacks 1 to 6 is a negative electrode liquid tank. 7 and is circulated by a pump 9 so as to circulate. Further, at the inlet and the outlet of each of the battery stacks 1 to 6, an electric valve 1c for controlling the flow of the electrolytic solution is provided.
6c, 1d to 6d are provided. Each battery stack 1
Electrolyte solutions to be supplied to the positive electrode chambers 6 to 6 are stored in the positive electrode solution tank 8 and are circulated by a pump 10 to further control the flow of the electrolytic solution at the inlets and outlets of the battery stacks 1 to 6. The electric valves 1a to 6a and 1b to 6b are provided.

【0015】各電池スタック1〜6の出力は直列に接続
され、更に各電池スタック1〜6の接続部は電路開閉器
1f〜6fを介して出力端子12へ接続されている。制
御部11は出力電圧或いは充電電圧に応じて電路開閉器
1f〜6fの内、指定された一つだけを閉じ、更に制御
部11は閉じられた電路開閉器に対応する電池スタック
より正側、例えば電路開閉器4fが閉じられた場合に電
池スタック5,6の電動バルブ5a,6a,5b,6
b,5c,6c,5d,6dを閉じるように制御する。
The outputs of the battery stacks 1 to 6 are connected in series, and the connecting portions of the battery stacks 1 to 6 are connected to the output terminal 12 via the electric circuit switches 1f to 6f. The control unit 11 closes only the designated one of the electric circuit switches 1f to 6f according to the output voltage or the charging voltage, and the control unit 11 further controls the positive side of the battery stack corresponding to the closed electric circuit switch, For example, the electric valves 5a, 6a, 5b, 6 of the battery stacks 5, 6 when the electric circuit switch 4f is closed.
b, 5c, 6c, 5d and 6d are controlled to be closed.

【0016】図3に電解液流通型電池の応用例を示す。
ここでは、太陽電池30で発電された電力を負荷32に
供給すると共に、電解液流通型電池31に蓄電する場合
を示す。一般に、太陽電池は図4に示すI−V特性(電
流−電圧特性)及び電力特性(電力−電圧特性)を有す
る。従って、この特性から太陽電池の発電電力特性が決
まる。即ち図4の電圧VSmのポイントで最大の発電電
力が得られることになる。従って、電解液流通型電池3
1の電池電圧を、このVSmとなるように設定できれ
ば、効率的に太陽電池30の発電電力を電解液流通型電
池に蓄電(充電)できることになる。即ち、図1におい
て、制御部11は出力端子12の電圧がこのVSmに一
致するように電路開閉器1f〜6fの内の一つを選択し
て閉じると共に、充電に使用されない電池スタックの電
動バルブを閉じる。
FIG. 3 shows an application example of the electrolyte flow type battery.
Here, the case where the electric power generated by the solar cell 30 is supplied to the load 32 and stored in the electrolyte flow type battery 31 is shown. Generally, a solar cell has IV characteristics (current-voltage characteristics) and power characteristics (power-voltage characteristics) shown in FIG. Therefore, the power generation power characteristic of the solar cell is determined from this characteristic. That is, the maximum generated power can be obtained at the point of the voltage VSm in FIG. Therefore, the electrolyte flow type battery 3
If the battery voltage of No. 1 can be set to this VSm, the power generated by the solar cell 30 can be efficiently stored (charged) in the electrolyte flow type battery. That is, in FIG. 1, the control unit 11 selects and closes one of the electric circuit switches 1f to 6f so that the voltage of the output terminal 12 coincides with VSm and closes the electric valve of the battery stack that is not used for charging. Close.

【0017】一方、電解液流通型電池では電解液の充電
深度の状態に応じて、電池電圧は変化する。図5に1ス
タック当りの電池電圧と充電深度の関係を示す電圧−充
電深度特性を示す。図示するように、1スタック当りの
電池電圧は充電深度Ta,Tb,Tcに応じてVRa,
VRb,VRcと変化する。電解液流通型電池全体の電
池電圧は、充電深度Tに応じて直列接続した電池スタッ
ク数によって決まるため、この電圧VRa〜VRcの各
電圧値に電池スタック数を掛けることで、全体の電池電
圧が求まる。
On the other hand, in the electrolytic solution flow type battery, the battery voltage changes according to the state of the depth of charge of the electrolytic solution. FIG. 5 shows a voltage-charge depth characteristic showing the relationship between the battery voltage per stack and the charge depth. As shown in the figure, the battery voltage per stack is VRa depending on the charging depths Ta, Tb, and Tc.
It changes to VRb and VRc. Since the battery voltage of the entire electrolyte flow type battery is determined by the number of battery stacks connected in series according to the charging depth T, by multiplying each voltage value of the voltages VRa to VRc by the number of battery stacks, the total battery voltage becomes I want it.

【0018】従って、電解液流通型電池電圧を、図4で
示すVSmとなるように設定するには、VSm=VRa
×Na〜VSm=VRc×Ncになるように1スタック
電圧の変化に応じてスタック数Na〜Ncを決めればよ
いことになる。制御部11では現在の充電深度に応じて
全体の電池電圧がVSmに等しくなるようなスタック数
Nを求め、それに対応する電路開閉器を閉じ、使用しな
い電池スタックの電動バルブを閉める。こうすることに
より太陽電池の発電を効率的に蓄電することが出来る。
Therefore, in order to set the electrolytic solution flow type battery voltage to VSm shown in FIG. 4, VSm = VRa
The number of stacks Na to Nc may be determined according to the change of one stack voltage so that × Na to VSm = VRc × Nc. The control unit 11 obtains the number of stacks N such that the entire battery voltage becomes equal to VSm according to the current charging depth, closes the corresponding electric circuit switch, and closes the electric valve of the unused battery stack. By doing so, the power generated by the solar cell can be efficiently stored.

【0019】図6に負荷需要パタ−ンの例を示す。負荷
需要に関しては様々なパタ−ンが考えられるが、例えば
負荷需要パタ−ンの一例として、図6のようなケ−スを
想定できる。必要とされる電力需要は5段階(L1〜L
5)程度に大別できる。従って、制御部11でこの需要
レベルに合わせて、電解液流通型電池の使用電池スタッ
ク数を前記のように調整すれば、電解液流通型電池のシ
ステム効率を維持しながら安定した電力を供給できる。
FIG. 6 shows an example of the load demand pattern. Various patterns are conceivable for the load demand. For example, as an example of the load demand pattern, the case shown in FIG. 6 can be assumed. The required power demand is 5 levels (L1 to L
It can be roughly divided into 5). Therefore, if the control unit 11 adjusts the number of used battery stacks of the electrolyte flow type battery according to the demand level as described above, stable power can be supplied while maintaining the system efficiency of the electrolyte flow type battery. .

【0020】[0020]

【発明の効果】以上、詳細に説明したように本発明によ
れば、下記のような優れた効果が期待される。 (1)電動バルブを設け不使用電池スタックへの電解液
供給を停止するため、高水準の電流効率が維持されると
共に、ポンプ動力の消費電力が低減されシステム効率が
向上する。
As described in detail above, according to the present invention, the following excellent effects are expected. (1) Since the electric valve is provided and the supply of the electrolytic solution to the unused battery stack is stopped, a high level of current efficiency is maintained and the power consumption of the pump power is reduced to improve the system efficiency.

【0021】(2)電解液流通型電池の電池電圧調整が
可能なため、太陽電池等の発電電力を常に最大に利用で
きる。
(2) Since the battery voltage of the electrolyte flow type battery can be adjusted, the generated electric power of the solar cell or the like can always be maximized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電解液流通型電池の構成を示す図であ
る。
FIG. 1 is a diagram showing the configuration of an electrolyte flow type battery of the present invention.

【図2】充電時と放電時の使用スタック数が異なる時の
ポンプ動力を示す図である。
FIG. 2 is a diagram showing pump power when the number of stacks used is different between charging and discharging.

【図3】電解液流通型電池の応用例を示す図である。FIG. 3 is a diagram showing an application example of an electrolyte flow type battery.

【図4】太陽電池の特性を示す図である。FIG. 4 is a diagram showing characteristics of a solar cell.

【図5】1スタック当りの充電深度と電圧特性を示す図
である。
FIG. 5 is a diagram showing a charge depth and a voltage characteristic per stack.

【図6】負荷需要パタ−ンの例を示す図である。FIG. 6 is a diagram showing an example of a load demand pattern.

【図7】レドックスフロ−電池のセルの構造を示す図で
ある。
FIG. 7 is a diagram showing a structure of a cell of a redox flow battery.

【符号の説明】[Explanation of symbols]

1〜6 電池スタック 1a〜6a 電動バルブ 1b〜6b 電動バルブ 1c〜6c 電動バルブ 1d〜6d 電動バルブ 1f〜6f 電路開閉器 7 負極液タンク 8 正極液タンク 9 ポンプ 10 ポンプ 11 制御部 12 出力端子 1-6 Battery stack 1a-6a Electric valve 1b-6b Electric valve 1c-6c Electric valve 1d-6d Electric valve 1f-6f Electric path switch 7 Anode liquid tank 8 Cathode liquid tank 9 Pump 10 Pump 11 Control part 12 Output terminal

フロントページの続き (72)発明者 野崎 健 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 津田 泉 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 和田 雄高 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 赤井 勇一 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内Front page continued (72) Inventor Ken Nozaki Ken 1-4 Umezono, Tsukuba-shi, Ibaraki Electronic Technology Research Institute, Industrial Technology Institute (72) Izumi Tsuda 1-4 1-4 Umezono, Tsukuba-shi, Ibaraki Industrial Technology (72) Inventor Yutaka Wada 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside EBARA CORPORATION (72) Inventor Yuichi Akai 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 隔膜で分けられた正極室及び負極室から
なる電池セルを積層してなる電池スタックを複数個具備
し、前記正極室及び負極室に電解液を循環させるポンプ
を有する電解液流通型電池において、 前記各電池スタックの電解液流入口と流出口の管に自動
バルブを設けると共に、前記各電池スタックの出力を直
列に接続し各接続部の出力を電路開閉器を介して出力端
子に導くように構成し、 該自動バルブの開閉制御により前記電解液の循環を制御
すると共に、前記電路開閉器の開閉制御により前記出力
端子の電圧を制御する制御部を設けたことを特徴とする
電解液流通型電池。
1. An electrolytic solution flower comprising a plurality of battery stacks, each of which is formed by stacking battery cells including a positive electrode chamber and a negative electrode chamber separated by a diaphragm, and a pump for circulating an electrolytic solution in the positive electrode chamber and the negative electrode chamber. Type batteries, an automatic valve is provided in the electrolyte inlet and outlet pipes of each battery stack, the outputs of the battery stacks are connected in series, and the output of each connection part is output through an electric circuit switch. And a control unit for controlling the circulation of the electrolytic solution by controlling the opening / closing of the automatic valve and controlling the voltage of the output terminal by controlling the opening / closing of the electric circuit switch. Electrolyte flow type battery.
【請求項2】 前記制御部は充電用電源の電気特性また
は、負荷特性に応じて前記電解液流通型電池の電池効率
及びシステム効率が最適になるように前記電路開閉器及
び自動バルブを開閉制御ができることを特徴とする請求
項1に記載の電解液流通型電池。
2. The control unit controls the opening and closing of the electric circuit switch and the automatic valve so that the battery efficiency and system efficiency of the electrolyte flow type battery are optimized in accordance with the electrical characteristics or load characteristics of the charging power source. The electrolytic solution flow type battery according to claim 1, wherein
【請求項3】 前記充電用電源が太陽電池であり、前記
制御部は該太陽電池の電気特性に合わせて発電効率が最
大になるように前記電路開閉器による電圧制御及び自動
バルブの開閉制御をすることを特徴とする請求項2に記
載の電解液流通型電池。
3. The charging power source is a solar cell, and the control unit controls the voltage by the electric circuit switch and the opening / closing control of an automatic valve so that the power generation efficiency is maximized in accordance with the electrical characteristics of the solar cell. The electrolytic solution flow type battery according to claim 2, wherein
JP34757493A 1993-12-24 1993-12-24 Electrolyte flow battery Expired - Lifetime JP3193992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34757493A JP3193992B2 (en) 1993-12-24 1993-12-24 Electrolyte flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34757493A JP3193992B2 (en) 1993-12-24 1993-12-24 Electrolyte flow battery

Publications (2)

Publication Number Publication Date
JPH07192749A true JPH07192749A (en) 1995-07-28
JP3193992B2 JP3193992B2 (en) 2001-07-30

Family

ID=18391143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34757493A Expired - Lifetime JP3193992B2 (en) 1993-12-24 1993-12-24 Electrolyte flow battery

Country Status (1)

Country Link
JP (1) JP3193992B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101433048B1 (en) * 2011-11-18 2014-08-25 세하특허 주식회사 Redox flow battery system for multiple storage of renewable energy
KR101655292B1 (en) * 2016-04-15 2016-09-07 스탠다드에너지(주) Redox flow battery
JP2017134938A (en) * 2016-01-26 2017-08-03 学校法人智香寺学園埼玉工業大学 Redox secondary battery system
KR20180131050A (en) * 2017-05-31 2018-12-10 (주)에너지와공조 Redox flow battery system capable of concurrently performing charge and discharge of redox flow battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102161420B1 (en) * 2020-01-08 2020-10-05 주식회사 에이치투 Redox flow battery having a function of preventing shunt curent and leakage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101433048B1 (en) * 2011-11-18 2014-08-25 세하특허 주식회사 Redox flow battery system for multiple storage of renewable energy
JP2017134938A (en) * 2016-01-26 2017-08-03 学校法人智香寺学園埼玉工業大学 Redox secondary battery system
KR101655292B1 (en) * 2016-04-15 2016-09-07 스탠다드에너지(주) Redox flow battery
US10090550B2 (en) 2016-04-15 2018-10-02 Standard Energy Co., Ltd. Redox flow battery
KR20180131050A (en) * 2017-05-31 2018-12-10 (주)에너지와공조 Redox flow battery system capable of concurrently performing charge and discharge of redox flow battery

Also Published As

Publication number Publication date
JP3193992B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
AU2002251534B2 (en) Secondary battery system and operating method thereof
US10651522B2 (en) Hybrid electrochemical cell systems and methods of operation
US10090550B2 (en) Redox flow battery
US20030091882A1 (en) Fuel cell power systems and methods of operating fuel cell power systems
Khaled et al. Optimal energy harvesting from serially connected microbial fuel cells
WO2007040545A2 (en) Vanadium redox battery cell stack
US11721823B2 (en) Flow battery module
US20210066737A1 (en) Redox flow battery and method for operating redox flow battery
JPH07192749A (en) Electrolyte flow-through type cell
CN111370738B (en) Self-adaptive load control system and method for fuel cell power generation system
WO2014145692A2 (en) Flow batteries with modular arrangements of cells
JP2006040591A (en) Redox flow battery
KR20200080950A (en) Redox flow battery using balancing flow path
JP2001043884A (en) Redox flow type secondary battery and its operation method
KR101656993B1 (en) Real time load following type fuel cell system and method of controlling the same
CN114447372A (en) Power generation control system and method for fuel cell
CN108206296B (en) Fuel cell stack, hybrid power system, and control method thereof
JP3574514B2 (en) Redox flow type secondary battery system
KR102392758B1 (en) Lithium secondary battery system and self-charging and discharging method of the same
CN212543427U (en) Photovoltaic power supply system
JP6894649B1 (en) Fuel cell charge state maintenance device
EP4173886A1 (en) Battery system and method for controlling a battery system
JPS63166156A (en) Operation of redox-flow cell
KR20180085171A (en) Redox flow cell system with cross electrolyte tanks.
KR20240011535A (en) Fuel cell system and control method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
EXPY Cancellation because of completion of term