JPH0719201A - High hydraulic pressure generator - Google Patents

High hydraulic pressure generator

Info

Publication number
JPH0719201A
JPH0719201A JP5191945A JP19194593A JPH0719201A JP H0719201 A JPH0719201 A JP H0719201A JP 5191945 A JP5191945 A JP 5191945A JP 19194593 A JP19194593 A JP 19194593A JP H0719201 A JPH0719201 A JP H0719201A
Authority
JP
Japan
Prior art keywords
gas
pressure
chamber
liquid
hydraulic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5191945A
Other languages
Japanese (ja)
Inventor
Saburo Kato
三郎 加藤
Isamu Kaito
勇 海東
Shigenobu Okada
繁信 岡田
Kiyotake Inoue
清毅 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP5191945A priority Critical patent/JPH0719201A/en
Publication of JPH0719201A publication Critical patent/JPH0719201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

PURPOSE:To control the extent of hydraulic pressure accurately in miniaturizing a device and eliminating an electric noise by installing a boost pump, pressurizing a liquid with a piston displacing according to gas pressure, and a means controlling this gas pressure according to an electric signal, respectively. CONSTITUTION:High pressure gas in a gas accumulator 5 is regulated into constant pressure in a pressure regulating valve 12 by way of owing two manual on-off valves 10 and 11, while it leads to a gas chamber 6a by way of opening a solenoid valve 13. In this constitution, a piston 7 is displaced according to gas pressure in this gas chamber 6a, and a liquid to be charged to a liquid chamber 6b from a charging port 19 is pressurized, whereby a test piece 17 is pressurized. In addition, when another solenoid valve 20 is opened, the gas pressure in the gas chamber 6a goes down. A unit controller 22 outputs an electric signal in conformity with a program on the basis of a command signal from the outside and each input signal out of both sensors 23 and 24, opening or closing both these solenoid valves 13 and 20 and varying the gas pressure in the gas chamber 6a, and thereby hydraulic pressure value in the liquid chamber 6b and hydraulic varying velocity are all controlled. Consequently miniaturization is achievable and any electric noise is eliminable and fully autoamtic control can be done in an accurate manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高液圧発生装置に関し、
例えば、宇宙用無重力実験装置や地上用試験装置におい
て高圧物性の計測や結晶成長に用いられる小型セルの加
圧源として利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high hydraulic pressure generator,
For example, it can be used as a pressurizing source for a small cell used for measuring high-pressure physical properties and crystal growth in a space-free weightless experimental device and a ground test device.

【0002】[0002]

【従来の技術】高液圧の発生装置として、ピストンの変
位によってシリンダ内の液体を加圧するブーストポンプ
が一般に用いられている。従来、そのピストンの変位は
手動やインバータを介し駆動されるモータを用いてなさ
れていた。
2. Description of the Related Art As a high hydraulic pressure generator, a boost pump that pressurizes liquid in a cylinder by displacement of a piston is generally used. Conventionally, the displacement of the piston has been performed manually or by using a motor driven through an inverter.

【0003】[0003]

【発明が解決しようとする課題】ブーストポンプのピス
トンを手動により変位させる場合、液圧は脈動するため
正確に制御するのが困難である。そのピストンをモータ
により変位させる場合、モータの回転を減速器と運動変
換機構を介し直線運動に変換する必要があるため、装置
が大型化して小型ロケット等のスペースの制限された場
所に組み込むのに適さず、そのモータは高トルクを発生
する必要があるのでモータやインバータから多くの電気
的ノイズが発生して周囲の他装置に悪影響を与え、さら
に機械的なバックラッシュが存在するため液圧のヒステ
リシスが大きくなって液圧を正確に制御できない。
When the piston of the boost pump is manually displaced, the hydraulic pressure is pulsating and it is difficult to control it accurately. When displacing the piston with a motor, it is necessary to convert the rotation of the motor into a linear motion via a speed reducer and a motion conversion mechanism, so the device becomes large and it is necessary to install it in a space-limited place such as a small rocket. Not suitable, because the motor needs to generate a high torque, a lot of electrical noise is generated from the motor and the inverter, which adversely affects other peripheral devices. In addition, mechanical backlash causes the hydraulic pressure to increase. The hysteresis becomes large and the hydraulic pressure cannot be controlled accurately.

【0004】本発明は、上記従来技術の問題を解決する
ことのできる高液圧発生装置を提供することを目的とす
る。
It is an object of the present invention to provide a high hydraulic pressure generator capable of solving the above problems of the prior art.

【0005】[0005]

【課題を解決するための手段】本発明の高液圧発生装置
は、ガス圧に応じ変位するピストンによってシリンダ内
の液体を加圧するブーストポンプと、そのガス圧を電気
信号に応じ制御する手段とを備える。
A high hydraulic pressure generator according to the present invention comprises a boost pump for pressurizing a liquid in a cylinder by a piston which is displaced according to a gas pressure, and a means for controlling the gas pressure according to an electric signal. Equipped with.

【0006】[0006]

【作用】本発明の構成によれば、ブーストポンプのピス
トンはガス圧に応じ変位するので、モータと減速器と運
動変換機構とにより変位させる場合に比べ小型化でき、
モータやインバータが不要で電気的ノイズを除去でき、
機械的バックラッシュがない。そのガス圧は電気信号に
応じ制御されるので、そのピストンにより加圧される液
体の圧力を電気信号に応じ制御することができる。
According to the structure of the present invention, since the piston of the boost pump is displaced according to the gas pressure, it can be downsized as compared with the case where it is displaced by the motor, the speed reducer and the motion converting mechanism.
No need for a motor or inverter, electrical noise can be removed,
There is no mechanical backlash. Since the gas pressure is controlled according to the electric signal, the pressure of the liquid pressurized by the piston can be controlled according to the electric signal.

【0007】[0007]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】図1に示す高液圧発生装置1のブーストポ
ンプ2は、シリンダ6と、このシリンダ6の内部をガス
室6aと液室6bとに区画するピストン7とを有し、そ
のピストン7のガス室6a内での受圧面積は液室6b内
での受圧面積よりも大きくされている。そのガス室6a
は、気蓄器5に第1手動開閉バルブ10、第2手動開閉
バルブ11、調圧弁12および第1ソレノイドバルブ1
3を介し接続されている。その第1手動開閉バルブ10
と第2手動開閉バルブ11との間に、キャップ14によ
り開閉可能なガス充填ポート15が設けられ、そのガス
充填ポート15に窒素等の高圧ガスの供給源が配管を介
し着脱可能に接続される。これにより、第1手動開閉バ
ルブ10を開き、第2手動開閉バルブ11を閉鎖し、ガ
ス充填ポート15から気蓄器5に高圧ガスを供給し、こ
の供給後にキャップ14を閉じることで、気蓄器5に高
圧ガスが蓄積される。この気蓄器5に蓄積された高圧ガ
スは、第2手動開閉バルブ11が開かれることで調圧弁
12に至って一定圧力に調圧され、第1ソレノイドバル
ブ13が開かれることでガス室6aに至る。このガス室
6a内のガス圧に応じピストン7が変位することで、液
室6bに充填口19から充填される液体が加圧され、そ
の液室6bは配管16を介し供試体17に接続され、供
試体17の加圧がなされる。
The boost pump 2 of the high hydraulic pressure generator 1 shown in FIG. 1 has a cylinder 6 and a piston 7 which divides the inside of the cylinder 6 into a gas chamber 6a and a liquid chamber 6b. The pressure receiving area in the gas chamber 6a is larger than the pressure receiving area in the liquid chamber 6b. The gas chamber 6a
Includes a first manual open / close valve 10, a second manual open / close valve 11, a pressure regulating valve 12 and a first solenoid valve 1 in the gas accumulator 5.
3 are connected. The first manual open / close valve 10
And a second manual opening / closing valve 11 are provided with a gas filling port 15 that can be opened and closed by a cap 14, and a supply source of high-pressure gas such as nitrogen is detachably connected to the gas filling port 15 via a pipe. . As a result, the first manual opening / closing valve 10 is opened, the second manual opening / closing valve 11 is closed, high-pressure gas is supplied from the gas filling port 15 to the gas accumulator 5, and after this supply, the cap 14 is closed. High-pressure gas is accumulated in the container 5. The high-pressure gas accumulated in the gas accumulator 5 reaches the pressure regulating valve 12 when the second manual opening / closing valve 11 is opened and is regulated to a constant pressure, and is opened in the gas chamber 6a when the first solenoid valve 13 is opened. Reach By displacing the piston 7 according to the gas pressure in the gas chamber 6a, the liquid filled in the liquid chamber 6b from the filling port 19 is pressurized, and the liquid chamber 6b is connected to the sample 17 via the pipe 16. The specimen 17 is pressurized.

【0009】そのガス室6aに第2ソレノイドバルブ2
0が接続され、前記第1ソレノイドバルブ13と第2ソ
レノイドバルブ20の各ソレノイドはコネクタ21を介
しユニットコントローラ22に接続され、このユニット
コントローラ22に、ガス室6aのガス圧測定用センサ
ー23と液室6bの液圧測定用センサー24とがコネク
タ25を介し接続されている。その第2ソレノイドバル
ブ20が開かれることでガス室6aからガスが放出さ
れ、ガス室6aのガス圧は低下する。そのユニットコン
トローラ22は、外部から入力される指令信号と各セン
サー23、24からの入力信号とに基づき、予め記憶さ
れたプログラムに従い電気信号を出力するコンピュータ
により構成でき、その電気信号により各ソレノイドバル
ブ13、20を開閉してガス室6aのガス圧を変化させ
て液室6bの液圧値や液圧変化速度を制御する。なお、
ガス室6aは安全弁30に接続され、この安全弁30は
ガス室6aの内圧が過大になると開くものとされてい
る。
The second solenoid valve 2 is provided in the gas chamber 6a.
0 is connected, and each solenoid of the first solenoid valve 13 and the second solenoid valve 20 is connected to a unit controller 22 via a connector 21, and the unit controller 22 is connected to a gas pressure measuring sensor 23 of the gas chamber 6a and a liquid. A fluid pressure measuring sensor 24 in the chamber 6b is connected via a connector 25. When the second solenoid valve 20 is opened, gas is released from the gas chamber 6a, and the gas pressure in the gas chamber 6a drops. The unit controller 22 can be configured by a computer that outputs an electric signal according to a program stored in advance based on a command signal input from the outside and an input signal from each of the sensors 23 and 24, and each solenoid valve is generated by the electric signal. 13 and 20 are opened and closed to change the gas pressure in the gas chamber 6a to control the liquid pressure value and the liquid pressure change speed in the liquid chamber 6b. In addition,
The gas chamber 6a is connected to a safety valve 30, and the safety valve 30 is supposed to open when the internal pressure of the gas chamber 6a becomes excessive.

【0010】上記構成によれば、ブーストポンプ2のピ
ストン7はガス圧に応じ変位するので、モータと減速器
と運動変換機構とにより変位させる場合に比べ小型化で
き、モータやインバータが不要で電気的ノイズを除去で
き、機械的バックラッシュがない。そのガス圧は電気信
号に応じ制御されるので、そのピストン7により加圧さ
れる液体の圧力を電気信号に応じ正確に全自動で制御す
ることができる。また、上記高液圧発生装置1を小型ロ
ケットに搭載して無重力実験用の加圧源として用いる場
合、気蓄器5にガスを地上で充填することで大型の高圧
ガス供給源を小型ロケットに搭載する必要がない。ま
た、高液圧発生装置1が正常に作動するか否かのチェッ
クは、第1手動開閉バルブ10を閉じると共に第2手動
開閉バルブ11を開いてガス充填ポート15から高圧ガ
スを供給することで行える。
According to the above construction, the piston 7 of the boost pump 2 is displaced according to the gas pressure, so that the piston 7 can be downsized as compared with the case where it is displaced by the motor, the speed reducer, and the motion converting mechanism, and a motor and an inverter are not required and the electric power is reduced. Noise can be removed and there is no mechanical backlash. Since the gas pressure is controlled according to the electric signal, the pressure of the liquid pressurized by the piston 7 can be accurately and fully automatically controlled according to the electric signal. When the high hydraulic pressure generator 1 is mounted on a small rocket and used as a pressurizing source for weightlessness experiments, by filling the gas accumulator 5 with gas on the ground, a large high-pressure gas supply source can be converted into a small rocket. No need to install. In addition, to check whether the high hydraulic pressure generator 1 operates normally, the first manual opening / closing valve 10 is closed and the second manual opening / closing valve 11 is opened to supply high-pressure gas from the gas filling port 15. You can do it.

【0011】図2は第2実施例を示し、上記実施例との
相違は、調圧弁12と第1ソレノイドバルブ13と第2
ソレノイドバルブ20とに換えて電空変換器40を用
い、この電空変換器40によりユニットコントローラ2
2から出力される電気信号に応じガス室6aのガス圧を
変化させて液室6bの液圧値や液圧変化速度を制御する
点にあり、他は上記実施例と同様で同一部分は同一符号
で示す。この第2実施例によれば液圧を滑らかに制御で
きるので、高液圧発生装置1の液圧出力を任意の関数形
とすることができる。
FIG. 2 shows a second embodiment. The difference from the above embodiment is that the pressure regulating valve 12, the first solenoid valve 13 and the second embodiment are different.
An electropneumatic converter 40 is used instead of the solenoid valve 20, and the unit controller 2 is operated by the electropneumatic converter 40.
2 is that the gas pressure in the gas chamber 6a is changed according to the electric signal output from the control unit 2 to control the hydraulic pressure value and the hydraulic pressure change speed in the liquid chamber 6b. It shows with a code. According to the second embodiment, since the hydraulic pressure can be smoothly controlled, the hydraulic pressure output of the high hydraulic pressure generator 1 can be made into an arbitrary functional form.

【0012】なお、本発明は上記実施例に限定されるも
のではない。
The present invention is not limited to the above embodiment.

【0013】[0013]

【発明の効果】本発明によれば、高液圧発生装置を小型
化し、電気ノイズを除去し、液圧を正確に制御すること
ができる。
According to the present invention, the high hydraulic pressure generator can be downsized, the electric noise can be removed, and the hydraulic pressure can be accurately controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の高液圧発生装置の構成説
明図
FIG. 1 is a structural explanatory view of a high hydraulic pressure generator according to a first embodiment of the present invention.

【図2】本発明の第2実施例の高液圧発生装置の構成説
明図
FIG. 2 is a structural explanatory view of a high hydraulic pressure generator according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 ブーストポンプ 6 シリンダ 7 ピストン 13 第1ソレノイドバルブ 20 第2ソレノイドバルブ 40 電空変換器 2 Boost pump 6 Cylinder 7 Piston 13 First solenoid valve 20 Second solenoid valve 40 Electro-pneumatic converter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 清毅 京都府京都市中京区西ノ京桑原町1番地株 式会社島津製作所三条工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kiyotake Inoue, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, Kyoto Prefecture Shimazu Seisakujo Sanjo Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガス圧に応じ変位するピストンによって
シリンダ内の液体を加圧するブーストポンプと、そのガ
ス圧を電気信号に応じ制御する手段とを備える高液圧発
生装置。
1. A high hydraulic pressure generator comprising: a boost pump for pressurizing a liquid in a cylinder by a piston that is displaced according to a gas pressure; and a means for controlling the gas pressure according to an electric signal.
JP5191945A 1993-07-05 1993-07-05 High hydraulic pressure generator Pending JPH0719201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5191945A JPH0719201A (en) 1993-07-05 1993-07-05 High hydraulic pressure generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5191945A JPH0719201A (en) 1993-07-05 1993-07-05 High hydraulic pressure generator

Publications (1)

Publication Number Publication Date
JPH0719201A true JPH0719201A (en) 1995-01-20

Family

ID=16283079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5191945A Pending JPH0719201A (en) 1993-07-05 1993-07-05 High hydraulic pressure generator

Country Status (1)

Country Link
JP (1) JPH0719201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6223434B1 (en) 1997-04-02 2001-05-01 Sango Co., Ltd. Muffler and its manufacturing method
JP2008262306A (en) * 2007-04-10 2008-10-30 Sharp Corp Layout adjustment device, layout adjustment method, layout adjustment program and recording medium
JP4854197B2 (en) * 2002-09-17 2012-01-18 エービー サイエックス エルエルシー Flow control method and flow control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115603A (en) * 1979-02-28 1980-09-05 Saginomiya Seisakusho Inc Pressure-compensation controlling system for electro- hydraulic servo pressurizing apparatus
JPS60122001U (en) * 1984-01-25 1985-08-17 日産自動車株式会社 Pressure booster

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115603A (en) * 1979-02-28 1980-09-05 Saginomiya Seisakusho Inc Pressure-compensation controlling system for electro- hydraulic servo pressurizing apparatus
JPS60122001U (en) * 1984-01-25 1985-08-17 日産自動車株式会社 Pressure booster

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6223434B1 (en) 1997-04-02 2001-05-01 Sango Co., Ltd. Muffler and its manufacturing method
JP4854197B2 (en) * 2002-09-17 2012-01-18 エービー サイエックス エルエルシー Flow control method and flow control device
JP2008262306A (en) * 2007-04-10 2008-10-30 Sharp Corp Layout adjustment device, layout adjustment method, layout adjustment program and recording medium

Similar Documents

Publication Publication Date Title
US4757980A (en) Parametrically controlled active vibration isolation system
MY110390A (en) Device for controlling the operational procedures of a vacuum toilet
Fite et al. Design and energetic characterization of a proportional-injector monopropellant-powered actuator
Zhu et al. Integrated direct/indirect adaptive robust posture trajectory tracking control of a parallel manipulator driven by pneumatic muscles
CN102822536B (en) Fluid-actuated actuating drive on valve
Kogler et al. Energy efficient linear drive axis using a hydraulic switching converter
JPH0719201A (en) High hydraulic pressure generator
TW402669B (en) Positioner and its setting method
US7999404B1 (en) Phase change on demand integrated pressure pump and power plant
EP0215999B1 (en) Parametrically controlled active vibration isolation system
CN101270812A (en) Stepped control type flux valve
CN108843463A (en) Pressure adjusts pressure reducing valve, thrust device assembly and engine
CN108153342B (en) Hydrazine decomposition catalyst device of taking a trial run
CA3024634A1 (en) Oxygen supply device and method for supplying a passenger cabin of an aircraft with oxygen
EP2530679A1 (en) Device for working in water chamber
US6076549A (en) Pressure control device
JPH0874802A (en) High liquid pressure generating device
CN108152447B (en) Hydrazine decomposition catalyst test run device and method thereof
CN206668637U (en) Sound state bidirectional hydraulic loading device based on accumulator
US20220154737A1 (en) Method and apparatus for conversion of a pneumatic actuator to an electric power platform
JP3136447B2 (en) Load detector
RU2119185C1 (en) Electrohydraulic servo drive
Albaidaq et al. Design, Modelling and Simulation of Electro-Hydraulic Self-Contained Cylinders based on Digital Hydraulics
JP3082029B2 (en) Cylinder device with pressure increase mechanism that operates according to pressure change
EP4170169A1 (en) Apparatus for controlling positive and negative pressure or flow in a fluidic system