JPH0718906B2 - Fault locator for power transmission system - Google Patents

Fault locator for power transmission system

Info

Publication number
JPH0718906B2
JPH0718906B2 JP60238952A JP23895285A JPH0718906B2 JP H0718906 B2 JPH0718906 B2 JP H0718906B2 JP 60238952 A JP60238952 A JP 60238952A JP 23895285 A JP23895285 A JP 23895285A JP H0718906 B2 JPH0718906 B2 JP H0718906B2
Authority
JP
Japan
Prior art keywords
fault point
phase
orientation
line
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60238952A
Other languages
Japanese (ja)
Other versions
JPS6298272A (en
Inventor
英二 原田
俊久 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Tokyo Electric Power Co Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc filed Critical Meidensha Corp
Priority to JP60238952A priority Critical patent/JPH0718906B2/en
Publication of JPS6298272A publication Critical patent/JPS6298272A/en
Publication of JPH0718906B2 publication Critical patent/JPH0718906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は、送電系の故障点標定装置に関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a fault location device for a power transmission system.

B.発明の概要 本発明は送電系の故障点を標定原理式に従って標定する
において、 各回線又は相についての故障点抵抗の大小を比較し、小
さい方の回線又は相の故障点標定値を採用することによ
り、 故障点抵抗及び標定装置入力分の位相誤差による標定値
への影響を少なくして標定精度を高めるようにしたもの
である。
B. Summary of the Invention In the present invention, when locating a fault point in a power transmission system according to the locating principle formula, the magnitude of the fault point resistance for each line or phase is compared, and the fault point locating value for the smaller line or phase is adopted. By doing so, the influence of the fault point resistance and the phase error of the input of the orientation device on the orientation value is reduced and the orientation accuracy is improved.

C.従来の技術 送電系の故障点標定方式として、送電線路一端の電気所
で計測した電圧,電流及び既知である線路定数とを用い
た演算により、故障点を標定する方式を本願出願人は既
に提案している(例えば特願昭59−143056号,特願昭59
−143057号)。
C. Conventional technology The applicant of the present application has proposed a method for locating a fault point in a power transmission system, which is a method for locating a fault point by a calculation using a voltage, a current, and a known line constant measured at an electric station at one end of a transmission line. It has already been proposed (for example, Japanese Patent Application No. Sho 59-143056 and Japanese Patent Application No. 59).
-143057).

上記方法に基づいた装置構成は、第3図に示すようにな
る。自端の各相Va,Vb,Vc及び各相電流Ia,Ib,Icを変圧器
PT及び変流器CTで検出し、これら出信号は標定装置D1の
第1図の回路D1に一定周期のサンプリングデータとして
取込み、これらデータを使って第2の界路D2で零相電圧
Vo,零相電流Ioも求め、第3の回路D3からは単位長当り
の自己インピーダンスZs,相互インピーダンスZm,自己ア
ドミツタンスYsのデータを得、回路D2,D3の各データか
ら第4の回路D4が例えば以下の標定原理式からa相地絡
時の故障点距離χを求める。
An apparatus configuration based on the above method is as shown in FIG. Each phase Va, Vb, Vc of each end and each phase current Ia, Ib, Ic
Detected by PT and current transformer CT, these output signals are taken into the circuit D 1 of the locator D 1 shown in FIG. 1 as sampling data of a constant period, and these data are used to generate a zero-phase voltage in the second field D 2.
Vo, also calculated zero-phase current Io, the third circuit D per unit length from 3 self-impedance Zs, mutual impedance Zm, obtain the data of the self Adomitsutansu Ys, from the data of the circuit D 2, D 3 of the 4 The circuit D 4 finds the fault point distance χ when an a-phase ground fault occurs, for example, from the following orientation principle formula.

Va=(ZsIa+Zmib+ZmIc)χ+R・3Io ……(1) 但し、Rは故障点抵抗。Va = (ZsIa + Zmib + ZmIc) χ + R f · 3Io (1) However, R f is the resistance at the failure point.

こうした標定装置D1は回線2Lにも同様の標定装置D2とて
設けられ、回線別に故障点距離χが求められる。
Such a locator D1 is also provided in the line 2L as a similar locator D2, and the fault point distance χ is obtained for each line.

D.発明が解決しようとする問題点 従来の故障点標定方式においては、複数の回線の同一地
点で同時に故障が生じた場合に回線によつて異なる標定
値を示すことがあった。また、3相短絡,3相地絡故障が
1回線でもあると、標定に用いる相を固定すると誤差が
大きくなる場合がある。これを以下に詳細に説明する。
D. Problems to be Solved by the Invention In the conventional fault point locating system, different locating values may be shown depending on the lines when failures occur simultaneously at the same point on multiple lines. Also, if there is only one line with a three-phase short circuit or a three-phase ground fault, the error may increase if the phase used for orientation is fixed. This will be described in detail below.

まず、故障点抵抗Rによる標定誤差を説明する。前述
の(1)式において、簡単のため健全相b,cの負荷電流I
b,Icを無視すると、 Va=ZsIa・χ+R・3Io となり、Ia=3Ioであるから3Ioの位相を基準にして上式
の虚数部を取出せば、 Va・sinθ/XsIa・χ ∴χ=Va・sinθ/XsIa但し、θ=tan-1(Va/Ia) ここで、Va,Iaの誤差を考慮すると、 χ=Va(1+εV)・sin(θ−αV −αi)/{Xsla(1+εi)} =Va/(IaXs)(1+ε)・{sinθ・cosα +cosθ・sinα} 但し、εv,εi;電圧,電流の比誤差/100 αv,αi;電圧,電流の位相角 ε=εv−εi α=αv−αi 上記式中、ε≪1,α≪1であるからcosα≒1,ε・sin≒
0となり、上記式は、 χ=Va/IaXs・{sinθ(1+ε)+cosθ・inα} となる。ここで、 Va/IaXs・sinθ=χo(真値) Va/Ia・ccsθ≒R(故障点抵抗) であるから、故障点χは、 χ=χo+χo・ε+R/Xs・sinα となり、標定誤差Δχは、 Δχ=χ−χo=χo・ε+R/Xs・sinα……(2) となる。従って、CT,PTおよび標定装置力部(例えば第
1の開路D1)により生じるVa,Iaの誤差のうち、比誤差
εv,εiによる誤差分と位相角αv,αiによる誤差分が
あり、このうち特に問題となるのが位相角(位相の変化
分)αである。この位相角αにより生じる標定誤差分Δ
χαは、上記(2)式から、 Δχa=RXs・sinα ……(3) となる。故に、CT,PT及び標定装置入力部の位相角αに
よる標定誤差は故障点抵抗Rが大きくなるほど大きく
なる。この傾向は一線地絡以外の故障の場合にも同様で
ある。
First, the orientation error due to the fault point resistance R f will be described. In the above formula (1), for simplicity, the load currents I of the sound phases b and c are
b, and ignoring Ic, Va = ZsIa · χ + R f · 3Io next, Ia = if from a 3io taken out the imaginary part of the above equation with respect to the phase of 3Io, Va · sinθ / XsIa · χ ∴χ = Va -Sin θ / XsIa However, θ = tan -1 (Va / Ia) where, considering the error of Va and Ia, χ = Va (1 + εV) ・ sin (θ-αV-αi) / {Xsla (1 + εi)} = Va / (IaXs) (1 + ε) ・ {sinθ ・ cosα + cosθ ・ sinα} where εv, εi; voltage / current ratio error / 100 αv, αi; voltage / current phase angle ε = εv−εi α = αv -Αi In the above equation, since ε << 1, α << 1, cos α≈1, ε ・ sin≈
0, and the above equation becomes χ = Va / IaXs · {sin θ (1 + ε) + cos θ · in α}. Here, Va / IaXs · sin θ = χo (true value) Va / Ia · ccsθ ≒ R f (fault point resistance), so the fault point χ is χ = χo + χo · ε + R f / Xs · sinα Δχ is Δχ = χ−χo = χo · ε + R f / Xs · sin α (2). Therefore, among the errors of Va and Ia caused by CT, PT and the force unit of the orientation device (for example, the first open circuit D 1 ), there are errors due to the ratio errors εv and εi and errors due to the phase angles αv and αi. Of these, the phase angle (change amount of the phase) α is particularly problematic. Orientation error Δ caused by this phase angle α
χα becomes Δχa = R f Xs · sinα (3) from the above equation (2). Therefore, the orientation error due to the phase angle α of CT, PT and the orientation device input section becomes larger as the failure point resistance R f becomes larger. This tendency is the same in the case of a fault other than the one-line ground fault.

上述の故障点抵抗Rによる標定誤差への影響から、同
一地点で2回線同時故障の場合、回線によつて異なる標
定値を示すことが起きる。例えば、第3図に示すように
同一の鉄塔に共架された2回送電線の1つの鉄塔に雷撃
があり、2回線1L,2L同時に故障が発生したとすると、
標定装置D1,D2は夫々標定値χ1を得る。このと
き、1号線1Lの故障点抵抗Rf1と2号線2Lの故障点抵抗
f2に差があり、 Rf1<Rf2 とすると、標定誤差Δχ1,ΔχはΔχ<Δχとな
る。このため、故障箇所を巡視する際、夫々の標定装置
D1,D2が指示する標定値χ1が異なる故障点になっ
て故障箇所の発見に手間がかかる。
Due to the influence of the above-mentioned fault point resistance R f on the orientation error, when two lines simultaneously fail at the same point, different orientation values may be exhibited depending on the lines. For example, if there is a lightning strike on one of the two power transmission lines that are co-mounted on the same tower as shown in Fig. 3, and two lines 1L and 2L fail simultaneously,
The orientation devices D1 and D2 obtain orientation values χ 1 and χ 2 , respectively. At this time, there is a difference in fault point resistance R f2 fault point resistance R f1 and Line 2 2L of line 1 1L, when the R f1 <R f2, orientation error Δχ 1, Δχ 2 becomes Δχ 1 <Δχ 2 . For this reason, when patrolling the failure location,
Since the orientation values χ 1 and χ 2 indicated by D1 and D2 are different failure points, it takes time to find the failure location.

次に、3相短絡又は3相地絡故障について説明する。こ
の種の故障には通常ab,bc,ca相のうちのひとつに着目
し、前述の標定原理式(1)から標定する。例えばbc相
に着目すれば、 Vb−Vc=(Zs−Zm)(Ib−Ic)+R(Ib−Ic) ……
(4) となる。このとき、ab相間,bc相間,ca相間の故障点抵抗
ab,Rcaが、 Rab<Rbc<Rca の関係にあれば、ab相,bc相,ca相に夫々着目した標定結
果χab,χbc,χcaに含まれる標定誤差Δχab,Δχbc,Δ
χcaは次の関係になる。
Next, a three-phase short circuit or a three-phase ground fault will be described. For this type of failure, one of the ab, bc, and ca phases is usually noticed, and orientation is performed from the orientation principle equation (1) described above. For example, focusing on the bc phase, Vb−Vc = (Zs−Zm) (Ib−Ic) + R f (Ib−Ic).
(4) At this time, if the fault point resistances R f ab, R f ca between the ab phases, the bc phases, and the ca phases are in the relation of R f ab <R f bc <R f ca, then the ab, bc, and ca phases are selected. The orientation errors Δχab, Δχbc, Δ included in the orientation results χab, χbc, and χca, respectively.
χca has the following relationship.

Δχab<Δχbc<Δχca 従って、ab相,bc相,ca相のうち着目する相の故障点抵抗
の大きさによって故障点標定値が異なり、着目する相を
固定のものとすると場合によって標定誤差が大きくな
り、故障箇所の発見に手間取ることになる。
Δχab <Δχbc <Δχca Therefore, the fault point orientation value differs depending on the size of the fault point resistance of the phase of interest among the ab phase, bc phase, and ca phase, and if the phase of interest is fixed, the orientation error will be large in some cases. Therefore, it will take time and effort to find a failure point.

E.問題点を解決するための手段と作用 本発明は上記問題点に鑑みてなされたもので、2回線送
電線の各相電圧Va,Vb,Vcと各相電流Ia,Ib,Icと両回線の
零相電流I0の各検出データ及び送電線の単位長当りの自
己インピーダンスZsと相互インピーダンスZmの既知デー
タを求め、両回線に同時に故障が生じたときに、次式 Va=(ZsIa+ZmIb+ZmIc)χ+Rf・3I Vb=(ZmIa+ZsIb+ZmIc)χ+Rf・3I Vc=(ZmIa+ZmIb+ZsIc)χ+Rf・3I に従って各回線の故障点抵抗Rf1、Rf2及び故障点距離χ
、χを求め、両故障点抵抗のうち小さい回線の故障
点距離を故障点標定値として求める演算手段を備える。
E. Means and Actions for Solving Problems The present invention has been made in view of the above problems, and the phase voltages Va, Vb, Vc and the phase currents Ia, Ib, Ic of the two-line power transmission line are combined. Obtained each detection data of zero-phase current I 0 of the line and known data of self-impedance Zs and mutual impedance Zm per unit length of the transmission line, and when both lines simultaneously failed, the following formula Va = (ZsIa + ZmIb + ZmIc) χ + Rf ・ 3I 0 Vb = (ZmIa + ZsIb + ZmIc) χ + Rf ・ 3I 0 Vc = (ZmIa + ZmIb + ZsIc) χ + Rf ・ 3I 0 according to the fault point resistance Rf 1 , Rf 2 and failure point distance χ
1 and χ 2 are provided, and a calculating means is provided to find the fault point distance of the smaller line of the two fault point resistances as the fault point orientation value.

また、送電線の各相電圧Va、Vb、Vcと各相電流Ia,Ib,Ic
の各検出データ及び該送電線の単位長当りの自己インピ
ーダンスZsと相互インピーダンスZmの既知データを求
め、該送電線に3相短絡あるいは3相地絡故障が生じた
ときに、次式 Va-Vb=(Zs-Zm)(Ia-Ib)χab+Rfab(1a-Ib) Va-Vc=(Zs-Zm)(Ib-Ic)χbc+Rfbc(1b-Ic) Vc-Va=(Zs-Zm)(Ic-Ia)χca+Rfca(1a-Ia) に従って各相間の故障点抵抗Rfab、Rfbc、Rfca及び故障
点距離χab、χbc、χcaを求め、これら故障点抵抗のう
ち小さい相の故障点距離を故障点標定値として求める演
算手段を備える。
In addition, each phase voltage Va, Vb, Vc of the transmission line and each phase current Ia, Ib, Ic
When the three-phase short circuit or the three-phase ground fault occurs in the transmission line, the following equation Va-Vb = (Zs-Zm) (Ia-Ib) χab + Rfab (1a-Ib) Va-Vc = (Zs-Zm) (Ib-Ic) χbc + Rfbc (1b-Ic) Vc-Va = (Zs-Zm) (Ic-Ia) χca + Rfca (1a-Ia) according to the failure point resistance Rfab, Rfbc, Rfca between each phase and the failure point distance χab, χbc, χca, the failure point distance of the smaller phase of these failure point resistance A calculation means for obtaining a fault point orientation value is provided.

こうした標定装置により、故障点抵抗の小さい方の標定
値を採用し、抵抗及び標定装置入力部の誤差の影響を少
なくした標定値を得る。
With such an orientation device, the orientation value with the smaller resistance at the fault point is adopted, and the orientation value with less influence of the error of the resistance and the input portion of the orientation device is obtained.

F.実施例 第1図は本発明に基づいた標定装置構成図であり、2回
線送電線の同時故障に適用する場合である。1号線1Lと
2号線2Lからは自端の各相電圧Va,Vb,Vc及び各相電流1a
1,1b1,1c1,1a2,1b2,1c2と零相電流3Io1,3Io2が計器用変
化器PT及び変流器CT1,CT2で夫々検出される。これら検
出信号は標定装置装置D3の第1の回路D5により一定周期
のサンプリングデータとして取込まれる。第2の回路D6
は送電線1L,2Lの単位長当りの自己インピーダンスZs,相
互インピーダンスZmのデータを発生する。
F. Embodiment FIG. 1 is a block diagram of an orientation apparatus according to the present invention, which is applied to simultaneous failure of two-line transmission lines. From Line 1L and Line 2L, each phase voltage Va, Vb, Vc of each end and each phase current 1a
1 , 1b 1 , 1c 1 , 1a 2 , 1b 2 , 1c 2 and zero-phase currents 3Io 1 , 3Io 2 are detected by the instrument transformer PT and the current transformers CT 1 , CT 2 , respectively. These detection signals are taken in as sampling data of a constant cycle by the first circuit D 5 of the orientation device D3. Second circuit D 6
Generates data of self-impedance Zs and mutual impedance Zm per unit length of transmission lines 1L, 2L.

第3の回路D71は、1号線lLについて、例えばa相では
下記式 Va1=(ZsIa1+ZmIb1+ZmIc1)χ+R ・3Io1……
(5) より、故障点抵抗R を消去して1号線の故障点距離
χを算出し、この距離χを再度上記(5)式に代入
して故障点抵抗R を求める。
The third circuit D 71 has the following formula Va 1 = (ZsIa 1 + ZmIb 1 + ZmIc 1 ) χ 1 + R f 1 · 3Io 1 for Phase 1 lL, for example, in phase a.
From (5), the failure point resistance R f 1 is erased to calculate the failure point distance χ 1 of Line 1 , and this distance χ 1 is again substituted into the above equation (5) to obtain the failure point resistance R f 1 . .

同様に、第4の回路D72は、2号線2Lについて、下記式 Va2=(ZsIa2+ZmIb2+ZmIc2)χ+R ・3Io2……
(6) から故障点抵抗R を消去して距離χを求め、この
χを再度上記(6)式に代入 して抵抗R を求め
る。
Similarly, the fourth circuit D 72 has the following formula Va 2 = (ZsIa 2 + ZmIb 2 + ZmIc 2 ) χ 2 + R f 2 · 3Io 2 for Line 2 2L.
The resistance R f 2 at the fault point is deleted from (6) to obtain the distance χ 2 , and this χ 2 is substituted into the above equation (6) to obtain the resistance R f 2 .

第5の回路D8は、回路D71,D72で求め得られた故障点距
離χ1と故障点抵抗R 1,R から、 R <R のときχ ≧R のときχ を標定値として抽出する。第6の回路D9は、回路D8で抽
出した故障点標定値χ又はχを表示する。
The fifth circuit D 8 is the χ when R f 1 <R f 2 from the fault point distances χ 1 and χ 2 and the fault point resistances R f 1 and R f 2 obtained by the circuits D 71 and D 72. When 1 R f 1 ≧ R f 2 , χ 2 is extracted as a reference value. The sixth circuit D 9 displays the fault point orientation value χ 1 or χ 2 extracted by the circuit D 8 .

このように、2回線同時故障の場合、標定装置D3は各回
線の故障点抵抗R 1,R を求め、抵抗の小さい方の
回線データから求める標定値χ1を故障箇所とする
ことにより、故障点抵抗と標定装置入力部(変成器も含
む)の位相誤差の影響を少なくして標定精度を良くす
る。
As described above, in the case of simultaneous failure of two lines, the orientation device D3 obtains the fault point resistances R f 1 and R f 2 of each line, and obtains the orientation values χ 1 and χ 2 obtained from the line data of the one with the smaller resistance. By so doing, the influence of the fault point resistance and the phase error of the input device (including the transformer) of the orientation device is reduced to improve the orientation accuracy.

なお、上記(5),(6)式はa相地絡の対応づけた式
であるが、b相,c相の地絡にも同様に適用できる。ま
た、1号線,2号線のいずれか一方、あるいは両方に相間
の短絡を伴う故障が生じた場合も同様に適用できる。
In addition, although the above equations (5) and (6) are equations in which a-phase ground faults are associated with each other, they can be similarly applied to b-phase and c-phase ground faults. Further, it can be similarly applied to the case where a failure due to a short circuit between phases occurs in either one or both of Line 1 and Line 2.

第2図は本発明に基づいた他の装置構成図であり、3相
短絡,3相地絡に適用する場合である。回路D5,D6,D9は第
1図の場合と同様にサンプリングデータの収集と定数Z
m,Zsの発生と標定値表示を行う。回路D101,D102,D103
夫々相間ab,bc,caについて下記(7)〜(9)式より標
定値χab,χbc,χcaを求め、さらにこれら標定値を
(7)〜(9)式に代して夫々の故障点抵抗Rab,R
bc,Rcaを求める。
FIG. 2 is another device configuration diagram based on the present invention, which is a case where the present invention is applied to a three-phase short circuit and a three-phase ground fault. Circuits D 5 , D 6 , and D 9 collect sampling data and set constant Z as in the case of FIG.
Generates m and Zs and displays the reference value. Circuits D 101 , D 102 , and D 103 obtain the orientation values χ ab, χ bc, χ ca from the following equations (7) to (9) for the phases ab, bc, and ca, respectively, and further determine these orientation values (7) to (9). Instead of the equation, each fault point resistance R f ab, R f
Find bc, R f ca.

Va−Vb=(Zs−Zm)(Ia−Ib)χab+Rab(Ia−Ib)
……(7) Vb−Vc=(Zs−Zm)(Ib−Ic)χbc+Rbc(Ib−Ic)
……(8) Vc−Va=(Zs−Zm)(Ic−Ia)χca+Rca(Ic−Ia)
……(9) 回路D11は回路D101,D102,D103で求めた故障点抵抗Ra
b,Rbc,Rcaの大小を比較し、そのうち最も小さい抵
抗の相の標定値を抽出し、この標定値χMINを回路D9
表示する。
Va-Vb = (Zs-Zm ) (Ia-Ib) χab + R f ab (Ia-Ib)
...... (7) Vb-Vc = (Zs-Zm) (Ib-Ic) χbc + R f bc (Ib-Ic)
(8) Vc−Va = (Zs−Zm) (Ic−Ia) χca + R f ca (Ic−Ia)
(9) The circuit D 11 is the fault point resistance R fa obtained by the circuits D 101 , D 102 , and D 103.
The magnitudes of b, R f bc, and R f ca are compared, the orientation value of the phase having the smallest resistance is extracted, and this orientation value χ MIN is displayed by the circuit D 9 .

このように、3相短絡又は3相地絡の場合、標定装置D4
は各相間の故障点抵抗Rab,Rbc,Rcaを求め、その
うち最も小さい抵抗値の相の標定値χMINと故障箇所と
することにより、故障点抵抗と標定装置入力部(変成器
も含む)の位相誤差の影響を少なくして標定精度を良く
する。
Thus, in the case of a three-phase short circuit or a three-phase ground fault, the orientation device D4
The fault point resistance R f ab between each phase, R f bc, seeking R f ca, With them smallest fault location and orientation values chi MIN phases of the resistance value, the fault point resistance locating system input unit ( The accuracy of orientation is improved by reducing the influence of the phase error of the transformer).

なお、本実施例は2回線上の送電線路に適用することも
できる。
The present embodiment can also be applied to a transmission line on two lines.

また、上述までの実施例において、標定装置D3,D4はマ
イクロコンピユータ等を用いたデイジタル回路で構成
し、その構成の簡略化が図られる。
Further, in the above-described embodiments, the orientation devices D3 and D4 are configured by digital circuits using a micro computer or the like, and the configuration can be simplified.

C.発明の効果 以上のとおり、本発明によれば、複数回線又は1回線で
の各相電圧,電流,零相電流等から標定原理式に従って
標定値を得るのに、故障点抵抗の小さい方の標定値を採
用することとしたため、複数回線の同時故障や3相短
絡,地絡故障における故障点抵抗及び入力部誤差の影響
を少なくした精度良い標定を行うことができる。また、
これに伴い、標定による故障点探索作業を容易にする等
の効果がある。
C. Effects of the Invention As described above, according to the present invention, one having a smaller fault point resistance can be used to obtain the orientation value from each phase voltage, current, zero-phase current, etc. in multiple lines or one line according to the orientation principle formula. Since the orientation value of is adopted, accurate orientation can be performed with less influence of fault point resistance and input section error in simultaneous failure of plural lines, three-phase short circuit, and ground fault. Also,
Along with this, there are effects such as facilitating the fault point search work by orientation.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に基づいた標定装置構成図、第2図は本
発明に基づいた他の標定装置構成図、第3図は従来の標
定装置構成図である。 D3,D4……標定装置、PT……計器用変圧器、CT……変流
器。
FIG. 1 is a block diagram of the orientation apparatus based on the present invention, FIG. 2 is a block diagram of another orientation apparatus based on the present invention, and FIG. 3 is a configuration diagram of a conventional orientation apparatus. D3, D4 ... Orientation device, PT ... Instrument transformer, CT ... Current transformer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】2回線送電線の各相電圧Va,Vb,Vcと各相電
流Ia,Ib,Icと両回線の零相電流I0の各検出データ及び送
電線の単位長当りの自己インピーダンスZsと相互インピ
ーダンスZmの既知データを求め、両回線に同時に故障が
生じたときに、次式 Va=(ZsIa+ZmIb+ZmIc)χ+Rf・3I Vb=(ZmIa+ZsIb+ZmIc)χ+Rf・3I Vc=(ZmIa+ZmIb+ZsIc)χ+Rf・3I に従って各回線の故障点抵抗Rf1、Rf2及び故障点距離χ
、χを求め、両故障点抵抗のうち小さい回線の故障
点距離を故障点標定値として求める演算手段を備えたこ
とを特徴とする送電線の故障点標定装置。
1. Detection data of each phase voltage Va, Vb, Vc of each two-line transmission line, each phase current Ia, Ib, Ic and zero-phase current I 0 of both lines, and self-impedance per unit length of the transmission line. Obtained known data of Zs and mutual impedance Zm, and when failure occurs on both lines at the same time, the following equation Va = (ZsIa + ZmIb + ZmIc) χ + Rf ・ 3I 0 Vb = (ZmIa + ZsIb + ZmIc) χ + Rf ・ 3I 0 Vc = (ZmIa + ZmIb + ZsIc) χ + Rf ・ 3I 0 according to the fault point resistance Rf 1 , Rf 2 and fault point distance χ of each line
1. A fault point locating device for a transmission line, comprising: a calculating unit that obtains 1 and χ 2 and obtains a fault point distance of a line having a smaller value out of both fault point resistances as a fault point locating value.
【請求項2】送電線の各相電圧Va、Vb、Vcと各相電流I
a,Ib,Icの各検出データ及び該送電線の単位長当りの自
己インピーダンスZsと相互インピーダンスZmの既知デー
タを求め、該送電線に3相短絡あるいは3相地絡故障が
生じたときに、次式 Va-Vb=(Zs-Zm)(Ia-Ib)χab+Rfab(1a-Ib) Va-Vc=(Zs-Zm)(Ib-Ic)χbc+Rfbc(1b-Ic) Vc-Va=(Zs-Zm)(Ic-Ia)χca+Rfca(1a-Ia) に従って各相間の故障点抵抗Rfab、Rfbc、Rfca及び故障
点距離χab、χbc、χcaを求め、これら故障点抵抗のう
ち小さい相の故障点距離を故障点標定値として求める演
算手段を備えたことを特徴とする送電系の故障点標定装
置。
2. Each phase voltage Va, Vb, Vc and each phase current I of the transmission line
a, Ib, Ic detection data and known data of the self-impedance Zs and the mutual impedance Zm per unit length of the transmission line are obtained, and when a three-phase short circuit or a three-phase ground fault occurs in the transmission line, Formula Va-Vb = (Zs-Zm) (Ia-Ib) χab + Rfab (1a-Ib) Va-Vc = (Zs-Zm) (Ib-Ic) χbc + Rfbc (1b-Ic) Vc-Va = (Zs-Zm) (Ic-Ia) χca + Rfca (1a-Ia) according to the fault point resistance between each phase Rfab, Rfbc, Rfca and the fault point distance χab, χbc, χca, the smaller phase of these fault point resistance 2. A fault point locating device for a power transmission system, comprising: calculating means for determining the fault point distance as a fault point locating value.
JP60238952A 1985-10-25 1985-10-25 Fault locator for power transmission system Expired - Fee Related JPH0718906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60238952A JPH0718906B2 (en) 1985-10-25 1985-10-25 Fault locator for power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60238952A JPH0718906B2 (en) 1985-10-25 1985-10-25 Fault locator for power transmission system

Publications (2)

Publication Number Publication Date
JPS6298272A JPS6298272A (en) 1987-05-07
JPH0718906B2 true JPH0718906B2 (en) 1995-03-06

Family

ID=17037728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60238952A Expired - Fee Related JPH0718906B2 (en) 1985-10-25 1985-10-25 Fault locator for power transmission system

Country Status (1)

Country Link
JP (1) JPH0718906B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637426B2 (en) * 1987-05-07 1997-08-06 キヤノン株式会社 Light receiving member
JP2637417B2 (en) * 1987-04-25 1997-08-06 キヤノン株式会社 Light receiving member
JPH02107082U (en) * 1989-02-13 1990-08-24
CN105699782B (en) * 2011-02-01 2018-05-25 国网上海市电力公司 The test method of the mutual impedance of transmission lines in parallel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566768A (en) * 1978-11-13 1980-05-20 Tokyo Electric Power Co Inc:The Failure point determination system for transmission line failure point detection and transmission line protection
JPS5972068A (en) * 1982-10-18 1984-04-23 Nissin Electric Co Ltd Device for orientating ground-fault point of twin-lead type power-transmission line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566768A (en) * 1978-11-13 1980-05-20 Tokyo Electric Power Co Inc:The Failure point determination system for transmission line failure point detection and transmission line protection
JPS5972068A (en) * 1982-10-18 1984-04-23 Nissin Electric Co Ltd Device for orientating ground-fault point of twin-lead type power-transmission line

Also Published As

Publication number Publication date
JPS6298272A (en) 1987-05-07

Similar Documents

Publication Publication Date Title
WO2015020706A1 (en) Method and apparatus to diagnose current sensors polarities and phase associations for a three-phase electric power system
JPH0718906B2 (en) Fault locator for power transmission system
JP2000074978A (en) Fault point locator at parallel two-line transmission line
JP3586266B2 (en) Fault location method for transmission line and fault location system using the same
EP1703292B1 (en) A method for measuring the operating state of a synchronous motor using composite power angle meter
JP3341485B2 (en) Transmission line fault location method
JPH07122651B2 (en) Ground fault fault location method for high resistance 3-terminal parallel 2-circuit transmission line
JPS6198119A (en) Device for standardizing trouble point
JP2581061B2 (en) Power system protection device
JPH09304468A (en) Method for locating fault-point of parallel two line system
JPH11142465A (en) Ground-fault point detecting method
JP2984294B2 (en) Method of locating short-circuit fault point of three-terminal parallel two-circuit transmission line
JP2560994B2 (en) Short-circuit fault location method
JP3773020B2 (en) Fault location method using multi-terminal electric quantity
JPS6298273A (en) Fault point locating system for power transmission system
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines
JP2920981B2 (en) Fault location method for two-circuit transmission line
JP3013488B2 (en) Ground fault fault location method
JP3013491B2 (en) Short-circuit fault location method
JP3277534B2 (en) Fault location method for 3-terminal parallel 2-circuit transmission line
JPH0514232B2 (en)
JP3013487B2 (en) Fault location method
JPH0627760B2 (en) Fault location method for power transmission system
JPH0575980B2 (en)
JP2590258B2 (en) Calculation method of star side phase voltage of transformer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees