JPH07187894A - Ferroelectric thin film - Google Patents

Ferroelectric thin film

Info

Publication number
JPH07187894A
JPH07187894A JP5348293A JP34829393A JPH07187894A JP H07187894 A JPH07187894 A JP H07187894A JP 5348293 A JP5348293 A JP 5348293A JP 34829393 A JP34829393 A JP 34829393A JP H07187894 A JPH07187894 A JP H07187894A
Authority
JP
Japan
Prior art keywords
film
thin film
metal
ferroelectric
ferroelectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5348293A
Other languages
Japanese (ja)
Inventor
Zenichi Akiyama
善一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5348293A priority Critical patent/JPH07187894A/en
Publication of JPH07187894A publication Critical patent/JPH07187894A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a ferroelectric thin film capable of making effective use of the characteristics of a ferroelectric material made of a perovskite type multiple oxide and capable of forming a structure with an oriented grown thin film of the material held between metallic electrodes. CONSTITUTION:An amorphous SiO2 layer 2 having 600nm thickness is disposed on the principal face of a silicon substrate 1 with the (100) face as the principal face and a tantalum film 3 having 50nm thickness and a (111) face oriented film 4 of platinum having 50nm thickness are successively formed on the layer 2. A precursor soln. prepd. by partially hydrolyzing a soln. contg. lead acetate, Zr propoxide and Ti propoxide in methoxyethanol by a sol-gel method is applied plural times on the platinum film 4 and annealed to form the objective dielectric thin film 5 having 400nm thickness, that is, a (111) face oriented film of a perovskite type multiple oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はペロブスカイト型強誘電
体の薄膜を設けた強誘電性薄膜に関するものであり、こ
のような強誘電性薄膜は、光導波路、光シャッタ、光ス
イッチ、画像メモリ、空間変調素子、アクチュエーター
用圧電素子、不揮発性メモリなど各種機能素子の基盤材
料としての用途が期待される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroelectric thin film provided with a thin film of a perovskite type ferroelectric, and such a ferroelectric thin film is used for an optical waveguide, an optical shutter, an optical switch, an image memory, It is expected to be used as a base material for various functional elements such as spatial modulation elements, piezoelectric elements for actuators, and non-volatile memories.

【0002】[0002]

【従来の技術】複合酸化物は組成により多方面にわたる
機能性を有しており、特に電子セラミックス及びオプト
エレクトロニクスの分野では誘電性、圧電性、焦電性、
透光性、電気光学効果等を利用して多方面で実用化され
ている。例えば強誘電性を利用したものは、低閾値駆動
の不揮発性メモリFET素子として、圧電性を利用した
ものは超音波圧電素子やアクチュエーター素子に、焦電
性を利用したものは赤外線センサ等に使用されている。
また、透光性、及び電気光学効果を利用したものには、
光導波路、光スイッチ、空間変調素子や画像メモリ等が
あり実用面の応用範囲は極めて広くなっている。従来こ
れらセラミックスの作製法としては、蒸着法、スパッタ
法(特開昭63−307606号)、MOCVD法(特
開昭62−67175号)等の製造方法により薄膜が作
成されている。薄膜のメリットは同一基板上に素子/電
子セラミックス、及びオプトエレクトロニクスセラミッ
クスを形成することができることであり、従って、素子
の高機能化・小型化・集積化等を目指した試みが精力的
に行われてきた。
2. Description of the Related Art Complex oxides have various functional properties depending on the composition, and especially in the fields of electronic ceramics and optoelectronics, dielectric, piezoelectric, pyroelectric,
It has been put to practical use in various fields by utilizing its translucency and electro-optic effect. For example, one using ferroelectricity is used as a low threshold drive nonvolatile memory FET element, one using piezoelectricity is used as an ultrasonic piezoelectric element or actuator element, and one utilizing pyroelectricity is used as an infrared sensor or the like. Has been done.
In addition, in the case of utilizing translucency and electro-optical effect,
There are optical waveguides, optical switches, spatial modulators, image memories, etc., and the range of practical applications is extremely wide. Conventionally, as a method for producing these ceramics, a thin film is formed by a production method such as a vapor deposition method, a sputtering method (JP-A-63-307606), and a MOCVD method (JP-A-62-67175). The merit of the thin film is that the device / electronic ceramics and optoelectronic ceramics can be formed on the same substrate. Therefore, efforts to achieve high functionality, miniaturization, integration, etc. of the device are vigorously made. Came.

【0003】[0003]

【発明が解決しようとする課題】ところが、これらの強
誘電性薄膜の実用的な使用のためには、その分極軸がそ
ろっている必要があり、そのために下部、上部電極にて
強誘電体薄膜をはさみ、膜厚方向に分極処理する方法が
取られることもある(例えば、T. Fukami et al.Jap.
J. Appl. Phys., 24, 632 (1985))。しかし、このよう
に多結晶膜を分極処理しても、本質的に結晶の方位はラ
ンダムであるので、その材料の特性を最大限に活用させ
ることはできない。そこで、このような膜の特性を最大
限に活用するには、分極軸がそろうように配向成長させ
る必要がある。しかし、このような配向成長は基板と強
誘電体材料が限定され、さらに有効な分極軸配向ではさ
らに限定されるものである。また、このような配向成長
においては、基板上に直接製膜するため、電極で挟んだ
構造をとることができず、実用的な使用がなされなかっ
た。
However, in order to practically use these ferroelectric thin films, it is necessary that their polarization axes are aligned, which is why the ferroelectric thin film is used for the lower and upper electrodes. There is also a method of sandwiching and polarizing in the film thickness direction (for example, T. Fukami et al. Jap.
J. Appl. Phys., 24 , 632 (1985)). However, even if the polycrystalline film is polarized as described above, the crystal orientation is essentially random, so that the characteristics of the material cannot be fully utilized. Therefore, in order to make the best use of the characteristics of such a film, it is necessary to grow the orientation so that the polarization axes are aligned. However, such oriented growth is limited by the substrate and the ferroelectric material, and is further limited by the more effective polarization axis orientation. Further, in such an oriented growth, since the film is formed directly on the substrate, the structure sandwiched by the electrodes cannot be formed, and the film has not been practically used.

【0004】本発明は、上記問題点に鑑みなされたもの
であり、本発明の目的はペロブスカイト型複合酸化物よ
りなる強誘電体材料の特性を有効に生かした強誘電性薄
膜を好ましい形態で提供することにある。本発明者は、
(100)面を主面とするシリコンウエハの主面上にア
モルファス層を介して立方晶系の金属の(111)面を
配向成長させた後、ペロブスカイト型強誘電体材料の製
膜を行えば、容易かつ良好に(111)面が配向成長す
るという発見に基づき本発明を完成したものであり、こ
れにより上記強誘電体材料の配向成長薄膜を金属電極で
挟んだ構造が可能になった。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a ferroelectric thin film in a preferable form, which effectively utilizes the characteristics of a ferroelectric material composed of a perovskite type complex oxide. To do. The inventor
If a (111) plane of cubic metal is oriented and grown on the main surface of a silicon wafer having a (100) plane as a main surface through an amorphous layer, a film of a perovskite type ferroelectric material is formed. The present invention has been completed based on the discovery that the (111) plane is oriented and grown easily and satisfactorily, which enables a structure in which the oriented growth thin film of the ferroelectric material is sandwiched by metal electrodes.

【0005】[0005]

【課題を解決するための手段】本発明の強誘電性薄膜
は、(100)面を主面とするシリコン基板の主面上に
アモルファス層を介して少なくとも1層以上の金属膜が
あり、その金属膜層のうち少なくとも1層が立方晶金属
(111)面配向膜であり、さらにこの金属膜上に配向
成長したペロブスカイト型強誘電体の薄膜が形成されて
いることを特徴とする。
A ferroelectric thin film of the present invention has at least one metal film with an amorphous layer interposed on a main surface of a silicon substrate having a (100) surface as a main surface. At least one of the metal film layers is a cubic metal (111) plane orientation film, and a thin film of perovskite type ferroelectric material that has been oriented and grown is further formed on this metal film.

【0006】次に、本発明を詳細に説明する。まず、
(100)面を主面とするシリコン基板の主面上にシリ
コン基板上に設けられるアモルファス層(立方晶系金属
配向膜を形成するための下地層)としては、FRAMに
おける強誘電性薄膜のデバイスデザインにおいてはSi
2 が代表的なものであるが、そのほかにシリコンナイ
トライド(SiN)、オキシシリコンナイトライド(S
iON)、さらにPSG,BSG,BPSG等のアモル
ファス層を下地層としてデザインすることができ、これ
ら全ての下地層において立方晶系金属の(111)面の
配向成長、及び引き続きペロブスカイト型強誘電体材料
の(111)面配向成長が確認された。これによりペロ
ブスカイト型強誘電体材料の配向成長薄膜を金属電極で
挟んだ構造が可能になった。
Next, the present invention will be described in detail. First,
As an amorphous layer (an underlayer for forming a cubic metal orientation film) provided on the main surface of a silicon substrate having a (100) plane as a main surface, a ferroelectric thin film device in FRAM is used. Si in design
O 2 is a typical one, but silicon nitride (SiN) and oxysilicon nitride (S
iON), and an amorphous layer such as PSG, BSG, BPSG, etc., can be designed as an underlayer, and in all of these underlayers, the oriented growth of the (111) plane of the cubic system metal and the subsequent perovskite type ferroelectric material can be designed. (111) plane oriented growth was confirmed. As a result, a structure in which an oriented growth thin film of perovskite type ferroelectric material is sandwiched between metal electrodes has become possible.

【0007】本発明では、立方晶系の金属材料として白
金または金を用いるとアモルファス層上においても良好
な(111)面が配向成長し、さらにその上層にペロブ
スカイト型強誘電体の(111)面も確実かつ良好に配
向成長することが確認された。また、この種の金属材料
は基板との密着性が十分でないこともあり、その場合ア
モルファス層上に金属中間層としてタンタル、チタンを
置き、その後、同様にして積層構造とした場合にも、結
晶性の良い配向膜が再現性良く形成されることが確認さ
れた。また、上方立方晶系の金属材料としては、X線回
折のロッキングカーブ法による半幅値(FWHM)が6
°以下の結晶性の高い配向膜を使用することが好まし
い。なお、X線回折によるロッキングカーブ法とPt配
向膜の評価については、SPIE vol. 1328 Sol-Gel O
ptics (1990), 466 を参照した。
In the present invention, when platinum or gold is used as the cubic metal material, a good (111) plane is oriented and grown even on the amorphous layer, and the (111) plane of the perovskite type ferroelectric is formed on the upper layer. It was also confirmed that the oriented growth was performed reliably and satisfactorily. In addition, this type of metal material may not have sufficient adhesion to the substrate, in which case tantalum and titanium are placed on the amorphous layer as a metal intermediate layer, and then, when a laminated structure is formed in the same manner, the crystalline It was confirmed that an alignment film having good properties was formed with good reproducibility. Further, as the upper cubic metal material, the half-width value (FWHM) by the rocking curve method of X-ray diffraction is 6
It is preferable to use an oriented film having high crystallinity of not more than °. Regarding the rocking curve method by X-ray diffraction and the evaluation of the Pt alignment film, SPIE vol. 1328 Sol-Gel O
See ptics (1990), 466.

【0008】さらに本発明では、ペロブスカイト型強誘
電体の薄膜は金属有機化合物の熱分解、いわゆるSol
−Gel法(ゾル−ゲル法)により作製するのが極めて
好ましい。Sol−Gel法とは金属アルコキシド等の
金属有機化合物を溶液系で加水分解、重縮合させて金属
−酸素−金属結合を成長させ(以下、この溶液を前駆体
溶液と略す)、この前駆体溶液を金属面等に塗布し、焼
結により結晶化した無機酸化物膜を得る方法である。ス
ピンコート法による塗布の場合、溶液粘度が数cP〜数
十cPとなるように調整するとよい。この場合、アセチ
ルアセトン、ジエタノールアミンなどのアルカノールア
ミンやキレート剤等を添加してもよい。上記焼結の温度
は材料により異なるが、通常の金属酸化物粉末の焼成に
実行される温度より低温で(通常のセラミックス焼結温
度より200〜300℃の低温化ができる。)焼結可能
である。このことにより、できる複合酸化物はその組成
ずれがないうえ、基板の原子配置をなぞるように配向成
長させることも可能になる。すなわち、Sol−Gel
法の特徴は低温で大面積に組成均一が良好な膜が得ら
れ、かつ下地基板により比較的容易に配向膜が得られる
ことである。
Further, in the present invention, the thin film of the perovskite type ferroelectric substance is a so-called Sol, which is a thermal decomposition of a metal organic compound.
It is extremely preferable to manufacture by the Gel method (sol-gel method). The Sol-Gel method is a method in which a metal organic compound such as a metal alkoxide is hydrolyzed and polycondensed in a solution system to grow a metal-oxygen-metal bond (hereinafter, this solution is abbreviated as a precursor solution), and this precursor solution is used. Is applied to a metal surface or the like, and a crystallized inorganic oxide film is obtained by sintering. In the case of application by spin coating, it is advisable to adjust the solution viscosity to be several cP to several tens of cP. In this case, an alkanolamine such as acetylacetone or diethanolamine or a chelating agent may be added. Although the sintering temperature varies depending on the material, it is possible to sinter at a temperature lower than a temperature used for firing a normal metal oxide powder (a temperature of 200 to 300 ° C. can be lower than a normal ceramics sintering temperature). is there. As a result, the resulting composite oxide has no compositional deviation and can be oriented and grown so as to trace the atomic arrangement of the substrate. That is, Sol-Gel
The feature of the method is that a film having a good composition uniformity can be obtained in a large area at a low temperature, and an alignment film can be obtained relatively easily with a base substrate.

【0009】上記ペロブスカイト型強誘電体の材料は、
鉛、ランタニウムのうち少なくとも1種、及びジルコニ
ウム、チタンのうち少なくとも1種を含む複合酸化物で
あるPLZT系材料(例えば鉛、ジルコニウム及びチタ
ンを含有するものや、鉛、ランタン、ジルコニウム及び
チタンを含有するものなど)が好ましく、結晶性の良い
配向膜を再現性良く得ることができる。なお、ペロブス
カイト型強誘電体の結晶系は立方晶からわずかに歪んだ
正方晶、斜方晶、三方晶の形をとるものである。
The material of the perovskite type ferroelectric substance is
A PLZT-based material that is a complex oxide containing at least one of lead and lanthanium and at least one of zirconium and titanium (for example, one containing lead, zirconium and titanium, or one containing lead, lanthanum, zirconium and titanium). It is preferable that the oriented film having good crystallinity be obtained with good reproducibility. The crystal system of the perovskite-type ferroelectric substance is in the form of tetragonal crystal, orthorhombic crystal, or trigonal crystal, which is slightly distorted from cubic crystal.

【0010】[0010]

【実施例】以下、本発明を実施例によりさらに詳細に説
明する。なお、本発明は実施例に限定されるものではな
い。
EXAMPLES The present invention will now be described in more detail with reference to examples. The present invention is not limited to the examples.

【0011】実施例1 PLZT化合物のうち組成が(0/80/20)で表わ
せるものは比較的誘電率が小さく分極軸が(111)に
存在し、この種の材料をシリコンデバイスに用いた場
合、不揮発性ランダムアクセスメモリ(FRAM)に展
開できる。この材料を用いて本発明による強誘電性薄膜
の作製を行った。その断面構造は図1に示すとおりで、
1は(100)面を主面とするシリコン基板、2はSi
2 のアモルファス層すなわちSiO2 膜、3はタンタ
ル膜やチタン膜等の金属膜、4は白金膜や金膜等の立方
晶金属配向膜、5は上記PLZT化合物による強誘電体
薄膜、6は白金やアルミニウム等による上部電極であ
る。
Example 1 Among the PLZT compounds, those whose composition can be represented by (0/80/20) have a relatively small dielectric constant and a polarization axis exists at (111), and this kind of material was used for a silicon device. In this case, it can be expanded to a non-volatile random access memory (FRAM). A ferroelectric thin film according to the present invention was manufactured using this material. Its cross-sectional structure is as shown in Figure 1,
1 is a silicon substrate whose main surface is the (100) plane, and 2 is Si
An amorphous layer of O 2 , that is, a SiO 2 film, 3 is a metal film such as a tantalum film or a titanium film, 4 is a cubic metal orientation film such as a platinum film or a gold film, 5 is a ferroelectric thin film made of the PLZT compound, and 6 is It is an upper electrode made of platinum or aluminum.

【0012】次に、この強誘電性薄膜の作製手順及び条
件について説明すると、まず、シリコン基板(0.01
〜0.05Ωcm n−type Si(100))1
にRCA洗浄法によりクリーニング処理を施した後に、
パイロジェニックによるウェット酸化処理を行い主面上
に600nmのSiO2 のアモルファス層2を形成し
た。次にdcマグネトロンスパッタ法によりタンタルの
金属膜3を50nm、さらに白金膜50nmの製膜を行
った。この場合、アモルファス層2を設けた基板1の温
度を450〜700℃として製膜すると白金の(11
1)面配向膜(立方晶金属配向膜4)が得られ、特に基
板温度650℃製膜では、X線回折のロッキングカーブ
法による半値幅(full width at half maximum: FW
HM)が、FWHM=0.3という非常に結晶性の高い
白金膜が得られ、以下、この結晶性の高い白金膜を使用
した。
Next, the procedure and conditions for producing this ferroelectric thin film will be described. First, a silicon substrate (0.01
~ 0.05 Ωcm n-type Si (100)) 1
After performing a cleaning process on the
Wet oxidation treatment by pyrogenic was performed to form a 600 nm amorphous layer 2 of SiO 2 on the main surface. Next, a tantalum metal film 3 having a thickness of 50 nm and a platinum film having a thickness of 50 nm were formed by the dc magnetron sputtering method. In this case, when the temperature of the substrate 1 provided with the amorphous layer 2 is set to 450 to 700 ° C. to form a film, the platinum (11
1) A plane alignment film (cubic crystal metal alignment film 4) is obtained, and especially at a substrate temperature of 650 ° C., a full width at half maximum (FW) by a rocking curve method of X-ray diffraction is obtained.
HM) was FWHM = 0.3, and a highly crystalline platinum film was obtained. Hereinafter, this highly crystalline platinum film was used.

【0013】次に、Sol−Gel法による前駆体溶液
を白金の(111)面配向膜4上にスピンコートした。
この前駆体溶液は鉛の金属有機化合物(酢酸鉛)、Zr
の金属有機化合物(Zrプロポキシド)及びTiの金属
有機化合物(Tiプロポキシド)をメトキシエタノール
溶剤中に溶解させた後、部分加水分解でSol−Gel
反応させ、溶液粘度を2〜20cPにコントロールした
ものを使用した。スピンコート条件は2000rpmと
し、この場合1回のコーティングで100nmの膜厚に
なる。このように1回のコーティング後、上記溶剤を乾
燥しながら酸素雰囲気中徐々に加熱して550〜650
℃、特に好ましくは630℃のアニール処理を1時間行
う。この操作を4回繰り返し400nmの膜厚の(11
1)面配向膜すなわち強誘電体薄膜5を得た。Sol−
Gel法においては、1回のコーティングで製膜できる
膜厚が薄い場合、前述のように多数回繰り返し、目標膜
厚を得る。このとき各アニール処理は、有機物の燃焼温
度まで加え(一般には400℃以下)、目標回数後、結
晶化のために550〜650℃のアニール処理を行って
もよい。
Next, a precursor solution by the Sol-Gel method was spin-coated on the platinum (111) -oriented film 4.
This precursor solution is a metal organic compound of lead (lead acetate), Zr
The metal organic compound (Zr propoxide) and the metal organic compound of Ti (Ti propoxide) were dissolved in a methoxyethanol solvent, and then partially hydrolyzed to obtain Sol-Gel.
The reaction was performed and the solution viscosity was controlled to 2 to 20 cP. The spin-coating condition is 2000 rpm, and in this case, a single coating results in a film thickness of 100 nm. Thus, after coating once, the solvent is dried and gradually heated in an oxygen atmosphere to 550 to 650.
C., particularly preferably 630.degree. C., for 1 hour. This operation was repeated 4 times and the thickness of (11
1) A plane alignment film, that is, a ferroelectric thin film 5 was obtained. Sol-
In the Gel method, when the film thickness that can be formed by one coating is small, the target film thickness is obtained by repeating the above many times. At this time, each annealing treatment may be performed up to the combustion temperature of the organic substance (generally 400 ° C. or lower), and after the target number of times, annealing treatment at 550 to 650 ° C. may be performed for crystallization.

【0014】このようにして作製した強誘電性薄膜上に
白金の上部電極6を形成し、F−RAMに要求される基
本特性を測定したところ、分極反転のスイッチング時間
は約20nsec、反転電荷密度は約10μC/cm2
であった。また分極反転の繰り返し回数による反転電荷
密度の劣化は1012回まで減少は認められず、従来にな
い良好な強誘電性薄膜が実現できた。
When the platinum upper electrode 6 was formed on the ferroelectric thin film thus manufactured and the basic characteristics required for the F-RAM were measured, the switching time for polarization inversion was about 20 nsec, and the inversion charge density was about 20 nsec. Is about 10 μC / cm 2
Met. Further, the deterioration of the inversion charge density due to the number of repetitions of polarization inversion was not reduced to 10 12 times, and a good ferroelectric thin film which has never been obtained was realized.

【0015】[0015]

【発明の効果】以上のように、本発明の強誘電性薄膜に
よれば、強誘電体薄膜として配向制御されたペロブスカ
イト型複合酸化物の薄膜を設けたものであるから、この
複合酸化物がもつ有利な特性を最大限に生かすことがで
きる上、シリコンデバイスとのハイブリッド化に際して
は、各種アモルファス層上においても実用的な電極で挟
んだ積層構造とすることが可能となり、従来にない優れ
た特性を備えた光スイッチ、画像メモリ等の各種機能素
子の基盤材料を得ることができる。また、上記強誘電体
薄膜は、ゾル−ゲル法により低温で焼結することにより
形成できるため、組成ずれのない設計通りの組成の複合
酸化物を簡便な操作で得ることができ、この複合酸化物
を立方晶金属配向膜上に塗布して焼結することにより、
基板の原子配置をなぞるように配向成長が可能になる。
すなわち、ゾル−ゲル法の特徴は低温で大面積に組成均
一が良好な膜が得られ、かつ下地基板により比較的容易
に配向膜が得られることである。
As described above, according to the ferroelectric thin film of the present invention, the thin film of the perovskite type complex oxide whose orientation is controlled is provided as the ferroelectric thin film. In addition to maximizing the advantageous characteristics that it has, when hybridizing with a silicon device, it is possible to have a laminated structure sandwiched by practical electrodes even on various amorphous layers, which is unprecedented. It is possible to obtain a base material for various functional elements such as an optical switch and an image memory, which has characteristics. Moreover, since the ferroelectric thin film can be formed by sintering at a low temperature by the sol-gel method, a composite oxide having a composition as designed without composition deviation can be obtained by a simple operation. By coating the material on the cubic metal orientation film and sintering,
Oriented growth becomes possible by tracing the atomic arrangement of the substrate.
That is, the characteristics of the sol-gel method are that a film having a good composition uniformity can be obtained in a large area at a low temperature, and an alignment film can be obtained relatively easily with a base substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る強誘電性薄膜の実施例の構成を示
す拡大断面図である。
FIG. 1 is an enlarged cross-sectional view showing a configuration of an embodiment of a ferroelectric thin film according to the present invention.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 アモルファス層 3 金属膜(タンタル膜) 4 立方晶金属配向膜(白金の(111)面配向膜) 5 強誘電体薄膜 6 上部電極 1 Silicon Substrate 2 Amorphous Layer 3 Metal Film (Tantalum Film) 4 Cubic Metal Alignment Film (Platinum (111) Orientation Film) 5 Ferroelectric Thin Film 6 Upper Electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02F 1/025 H01B 3/00 F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G02F 1/025 H01B 3/00 F

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (100)面を主面とするシリコン基板
の主面上にアモルファス層を介して少なくとも1層以上
の金属膜があり、その金属膜層のうち少なくとも1層が
立方晶金属(111)面配向膜であり、さらにこの金属
膜上に配向成長したペロブスカイト型強誘電体の薄膜が
形成されていることを特徴とする強誘電性薄膜。
1. At least one metal film is provided on the main surface of a silicon substrate having a (100) plane as a main surface through an amorphous layer, and at least one of the metal film layers is a cubic metal ( A ferroelectric thin film, which is a (111) plane orientation film, and on which a thin film of perovskite type ferroelectric material that has been oriented and grown is further formed on this metal film.
【請求項2】 前記立方晶金属が白金(Pt)または金
(Au)であり、X線回折のロッキングカーブ法による
半値幅(full width at half maximum: FWHM)が
6°以下であることを特徴とする請求項1に記載の強誘
電性薄膜。
2. The cubic metal is platinum (Pt) or gold (Au) and has a full width at half maximum (FWHM) of 6 ° or less by a rocking curve method of X-ray diffraction. The ferroelectric thin film according to claim 1.
【請求項3】 前記ペロブスカイト型強誘電体が、鉛、
ランタニウムのうち少なくとも1種、及びジルコニウ
ム、チタンのうち少なくとも1種を含む複合酸化物であ
り、この複合酸化物は金属有機化合物をゾル−ゲル法に
より熱分解して作製されたものであることを特徴とする
請求項1または2に記載の強誘電性薄膜。
3. The perovskite ferroelectric material is lead,
It is a composite oxide containing at least one kind of lanthanium and at least one kind of zirconium and titanium, and the composite oxide is produced by thermally decomposing a metal organic compound by a sol-gel method. The ferroelectric thin film according to claim 1 or 2, which is characterized.
JP5348293A 1993-12-25 1993-12-25 Ferroelectric thin film Pending JPH07187894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5348293A JPH07187894A (en) 1993-12-25 1993-12-25 Ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5348293A JPH07187894A (en) 1993-12-25 1993-12-25 Ferroelectric thin film

Publications (1)

Publication Number Publication Date
JPH07187894A true JPH07187894A (en) 1995-07-25

Family

ID=18396066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5348293A Pending JPH07187894A (en) 1993-12-25 1993-12-25 Ferroelectric thin film

Country Status (1)

Country Link
JP (1) JPH07187894A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017767A (en) * 2001-07-03 2003-01-17 Sony Corp Piezoelectric element
JP2006199507A (en) * 2005-01-18 2006-08-03 National Institute Of Advanced Industrial & Technology Substrate for formation of (111)-oriented pzt-type dielectric film and (111)-oriented pzt-type dielectric film formed by using the substrate
US7420320B2 (en) 2004-01-28 2008-09-02 Kabushiki Kaisha Toshiba Piezoelectric thin film device and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017767A (en) * 2001-07-03 2003-01-17 Sony Corp Piezoelectric element
US7420320B2 (en) 2004-01-28 2008-09-02 Kabushiki Kaisha Toshiba Piezoelectric thin film device and method for manufacturing the same
US7770274B2 (en) 2004-01-28 2010-08-10 Kabushiki Kaisha Toshiba Piezoelectric thin film device and method for manufacturing the same
JP2006199507A (en) * 2005-01-18 2006-08-03 National Institute Of Advanced Industrial & Technology Substrate for formation of (111)-oriented pzt-type dielectric film and (111)-oriented pzt-type dielectric film formed by using the substrate

Similar Documents

Publication Publication Date Title
Xu et al. Ferroelectric thin films prepared by sol-gel processing
JP3133922B2 (en) Ferroelectric thin film coated substrate, method of manufacturing the same, and capacitor structure element
JP3258899B2 (en) Ferroelectric thin film element, semiconductor device using the same, and method of manufacturing ferroelectric thin film element
US6198119B1 (en) Ferroelectric element and method of producing the same
JP3363301B2 (en) Ferroelectric thin film-coated substrate, method of manufacturing the same, and nonvolatile memory constituted by ferroelectric thin-film-coated substrate
JP3476932B2 (en) Ferroelectric thin film, substrate coated with ferroelectric thin film, and method of manufacturing ferroelectric thin film
JP3341357B2 (en) Piezoelectric thin film element
US8075795B2 (en) Piezoelectrics, piezoelectric element, and piezoelectric actuator
US20050105038A1 (en) Thin film multilayer body, electronic device and actuator using the thin film multilayer body, and method of manufacturing the actuator
JP3480624B2 (en) Ferroelectric thin film coated substrate, method of manufacturing the same, and capacitor structure element
EP0513478A2 (en) Method for controlling crystal orientation of ferroelectric thin film
JPH09512963A (en) Polycrystalline ferroelectric capacitor heterostructure using hybrid electrodes
JP3182909B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
JPH0812494A (en) Production of oxide crystal thin film and thin-film element
JP2001354497A (en) Method for producing ferroelectric film
JP2995290B2 (en) Method of forming PZT-based ferroelectric thin film
JPH07187894A (en) Ferroelectric thin film
JP3105081B2 (en) Manufacturing method of ferroelectric thin film
JPH104181A (en) Ferroelectric element and semiconductor device
JP3105080B2 (en) Manufacturing method of ferroelectric thin film
Aegerter Ferroelectric thin coatings
JPH05254994A (en) Ferroelectric thin film
JPH0585704A (en) Production of ferroelectric thin film
JPH07183397A (en) Dielectric thin film element and fabrication thereof
JPH07133199A (en) Ferroelectric substance thin film having orientation property

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110122

LAPS Cancellation because of no payment of annual fees