JPH0718751B2 - Radiometer calibration device - Google Patents

Radiometer calibration device

Info

Publication number
JPH0718751B2
JPH0718751B2 JP17178590A JP17178590A JPH0718751B2 JP H0718751 B2 JPH0718751 B2 JP H0718751B2 JP 17178590 A JP17178590 A JP 17178590A JP 17178590 A JP17178590 A JP 17178590A JP H0718751 B2 JPH0718751 B2 JP H0718751B2
Authority
JP
Japan
Prior art keywords
fiber
light
sunlight
optical system
radiometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17178590A
Other languages
Japanese (ja)
Other versions
JPH0460427A (en
Inventor
匡 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17178590A priority Critical patent/JPH0718751B2/en
Publication of JPH0460427A publication Critical patent/JPH0460427A/en
Publication of JPH0718751B2 publication Critical patent/JPH0718751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は,放射計の検出器を光学的に校正する放射計
校正装置に係わり,特に,校正基準とする光の検出器へ
の照射分布の経時変化を低減した放射計校正装置に関す
る。
Description: TECHNICAL FIELD The present invention relates to a radiometer calibration device that optically calibrates a detector of a radiometer, and particularly to an irradiation distribution of light as a calibration reference to the detector. The present invention relates to a radiometer calibration device that reduces the change with time.

[従来の技術] ここでは放射計校正装置の例として,衛星に搭載される
放射計の光学的校正を行う場合について説明する。
[Prior Art] Here, as an example of a radiometer calibration device, a case of performing optical calibration of a radiometer mounted on a satellite will be described.

近年,宇宙から地表を観測するリモートセンシングの分
野で,植生調査,資源探査等への利用の点から,単に地
表の画像を得るだけでなく,定量的な観測が重要となつ
てきている。衛星に搭載される放射計は,打上げ前に地
上において絶対校正されるが,宇宙環境下では,脱ガス
による汚れ,放射線の影響等により,放射線の感度に経
時変化が生じると考えられる。衛星打上げ後,軌道上で
放射計の経時変化を校正するため,光量が既知である基
準光を放射計に入射する光学的校正装置が搭載される。
In recent years, in the field of remote sensing for observing the surface of the earth from the viewpoint of vegetation survey, resource exploration, etc., it is becoming important not only to obtain images of the surface but also to make quantitative observations. The radiometer installed on the satellite is absolutely calibrated on the ground before launch, but it is considered that the sensitivity of radiation will change with time due to contamination by degassing, the influence of radiation, etc. in the space environment. In order to calibrate the change with time of the radiometer in orbit after the launch of the satellite, an optical calibration device that injects reference light with a known light intensity into the radiometer is installed.

第6図は,例えばG.Begni,"Absolute Calibration of S
POT−1 HRV Cameras",SPIE vol.660,p66〜76(1986)に
示された従来の放射計校正装置を示す図である。図にお
いて,(1)は太陽光,(2)はフアイバの入射端に設
置されたセルフオツクレンズ,(3)は複数のフアイバ
よりなるバンドルフアイバ,(4)は,バンドルフアイ
バ出射端,(5)はバンドルフアイバ(3)の出射光を
平行光に変換するコリメータレンズ,(6)はコリメー
タレンズ(5)から出射した校正光,(7)は放射計,
(8)は放射計(7)が観測する地上面を指向するとと
もに,観測と校正の切換えを行なうポインテイングミラ
ー,(9)は放射計光学系,(10)は放射計光学系
(9)の焦点面に設置され,多数の画素からなる一次元
アレイ検出器である。衛星の進行方向は,一次元アレイ
検出器(10)の配列方向と直交しており,衛星の移動に
伴う走査により,地上の2次元画像を得ることができ
る。地上の広い範囲を高分解能で観測するため1次元ア
レイ検出器(10)は,通常数千乃至1万の画素から成
る。
Fig. 6 shows, for example, G. Begni, "Absolute Calibration of S
It is a figure which shows the conventional radiometer calibration device shown in POT-1 HRV Cameras ", SPIE vol.660, p66-76 (1986). In the figure, (1) is sunlight, (2) is fiber A self-locking lens installed at the entrance end, (3) a bundle fiber consisting of a plurality of fibers, (4) an exit end of the bundle fiber, and (5) converting the light emitted from the bundle fiber (3) into parallel light. Collimator lens, (6) calibration light emitted from collimator lens (5), (7) radiometer,
(8) is a pointing mirror for pointing the ground surface observed by the radiometer (7) and switching between observation and calibration, (9) is a radiometer optical system, (10) is a radiometer optical system (9) It is a one-dimensional array detector that is installed on the focal plane of and consists of many pixels. The satellite travel direction is orthogonal to the array direction of the one-dimensional array detector (10), and a two-dimensional image of the ground can be obtained by scanning as the satellite moves. The one-dimensional array detector (10) usually consists of several thousand to 10,000 pixels in order to observe a wide area on the ground with high resolution.

なお,校正光(6)は,ポテンテイングミラー(8)で
反射して光路を折曲げるが,本発明と直接関係しないの
で,第6図では,煩雑になるのを避けるため透過で示し
ている。
The calibration light (6) is reflected by the potentiating mirror (8) to bend the optical path, but since it is not directly related to the present invention, it is shown as transmission in FIG. 6 to avoid complication. .

通常地球観測衛星は,観測する地上の太陽高度が一定と
なるように太陽同期の極軌道に近い軌道が選ばれる。太
陽同期軌道ではあるが,衛星の軌道面と太陽の成す角度
は地球の赤道傾斜角による季節変動を生じる。セルフオ
ツクレンズ(2)の受光角が,太陽光入射角変動に比べ
狭いため,受光方向を3方向に分けて受光する。それぞ
れの方向を受光するフアイバ(3a),(3b)及び(3c)
は,それぞれ複数のフアイバで構成されており,衛星の
軌道面と太陽が成す角度が季節によつて変化しても(3
a)〜(3c)のいずれかのフアイバで受光できる。
Orbits that are close to the sun-synchronous polar orbits are usually selected for earth observation satellites so that the observed earth altitude is constant. Although it is a sun-synchronous orbit, the angle formed by the orbital plane of the satellite and the sun causes seasonal variations due to the equatorial tilt angle of the earth. Since the light receiving angle of the self-locking lens (2) is narrower than the fluctuation of the incident angle of sunlight, the light receiving direction is divided into three directions to receive light. Fibers (3a), (3b) and (3c) that receive light in each direction
Is composed of multiple fibers, and the angle between the orbital plane of the satellite and the sun changes depending on the season (3
Light can be received by any of the fibers from a) to (3c).

次に動作について説明する。Next, the operation will be described.

セルフオツクスレンズ(2)で集光された太陽光(1)
はバンドルフアイバ(3)により導光され,バンドルフ
アイバ出射端(4)から出射する。フアイバを用いるこ
とにより,セルフオツクレンズ(2)を取付けた太陽光
受光部は,衛星上の太陽光が照射する範囲内で自由な位
置に設置できる。
Sunlight (1) collected by a self-focusing lens (2)
Is guided by the bundle fiber (3) and emitted from the bundle fiber emission end (4). By using the fiber, the solar light receiving part to which the self-locking lens (2) is attached can be installed at any position within the range irradiated by the sunlight on the satellite.

バンドルフアイバ出射端(4)からの出射光は,コリメ
ータレンズ(5)により,平行光に変換され,校正光
(6)としてポインテイングミラー(8)を経由して放
射計光学系(9)に入射し,1次元アレイ検出器(10)面
上に集光される。バンドルフアイバ出射端(4)と1次
元アレイ検出器(10)面とは共役関係にあり,放射系光
学系(9)の焦点距離frとコリメータレンズ(5)の焦
点距離fcの比で決まる倍率で拡大されたバンドルフアイ
バ出射端(4)の像が,1次元アレイ検出器(10)面上に
形成される。バンドルフアイバ出射端(4)は,複数の
フアイバ(3a)〜(3c)を1次元アレイ検出器(10)の
配列方向に並べてある。
The light emitted from the bundle fiber output end (4) is converted into parallel light by the collimator lens (5), and is converted into calibration light (6) via the pointing mirror (8) to the radiometer optical system (9). The light enters and is focused on the surface of the one-dimensional array detector (10). The bundle fiber exit end (4) and the plane of the one-dimensional array detector (10) are in a conjugate relationship, and the ratio of the focal length f r of the radiation optical system (9) to the focal length f c of the collimator lens (5) An image of the bundle fiber exit end (4) magnified by the determined magnification is formed on the surface of the one-dimensional array detector (10). The bundle fiber emitting end (4) has a plurality of fibers (3a) to (3c) arranged in the arrangement direction of the one-dimensional array detector (10).

第7図に1次元アレイ検出器(10)上に形成されたバン
ドルフアイバ出射端(4)の像(11)と,1次元アレイ検
出器(10)の位置関係を示す。図において1本のフアイ
バ像(11a)〜(11c)に付加した添字a,b及びc
は,太陽光受光部で3方向に分けて配置されたフアイバ
(3a)〜(3c)にそれぞれ対応する。ここでは各フアイ
バ(3a)〜(3c)をそれぞれ4本のフアイバで構成した
例である。
FIG. 7 shows the positional relationship between the image (11) of the bundle fiber emitting end (4) formed on the one-dimensional array detector (10) and the one-dimensional array detector (10). In the figure, subscripts a, b and c added to one fiber image (11a 1 ) to (11c 4 ).
Correspond to the fibers (3a) to (3c) arranged in three directions in the sunlight receiving section. In this example, each fiber (3a) to (3c) is composed of four fibers.

1次元アレイ検出器(10)上での個々のフアイバ像(11
a)〜(11c)の大きさは,数十画素相当である。衛
星打上げ時の衝撃により地上におけるアライメントに狂
いが生じても,いずれかのフアイバ像が1次元アレイ検
出器(10)のいずれかの画素を照明できるように,バン
ドルフアイバ出射端(4)のフアイバ配置はスタガ配列
とされている。
Individual fiber images (11) on the one-dimensional array detector (10)
a 1) the size of ~ (11c 4) is equivalent tens pixels. Even if the alignment on the ground is misaligned due to the impact at the time of launching the satellite, any fiber image can illuminate any pixel of the one-dimensional array detector (10). The arrangement is staggered.

季節によつて太陽光(1)を受光するフアイバが異なる
ため,第7図に示した12本のフアイバ像(11a)〜(1
1c)のうち,実際に形成されるのは1/3のフアイバ像
である。例えば,第6図において太陽光(1a)が入射す
る季節では受光するフアイバは(3a)であり,フアイバ
(3a)に対応する4本のフアイバ像(11a)〜(11
a)のみが形成され,1次元アレイ検出器(10)の画素
のうちフアイバ像(11a)〜(11a)内に位置する画
素が校正できる。
Since the fiber that receives sunlight (1) varies depending on the season, the 12 fiber images (11a 1 ) to (1
Of 1c 4 ), 1/3 of the fiber image is actually formed. For example, fiber in the season sunlight (1a) is incident in the sixth diagram for receiving are (3a), 4 pieces of fiber image corresponding to the fiber (3a) (11a 1) ~ (11
a 4) only it is formed, the fiber image among the pixels of the one-dimensional array detector (10) (11a 1) ~ (11a 4) pixels be calibrated located within.

同様に太陽光(1b)が入射する季節では,1次元アレイ検
出器(10)の画素のうちフアイバ像(11b)〜(11
b)内に位置する画素が校正でき,太陽光(1c)が入
射する季節では,フアイバ像(11c)〜(11c)内に
位置する画素が校正できる。
Similarly, in the season when sunlight (1b) is incident, among the pixels of the one-dimensional array detector (10), the fiber image (11b 1 ) to (11b 1 )
b 4) pixels positioned can be calibrated in, the season sunlight (1c) is incident, it calibration pixels positioned fiber image (11c 1) ~ a (11c 4).

[発明が解決しようとする課題] 従来の放射計校正装置は以上のように構成されているの
で,数千乃至1万の画素から成る1次元アレイ検出器の
一部画素しか構成できず,また季節によつて太陽光を受
光するフアイバが変わるため,校正できる画素が季節に
よつて異なるという問題点があつた。
[Problems to be Solved by the Invention] Since the conventional radiometer calibration device is configured as described above, only some pixels of a one-dimensional array detector consisting of several thousand to 10,000 pixels can be configured, and Since the fiber that receives sunlight changes depending on the season, the problem is that the pixels that can be calibrated differ depending on the season.

また,校正光が経由するポインテイングミラーが校正配
置に設定後振動などでずれると,1次元アレイ検出器上の
フアイバ像が移動するので,校正可能な画素が変動する
という問題点があつた。
In addition, if the pointing mirror through which the calibration light passes is displaced due to vibration after being set in the calibration arrangement, the fiber image on the one-dimensional array detector moves, causing a problem in that the calibratable pixels change.

さらに,太陽光を受光するセルフオツクレンズ及びフア
イバはそれぞれ直径1mm及び数百μmと微小であるの
で,放射計に使用する接着剤,樹脂等から発生する脱ガ
スによる粒子がセルフオツクレンズ面やフアイバ出射端
面に付着した場合,校正光の光量に対する影響が大き
く,精度のよい校正ができないという問題点があった。
Furthermore, since the self-optic lens and fiber that receive sunlight are very small with diameters of 1 mm and several hundreds of μm, respectively, particles due to degassing generated from the adhesive or resin used in the radiometer, are generated on the self-optic lens surface and the fiber. If it adheres to the emission end face, it has a large effect on the amount of calibration light, and there is a problem that accurate calibration cannot be performed.

従って、従来の放射計校正装置では常に検出器の全画素
を精度良く校正するということができない。
Therefore, the conventional radiometer calibration device cannot always accurately calibrate all pixels of the detector.

この発明は、上記のような問題点を解消するためになさ
れたもので、常に検出器の全画素を精度良く校正できる
放射計校正装置を得ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a radiometer calibration device that can always calibrate all pixels of a detector with high accuracy.

[課題を解決するための手段] この発明に係わる放射計校正装置は、フアイバを用いて
導光した校正用光源の光を放射計の検出器に入射させ、
上記検出器を光学的に校正する放射計校正装置におい
て、フアイバと、上記フアイバからの出射光の遠視野像
を形成する光学系と、上記光学系で形成された遠視野像
を分割し,この分割された遠視野像のそれぞれの部分を
形成する光線束をそれぞれ入射させ、同じ位置に重畳し
て結像させる光学系とを備えたことを特徴とするもので
ある。また、校正用光源の光として太陽光を、フアイバ
としてバンドルフアイバを用い、バンドルフアイバの太
陽光の入射端に太陽光の入射角度によらず出射角度が一
定の光線束を出射する光学系と、上記光学系で導光した
太陽光が入射し、光軸に平行な反射側面を有する導光ロ
ッドとを有する受光光学系を備えたことを特徴とするも
のである。
[Means for Solving the Problems] A radiometer calibration device according to the present invention is configured so that light of a calibration light source guided using a fiber is incident on a detector of a radiometer,
In a radiometer calibration device that optically calibrates the detector, a fiber, an optical system that forms a far-field image of the light emitted from the fiber, and a far-field image that is formed by the optical system are divided. An optical system is provided, which is configured to make light beams forming respective portions of the divided far-field images incident, and superimpose them at the same position to form an image. Further, the sunlight as the light of the calibration light source, using the bundle fiber as the fiber, an optical system that emits a bundle of rays with a constant exit angle regardless of the incident angle of the sunlight at the incident end of the sunlight of the bundle fiber, It is characterized by comprising a light receiving optical system having a light guiding rod having a reflecting side surface parallel to the optical axis on which sunlight guided by the optical system is incident.

[作用] 上記のように構成された放射計校正装置においては,フ
アイバからの出射光の遠視野像を形成する光学系と,上
記光学系で形成された遠視野像を分割し,遠視野像のそ
れぞれの部分の光線束を同じ位置に重畳して結像させる
光学系とにより、フアイバからの出射光の遠視野像を分
割して遠視野像のそれぞれの部分の光線束を同じ位置に
重畳して結像させるので,フアイバからの出射光の角度
成分を混合して均一な強度分布の像を形成する。
[Operation] In the radiometer calibration device configured as described above, the far-field image formed by the optical system and the optical system that forms the far-field image of the light emitted from the fiber are divided into the far-field image. The far-field image of the light emitted from the fiber is divided by the optical system that forms an image by superimposing the light flux of each part on the same position and superimposes the light flux of each part of the far-field image on the same position. Since the light is imaged in this manner, the angular components of the light emitted from the fiber are mixed to form an image with a uniform intensity distribution.

また,フアイバの太陽光の入射端に設けた,太陽光の入
射角度によらず出射角度が一定の光線束を出射する光学
系と,上記光学系で導光した太陽光が入射し,光軸に平
行な反対側面を有する導光ロツドとを有する受光光学系
により,太陽光の導光ロツドへの入射角を太陽光の入射
角によらず一定にでき,また,導光ロツドでは側面で反
射した太陽光の光軸となす角度を保存するので,太陽光
の入射角変動によらず一定の入射角度西部でフアイバを
マルチモード励振する。
In addition, an optical system that emits a bundle of rays with a constant emission angle regardless of the incident angle of the sunlight provided at the sunlight incident end of the fiber, and the sunlight guided by the optical system is incident, A light-receiving optical system having a light guide rod with an opposite side parallel to the sun can make the incident angle of sunlight on the light guide rod constant regardless of the incident angle of sunlight, and the light guide rod reflects the light on the side surface. Since the angle formed by the sunlight with respect to the optical axis is preserved, the fiber is excited in multimode at a constant western incident angle regardless of the variation of the incident angle of sunlight.

[実施例] 以下,この発明の一実施例を図につい説明する。ここで
は,従来例と同様の衛星に搭載される放射計を太陽光を
用いて光学的に校正する放射計校正装置を例として説明
する。第1図はこの発明の放射計校正装置の一実施例の
構成を示す断面図であり,図において(12)はフアイバ
であつて,この実施例ではバンドルフアイバ,(13)は
フアイバ入射端,(14)はフアイバ出射端,(15)はフ
アイバからの出射光の遠視野像を形成する光学系であつ
てフアイバ出射端(14)を物体焦平面とする第1のコン
デンサレンズ,(16)は第1のコンデンサレンズ(15)
の像焦平面,(17)は光軸,(18)は第1のコンデンサ
レンズ(15)の像焦平面(16)に設置され,光軸(17)
に対して対称に配列された1対の2次元レンズアレイで
構成されるミキサレンズ,(19)はミキサレンズ(18)
を物体焦平面とする第2のコンデンサレンズ,(20)は
第2のコンデンサレンズの物体焦平面,(21)は第2の
コンデンサレンズの像焦平面,(22)は第2のコンデン
サレンズの像焦平面(21)上で,光軸(17)から放射計
(7)の1次元アレイ検出器(10)の配列方向と直交す
る方向にずらした位置に設置した光量モニタ検出器,
(23)は第2のコンデンサレンズ(19)と共焦点に位置
し,第2のコンデンサレンズ(19)の像焦平面(21)を
物体焦平面とするコリメータレンズである。なお,
(1),(6)〜(10)は従来装置と同様のものであ
る。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings. Here, a radiometer calibration device for optically calibrating a radiometer mounted on a satellite similar to the conventional example using sunlight will be described as an example. FIG. 1 is a sectional view showing the structure of an embodiment of a radiometer calibration device of the present invention. In the figure, (12) is a fiber, in this embodiment a bundle fiber, (13) is a fiber entrance end, (14) is a fiber output end, (15) is an optical system for forming a far-field image of the output light from the fiber, the first condenser lens having the fiber output end (14) as the object focal plane, (16) Is the first condenser lens (15)
Image focal plane, (17) is the optical axis, (18) is installed on the image focal plane (16) of the first condenser lens (15), and the optical axis (17)
A mixer lens composed of a pair of two-dimensional lens arrays symmetrically arranged with respect to, (19) is a mixer lens (18)
Is the object focal plane, (20) is the object focal plane of the second condenser lens, (21) is the image focal plane of the second condenser lens, and (22) is the second condenser lens. A light quantity monitor detector installed on the image focal plane (21) at a position displaced from the optical axis (17) in a direction orthogonal to the arrangement direction of the one-dimensional array detector (10) of the radiometer (7),
Reference numeral (23) is a collimator lens located confocal with the second condenser lens (19) and having the image focal plane (21) of the second condenser lens (19) as the object focal plane. In addition,
(1), (6) to (10) are the same as the conventional device.

バンドルフアイバ(12)は上記従来例のハンドルフアイ
バ(3)とは異なり,フアイバ入射端(13)とフアイバ
出射端(14)はフアイバを密に詰めたバンドルであり,
フアイバ出射端(14)のバンドル形状は例えば円形であ
る。標準的なフアイバの受光角は±11゜程度はあるの
で,太陽光(1)入射角の季節変動±約7゜程度に対し
ては,フアイバ入射端(13)の方向を適切に設定してお
けば年間を通じて太陽光を受光できる。
Unlike the conventional handle fiber (3), the bundle fiber (12) is a bundle in which the fiber entrance end (13) and fiber exit end (14) are densely packed.
A bundle shape of the fiber emitting end (14) is, for example, circular. Since the standard acceptance angle of the fiber is about ± 11 °, the direction of the fiber entrance end (13) should be set appropriately for the seasonal variation of the incident angle of sunlight (1) of about ± 7 °. You can receive sunlight all year long.

ミキサレンズ(18)は入射レンズアレイ(18a)と出射
レンズアレイ(18b)で構成される。入射レンズアレイ
(18a)と出射レンズアレイ(18b)は同一の焦点距離を
もち,互いの焦平面上に設置される。また,入射レンズ
アレイ(18a)と出射レンズアレイ(18b)のアレイ間隔
も同一で,個々のレンズが互いに同軸となるように配置
される。上記のような1対の2次元レンズアレイから成
るミキサレンズ(18)は,一般にフライアイや平板マイ
クロレンズアレイなどで構成することができる。
The mixer lens (18) includes an entrance lens array (18a) and an exit lens array (18b). The entrance lens array (18a) and the exit lens array (18b) have the same focal length and are installed on the focal planes of each other. In addition, the array intervals of the entrance lens array (18a) and the exit lens array (18b) are the same, and the individual lenses are arranged so as to be coaxial with each other. The mixer lens (18) composed of a pair of two-dimensional lens arrays as described above can be generally composed of a fly's eye or a flat plate microlens array.

ミキサレンズ(18)は,入射レンズアレイ(18a)が第
1のコンデンサレンズの像焦平面(16)上に位置し,出
射レンズアレイ(18b)が第2のコンデンサレンズ(1
9)の物体焦平面(20)上に位置するように設置され
る。
In the mixer lens (18), the entrance lens array (18a) is located on the image focal plane (16) of the first condenser lens, and the exit lens array (18b) is located in the second condenser lens (1).
It is installed so as to be located on the object focal plane (20) of 9).

次に動作について説明する。Next, the operation will be described.

第2図は,この発明の動作原理を説明する図であり,フ
アイバ出射端(14)から第2のコンデンサレンズ(19)
の像焦平面(21)に到る範囲の,1次元アレイ検出器(1
0)の配列方向と直交する方向の断面を示す。
FIG. 2 is a diagram for explaining the operation principle of the present invention, in which the fiber output end (14) to the second condenser lens (19) are connected.
One-dimensional array detector (1
0) shows a cross section in a direction orthogonal to the arrangement direction.

第2図においては,フアイバ出射端(14)の両端および
中央の位置から出射するバンドルフアイバ(12)の最大
出射角の光線および出射角内の3つの光線を例として図
示している。この図から,フアイバ出射端(14)からの
出射光の遠視野像が第1のコンデンサレンズ(15)によ
り第1のコンデンサレンズの像焦平面(16)に形成さ
れ,この遠視野像が入射レンズアレイ(18a)で分割さ
れ,この分割された遠視野像のそれぞれの部分を形成す
る光線束をそれぞれ入射させるミキサレンズ(18)およ
び第2のコンデンサレンズ(19)により第2のコンデン
サレンズの像焦平面(21)上のA点からB点までの同じ
位置に重畳して結像されることがわかる。なお,上記に
おいてフアイバ出射端(14)の両端の位置から出射する
バンドルフアイバ(12)の最大出射角の光線は第2のコ
ンデンサレンズの像焦平面(21)上のA点とB点に結像
されており,図中に示していないバンドルフアイバ(1
2)の出射角内の他の光線,または,フアイバ出射端(1
4)の他の位置から出射する光線は,いずれも上記第2
のコンデンサレンズの像焦平面(21)上のA点からB点
までの同じ位置に重畳して結像されるものであることが
わかる。
In FIG. 2, a ray at the maximum exit angle of the bundle fiber (12) and three rays within the exit angle, which are emitted from both ends of the fiber exit end (14) and the central position, are shown as an example. From this figure, the far-field image of the light emitted from the fiber exit end (14) is formed on the image focal plane (16) of the first condenser lens by the first condenser lens (15), and this far-field image is incident. The second condenser lens (18) is divided by the lens array (18a), and the mixer lens (18) and the second condenser lens (19) which respectively enter the ray bundles forming the respective portions of the divided far-field image are incident on the second condenser lens. It can be seen that images are superimposed and formed at the same position from the point A to the point B on the image focal plane (21). It should be noted that, in the above, the light beam with the maximum emission angle of the bundle fiber (12) emitted from both ends of the fiber emission end (14) is connected to the points A and B on the image focal plane (21) of the second condenser lens. Bundle fiber (1
Other rays within the exit angle of 2) or the fiber exit end (1
Rays emitted from other positions in 4) are all above the second
It can be seen that the image is superimposed and formed at the same position from the point A to the point B on the image focal plane (21) of the condenser lens.

以上のように上記構成ではフアイバ出射端(14)の遠視
野像をミキサレンズ(18)の2次元アレイ数に応じて分
割し,第2のコンデンサレンズ(19)の像焦平面(21)
上の同じ位置に重畳して再結像することができる。
As described above, in the above structure, the far-field image at the fiber exit end (14) is divided according to the number of two-dimensional arrays of the mixer lens (18), and the image focal plane (21) of the second condenser lens (19) is divided.
It is possible to re-image by superimposing it on the same position above.

第3図は第1のコンデンサレンズの像焦平面(16)にお
けるフアイバ出射端(14)の遠視野像の強度分布と,第
2のコンデンサレンズの像焦平面(21)上に分割,重畳
されて再結像した遠視野像の強度分布の例を,光軸を含
む断面について示す。ここではミキサレンズ(18)は7
個のレンズを並べたアレイで構成した例を示す。第3図
において(24)は入射レンズアレイ(18a)上に形成さ
れたフアイバ出射端(14)の遠視野像,(25)は第2の
コンデンサレンズの像焦平面(21)上の同じ位置に重畳
して結像された光の強度分布を示す。
Fig. 3 shows the intensity distribution of the far-field image at the fiber exit end (14) on the image focal plane (16) of the first condenser lens and the image distribution on the image focal plane (21) of the second condenser lens. An example of the intensity distribution of the far-field image re-imaged is shown for the cross section including the optical axis. Here the mixer lens (18) is 7
An example is shown in which the lens is arranged in an array. In FIG. 3, (24) is a far-field image of the fiber output end (14) formed on the incident lens array (18a), and (25) is the same position on the image focal plane (21) of the second condenser lens. 3 shows the intensity distribution of light that is superimposed and imaged.

また,(18aa)〜(18ag)は,それぞれ入射レンズアレ
イ(18a)の個々のレンズであり,(24a)〜(24g)は
それぞれ個々のレンズ(18aa)〜(18ag)で分割される
遠視野像(24)のそれぞれの部分の光線束である。
Further, (18aa) to (18ag) are individual lenses of the incident lens array (18a), and (24a) to (24g) are far-field divided by the individual lenses (18aa) to (18ag). It is a ray bundle of each part of the image (24).

一般に十分長いマルチモードフアイバでは太陽光(1)
のように平行光を入射する単一モード励振でも,フアイ
バの曲がり,コアとクラツド界面の凹凸などによるモー
ド変換を受け,フアイバ出射端(14)の遠視野像(24)
は,フアイバの開口数で決まる出射角内に広がつた分布
が得られる。しかしながら衛星に搭載する機器では,重
畳の点からフアイバ長は制限され,数m程度の短いフア
イバでは,フアイバ出射端(14)の遠方像(24)は,励
振モードに依存し,第3図(a)〜(c)に示すよう
に,バンドルフアイバ(12)への太陽光(1)の入射角
によつて変動する。第3図(a)は太陽光(1)のバン
ドルフアイバ(12)への入射角が0゜,第3図(b)は
太陽光(1)の入射角がバンドルフアイバ(12)の受光
角の約1/2,第3図(c)は太陽光(1)の入射角がバン
ドルフアイバ(12)の受光角程度であるときの,フアイ
バ出射端(14)の遠視野像(24)の強度分布例をそれぞ
れ示す。遠視野像(24)はバンドルフアイバ(12)への
入射角に依存し,通常,入射角に等しい出射角方向の強
度が強い分布となり,入射角によつては,第3図(b)
及び(c)のようにリング状分布となる。
Sunlight (1) in multimode fiber, which is generally long enough
Even in single-mode excitation with collimated light such as shown in Fig. 4, the fiber is bent and the mode is changed due to the unevenness of the interface between the core and the cladding, and the far-field image (24) of the fiber output end (14) is obtained.
Gives a distribution spread within the exit angle determined by the numerical aperture of the fiber. However, in the equipment mounted on the satellite, the fiber length is limited from the point of superposition, and in the case of a short fiber of about several meters, the distant image (24) at the fiber emission end (14) depends on the excitation mode, and Fig. 3 ( As shown in a) to (c), it varies depending on the incident angle of the sunlight (1) to the bundle fiber (12). In Fig. 3 (a), the incident angle of sunlight (1) on the bundle fiber (12) is 0 °, and in Fig. 3 (b), the incident angle of sunlight (1) is the light receiving angle of the bundle fiber (12). 1/2, Fig. 3 (c) shows the far field image (24) of the fiber exit end (14) when the incident angle of sunlight (1) is about the acceptance angle of the bundle fiber (12). Examples of intensity distribution are shown below. The far-field pattern (24) depends on the incident angle to the bundle fiber (12), and usually the intensity in the direction of the exit angle, which is equal to the incident angle, has a strong distribution.
And a ring-shaped distribution as shown in (c).

フアイバ出射端(14)の遠視野像(24)は,第3図
(a)〜(c)のように,太陽光(1)の入射角によつ
て変動しても,軸対称な分布であるので,光軸に対して
対称に配列した入射レンズアレイ(18a)によつて分割
された遠視野像(24a)〜(24g)を重畳すると互いに対
称な位置にある遠視野像(24a)と(24g),(24b)と
(24f),(24c)と(24e)の強度分布の分布の傾きが
打消し合つて重畳され,第2のコンデンサレンズ(19)
の像焦平面(21)上ではほぼ均一な光強度分布を得るこ
とができる。第3図(d)〜(f)はそれぞれフアイバ
出射端(14)の遠方像(24)が第3図(a)〜(c)で
あるときの,第2のコンデンサレンズ(19)の像焦平面
(21)上の光強度分布(25)を示す。
The far-field image (24) at the fiber exit end (14) has an axisymmetric distribution, even if it varies depending on the incident angle of sunlight (1), as shown in Figs. 3 (a) to (c). Therefore, when the far field images (24a) to (24g) divided by the incident lens array (18a) arranged symmetrically with respect to the optical axis are superimposed, the far field images (24a) at positions symmetrical to each other are obtained. The slopes of the intensity distributions of (24g), (24b) and (24f), (24c) and (24e) are canceled and superimposed, and the second condenser lens (19)
A substantially uniform light intensity distribution can be obtained on the image focal plane (21). 3 (d) to 3 (f) are images of the second condenser lens (19) when the far image (24) at the fiber exit end (14) is shown in FIGS. 3 (a) to 3 (c), respectively. The light intensity distribution (25) on the focal plane (21) is shown.

なお,第3図では,ミキサレンズ(18)を7×7個の2
次元レズアレイの対で構成した場合にはついて示した
が,さらに多数のレンズアレイを用いることにより,第
2のコンデンサレンズ(19)の像焦平面(21)上の光強
度分布(25)の均一性をさらに向上することが可能であ
る。
In addition, in FIG. 3, the mixer lens (18) is made up of 7 × 7 2
As shown in the case of a pair of three-dimensional lesbian arrays, by using a larger number of lens arrays, the light intensity distribution (25) on the image focal plane (21) of the second condenser lens (19) becomes uniform. It is possible to further improve the property.

コリメータレンズ(23)および放射計光学系(9)によ
つて,1次元アレイ検出器(10)上には,第2のコンデン
サレンズ(19)の像焦平面(21)上の光強度分布(25)
の拡大像が結ばれるので,1次元アレイ検出器(10)上で
均一な分布の校正光(6)を得ることができる。また,
コリメータレンズ(23)と放射計光学系(9)の焦点距
離比を,第2のコンデンサレンズ(19)の像焦平面(2
1)上の光強度分布(25)が均一である範囲と,1次元ア
レイ検出器(10)の全長比以上となるように設定すれ
ば,1次元アレイ検出器(10)の全画素を均一に照明する
校正光(6)を得ることができる。また,このような均
一分布の校正光の場合にはポインテイングミラー(8)
のずれ等による1次元アレイ検出器(10)への照射位置
ずれの影響も低減される。
By the collimator lens (23) and the radiometer optical system (9), the light intensity distribution on the image focal plane (21) of the second condenser lens (19) (on the one-dimensional array detector (10) ( twenty five)
Since a magnified image of is formed, the calibration light (6) having a uniform distribution can be obtained on the one-dimensional array detector (10). Also,
The focal length ratio of the collimator lens (23) and the radiometer optical system (9) is set to the image focal plane (2) of the second condenser lens (19).
1) All pixels of the one-dimensional array detector (10) are made uniform by setting it so that the light intensity distribution (25) above is uniform and the total length ratio of the one-dimensional array detector (10) or more. It is possible to obtain the calibration light (6) that illuminates the. Also, in the case of such a uniform distribution of calibration light, a pointing mirror (8)
The influence of the displacement of the irradiation position on the one-dimensional array detector (10) due to the displacement of the beam is reduced.

ここで,第2のコンデンサレンズ(19)の像焦平面(2
1)に設置した光量モニタ検出器(22)で,光量をモニ
タすれば,コリメータレンズ(23)を除く校正光学系の
大部分における脱ガス等による透過率の劣化を知ること
ができ,放射計(7)の精度の高い校正ができる。第2
図に示したように光量モニタ検出器(22)を光軸から,
放射計(7)の1次元アレイ検出器(10)の配列方向と
直交する方向にずらして設置することにより,1次元アレ
イ検出器(10)上を照明する校正光(6)に光量モニタ
検出器(22)の影が生じることはない。
Here, the image focal plane of the second condenser lens (19) (2
By monitoring the light quantity with the light quantity monitor detector (22) installed in 1), it is possible to know the deterioration of the transmittance due to degassing in most of the calibration optical system except the collimator lens (23). Highly accurate calibration of (7) can be performed. Second
As shown in the figure, the light quantity monitor detector (22) is
By installing the radiometer (7) in a direction orthogonal to the array direction of the one-dimensional array detector (10), the calibration light (6) illuminating the one-dimensional array detector (10) can be detected by a light quantity monitor. There is no shadow of the vessel (22).

なお,上記実施例においては,フアイバとしてバンドル
フアイバ(12)を用いた場合を示したが,一本のマルチ
モードフアイバの場合にも上記技術思想は適用でき,上
記同様の効果を奏する。
Although the bundle fiber (12) is used as the fiber in the above embodiment, the above technical idea can be applied to the case of one multi-mode fiber and the same effect as described above can be obtained.

さらに,上記実施例では,第2のコンデンサレンズの像
焦平面(21)に結像された像を再度1次元アレイ検出器
(10)上へ結像する構成例を示したが,第2のコンデン
サレンズの像焦平面(21)の位置が直接1次元アレイ検
出器(10)の位置に一致するように光学系を構成しても
良く,上記同様の効果を奏する。
Further, in the above embodiment, the configuration example in which the image formed on the image focal plane (21) of the second condenser lens is formed again on the one-dimensional array detector (10) has been described. The optical system may be configured so that the position of the image focal plane (21) of the condenser lens directly coincides with the position of the one-dimensional array detector (10), and the same effect as described above is obtained.

また,上記実施例ではバンドルフアイバ(12)のフアイ
バ入射端(13)の端面は平面としたが,球面としてもよ
い。第4図はバンドルフアイバ(12)のフアイバ入射端
(13)を球面上に設置した例を示す。第4図において,
(12a)〜(12c)はバンドルフアイバ(12)を構成する
1本のフアイバ例,(26)は1本のフアイバ(12a)〜
(12c)の入射端設置面,(27a)〜(27c)はそれぞれ
1本のフアイバ(12a)〜(12c)の光軸である。入射端
設置面(26)が球面であるので,各1本のフアイバ(12
a)〜(12c)に入射する太陽光(1)の入射角θa〜θ
cは,入射端設置面(26)上の位置によつて異なる。従
つて,1本のフアイバ(12a)〜(12c)はそれぞれ単一モ
ードで励振されるが,励振モードが各フアイバで異な
り,バンドルフアイバ(12)全体ではマルチモードで励
振されることになる。従つて,バンドルフアイバ(12)
の出射端(14)の遠視野像(24)は,第3図(a)に示
した単一モード励振時に比べ広がつた強度分布となり,
また太陽光(1)の入射角変動による遠視野像(24)の
変動も低減できるので,少ないレンズアレイ数のミキサ
レンズ(18)で,均一な校正光(6)を得ることができ
る。
Further, in the above embodiment, the end face of the fiber entrance end (13) of the bundle fiber (12) is a flat surface, but it may be a spherical surface. FIG. 4 shows an example in which the fiber entrance end (13) of the bundle fiber (12) is installed on a spherical surface. In Figure 4,
(12a) to (12c) are examples of one fiber constituting the bundle fiber (12), and (26) is one fiber (12a) to
The entrance end installation surface of (12c) and (27a) to (27c) are optical axes of one fiber (12a) to (12c), respectively. Since the entrance end installation surface (26) is spherical, one fiber (12
Incident angles θa to θ of sunlight (1) incident on a) to (12c)
c differs depending on the position on the incident end installation surface (26). Therefore, each fiber (12a) to (12c) is excited in a single mode, but the excitation mode is different for each fiber, and the bundle fiber (12) as a whole is excited in multiple modes. Therefore, bundle fiber (12)
The far-field image (24) at the exit end (14) of has a broader intensity distribution compared to the single mode excitation shown in Fig. 3 (a).
Further, since the variation of the far-field image (24) due to the variation of the incident angle of the sunlight (1) can be reduced, the uniform calibration light (6) can be obtained with the mixer lens (18) having a small number of lens arrays.

なお,上記実施例では,バンドルフアイバ(12)を校正
する個々のフアイバの入射端を球面上に設置した場合に
ついて説明したが,バンドルフアイバ(12)のフアイバ
入射端(13)を球面状に研磨加工してもよく,上記実施
例と同様の効果が得られる。
In addition, although the case where the entrance ends of the individual fibers for calibrating the bundle fiber (12) are set on the spherical surface in the above-described embodiment, the fiber entrance end (13) of the bundle fiber (12) is ground into a spherical shape. It may be processed, and the same effect as that of the above-mentioned embodiment can be obtained.

以上の実施例では太陽光(1)をバンドルフアイバ(1
2)で直接受光する校正について説明したが,次に受光
光学系を介して太陽光(1)を受光する場合の実施例を
示す。
In the above example, the sunlight (1) is bundled with the fiber (1
The calibration in which the light is directly received was described in 2), but next, an example in the case of receiving the sunlight (1) through the light receiving optical system will be shown.

第5図は,フアイバ入射端(13)に受光光学系(28)を
設置した構成を示す断面図である。第5図において,
(29)は太陽光(1)の入射角度によらず出射角が一定
の光線束を出射する光学系であつて,テレセントリツク
光学系,(30)はテレセントリツク光学系(29)の開口
絞り,(31)は受光光学系(28)の光軸,(32)はバン
ドルフアイバ(12)のフアイバ入射端(13)に設置した
光軸(31)に平行な反射側面を有する導光ロツドかあつ
て,例えば四角柱のロツドガラスである。
FIG. 5 is a sectional view showing a configuration in which the light receiving optical system (28) is installed at the fiber entrance end (13). In Figure 5,
(29) is an optical system that emits a bundle of rays with a constant exit angle regardless of the incident angle of sunlight (1), a telecentric optical system, and (30) an aperture stop of the telecentric optical system (29). , (31) is an optical axis of the light receiving optical system (28), (32) is a light guide rod having a reflection side surface parallel to the optical axis (31) installed at the fiber entrance end (13) of the bundle fiber (12). That is, for example, square rod glass.

開口絞り(30)の中心を通る太陽光(1)の主光線(1
p)は,テレセントリツク光学系(29)を透過後,光軸
(31)と平行となる。従つて,テレセントリツク光学系
(29)で集光される太陽光(1)が光軸(31)と成す角
は,太陽光(1)の受光光学系(28)への入射角によら
ず一定に保たれる。ロツドガラス(32)に入射した太陽
光(1)は,ロツドガラス(32)の側面で全反射し,ハ
ンドルフアイバ(12)のフアイバ入射端(13)に広がつ
て入射するのでバンドルフアイバ(12)を構成する個々
のフアイバには,複数の入射角で,太陽光(1)が入射
し,個々のフアイバが複数のモードで励振される。ま
た,ロツドガラス(32)の側面は光軸(31)と平行であ
るので,側面での全反射中,テレセントリツク光学系
(29)で導光された太陽光(1)と光軸(31)が成す角
は保存される。従つて太陽光(1)の受光光学系(28)
への入射角によらず,バンドルフアイバ(12)に入射す
る太陽光(1)の入射角はバンドルフアイバ(12)全体
で一定に保たれる。さらにテレセントリツク光学系(2
9)のF数をバンドルフアイバ(12)の受光角に合わせ
て設定すれば,バンドルフアイバ(12)全体では,全モ
ードが励振され,フアイバ出射端(14)の遠視野像(2
4)は,バンドルフアイバ(12)の受光角で制限される
出射角内に広がつた強度分布となる。バンドルフアイバ
(12)全体では全モード励振ではあるが,個々のフアイ
バは,一部のモード励振であり,またその励振モード
は,太陽光(1)の受光光学系(28)への入射角によつ
て変化する。個々のフアイバの特性のバラツキにより,
フアイバ出射端(14)の遠視野像(24)の強度分布に
は,不均一性が残るが,比較的均一で太陽光(1)の受
光光学系(28)への入射角変動による変動の少ない強度
分布のフアイバ出射光が得られる。従つてより少ないレ
ンズアレイ数のミキサレンズ(18)で太陽光(1)の入
射角変動による変動が少なく,均一な校正光(6)を得
ることができる。
The chief ray (1) of sunlight (1) passing through the center of the aperture stop (30)
p) becomes parallel to the optical axis (31) after passing through the telecentric optical system (29). Therefore, the angle formed by the sunlight (1) collected by the telecentric optical system (29) with the optical axis (31) does not depend on the incident angle of the sunlight (1) on the light receiving optical system (28). Is kept constant. The sunlight (1) incident on the rod glass (32) is totally reflected on the side surface of the rod glass (32) and spreads to the fiber entrance end (13) of the handle fiber (12), so that the bundle fiber (12) is emitted. Sunlight (1) is incident on each of the constituent fibers at a plurality of incident angles, and each fiber is excited in a plurality of modes. Moreover, since the side surface of the rod glass (32) is parallel to the optical axis (31), the sunlight (1) guided by the telecentric optical system (29) and the optical axis (31) during total reflection on the side surface. The angle formed by is preserved. Therefore, the sunlight receiving optical system (28)
The incident angle of the sunlight (1) incident on the bundle fiber (12) is kept constant throughout the bundle fiber (12) regardless of the incident angle on the bundle fiber (12). Telecentric optical system (2
If the F number of 9) is set according to the light receiving angle of the bundle fiber (12), all modes are excited in the bundle fiber (12) as a whole, and the far-field image (2) of the fiber emission end (14) is generated.
4) has an intensity distribution that spreads within the exit angle limited by the acceptance angle of the bundle fiber (12). All modes are excited in the bundle fiber (12) as a whole, but some fibers are in some modes, and the excitation mode depends on the incident angle of the sunlight (1) to the light receiving optical system (28). It changes all the time. Due to variations in the characteristics of individual fibers,
The intensity distribution of the far-field image (24) at the fiber exit end (14) remains non-uniform, but it is relatively uniform and varies due to fluctuations in the incident angle of sunlight (1) on the light receiving optical system (28). Fiber emission light with a small intensity distribution can be obtained. Therefore, with the mixer lens (18) having a smaller number of lens arrays, the variation due to the variation of the incident angle of the sunlight (1) is small, and the uniform calibration light (6) can be obtained.

なお,以上の実施例においては,太陽光(1)が入射す
る場合について示したが,この発明の放射計校正装置は
これに限らず,衛星に搭載された内部光源など,その他
の光源の場合にも同様に適用でき,上記同様の効果を奏
する。
In addition, although the case where sunlight (1) is incident has been shown in the above embodiments, the radiometer calibration device of the present invention is not limited to this, and in the case of other light sources such as an internal light source mounted on a satellite. The same effect can be obtained by applying the same to the above.

また,以上の実施例では放射計校正装置を衛星に搭載さ
れた放射計の光学的校正に適用した場合について説明し
たが,放射計は衛星に搭載されたものに限らず,また,
放射計の検出器も1次元アレイ検出器の場合に限るもの
ではなく,この発明の放射計校正装置は一般の放射計に
適用でき,上記同様の効果を奏することはいうまでもな
い。
Further, in the above embodiments, the case where the radiometer calibration device is applied to the optical calibration of the radiometer mounted on the satellite has been described, but the radiometer is not limited to the one mounted on the satellite, and
The detector of the radiometer is not limited to the one-dimensional array detector, and it goes without saying that the radiometer calibration device of the present invention can be applied to a general radiometer and has the same effects as above.

[発明の効果] 請求項1の放射計校正装置によればフアイバからの出射
光の遠視野像を形成する光学系と、上記光学系で形成さ
れた遠視野像を分割し、この分割された遠視野像のそれ
ぞれの部分を形成する光線束をそれぞれ入射させ、同じ
位置に重畳して結像させる光学系とを備え、フアイバか
らの出射光の遠視野像を分割し、この分割された遠視野
像のそれぞれの部分を形成する光線束を同じ位置に重畳
して結像させたので、フアイバからの出射光の角度成分
を混合して均一な強度分布の像を形成でき、フアイバか
らの出射光の強度分布の影響が低減された放射計の検出
器全面を照射する均一な分布の校正光が得られるので、
常に検出器の全画素を精度良く校正できる放射計校正装
置を得られる効果がある。
EFFECT OF THE INVENTION According to the radiometer calibration device of claim 1, the far field image formed by the optical system and the optical system that forms the far field image of the light emitted from the fiber are divided, and the divided The far-field image of the light emitted from the fiber is divided, and the far-field image of the light emitted from the fiber is divided. Since the light flux forming each part of the field-of-view image was superimposed and imaged at the same position, the angular components of the light emitted from the fiber can be mixed to form an image with a uniform intensity distribution. Since a uniform distribution of calibration light that irradiates the entire surface of the detector of the radiometer in which the influence of the intensity distribution of the emitted light is reduced is obtained,
There is an effect that it is possible to obtain a radiometer calibration device that can always calibrate all pixels of the detector with high accuracy.

また、請求項2の放射計校正装置によれば、フアイバと
してバンドルフアイバを用い、バンドルフアイバの太陽
光の入射端に太陽光の入射角度によらず出射角度が一定
の光線束を出射する光学系と、上記光学系で導光した太
陽光が入射し、光軸に平行な反射側面を有する導光ロッ
ドとを有する受光光学系を備えたので、太陽光の導光ロ
ツドへの入射角は太陽光の入射角によらず一定にでき、
また、導光ロツドでは側面で反射した太陽光の光軸とな
す角度を保存するので、バンドルフアイバは太陽光の入
射角度変動によらず一定の入射角度成分でマルチモード
励振され、太陽光の入射角度変動による強度分布変動の
ないフアイバ出射光を得られ、常に検出器の全画素をよ
り精度良く校正できる放射計校正装置を得られる効果が
ある。
According to the radiometer calibration device of claim 2, the bundle fiber is used as the fiber, and an optical system that emits a bundle of rays having a constant emission angle to the incident end of the sunlight of the bundle fiber regardless of the incident angle of the sunlight. And a light-receiving optical system having a light-guiding rod having a reflecting side surface parallel to the optical axis on which the sunlight guided by the optical system is incident, the incident angle of the sunlight to the light-guiding rod is It can be made constant regardless of the incident angle of light,
In addition, since the light guide rod stores the angle formed with the optical axis of the sunlight reflected on the side surface, the bundle fiber is excited by multimode with a constant incident angle component regardless of the incident angle fluctuation of the sunlight, and the incident sunlight There is an effect that it is possible to obtain a fiber emission light without intensity distribution variation due to angle variation, and to obtain a radiometer calibration device that can constantly calibrate all pixels of the detector with higher accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の放射計校正装置の一実施例の校正を
示す断面図,第2図はこの発明の動作原理の説明図,第
3図はこの発明によるフアイバ出射端の遠視野像と校正
光の強度分布の計算例を示す図,第4図はこの発明の他
の実施例におけるフアイバ入射端の構成を示す断面図,
第5図はこの発明のさらに他の実施例においてフアイバ
入射端に取り付ける受光光学系の構成を示す断面図,第
6図は従来の放射計構成装置の構成を示す断面図,第7
図は従来の放射計構成位置による校正光と1次元アレイ
検出器の位置関係を示す説明図である。 図において,(1)は太陽光,(6)は校正光,(7)
は放射計,(10)は1次元アレイ検出器,(12)はバン
ドルフアイバ,(13)はフアイバ入射端,(14)はフア
イバ出射端,(15)は第1のコンデンサレンズ,(16)
第1のコンデンサレンズの像焦平面,(17)は光軸,
(18)はミキサレンズ,(19)は第2のコンデンサレン
ズ,(20)は第2のコンデンサレンズの物体焦平面,
(21)は第2のコンデンサレンズの像焦平面,(23)コ
リメータレンズ,(26)はフアイバ入射端設置面,(2
8)は受光光学系,(29)はテレセントリック光学系,
(32)はロツドガラスである。 なお,図中,同一符号は同一,または相当部分を示す。
FIG. 1 is a sectional view showing the calibration of an embodiment of the radiometer calibration apparatus of the present invention, FIG. 2 is an explanatory view of the operating principle of the present invention, and FIG. 3 is a far-field image of the fiber emission end according to the present invention. FIG. 4 is a diagram showing an example of calculating the intensity distribution of the calibration light, FIG. 4 is a sectional view showing the configuration of the fiber entrance end in another embodiment of the present invention,
FIG. 5 is a sectional view showing the construction of a light receiving optical system attached to the fiber entrance end in still another embodiment of the present invention, and FIG. 6 is a sectional view showing the construction of a conventional radiometer constituting apparatus.
The figure is an explanatory view showing the positional relationship between the calibration light and the one-dimensional array detector according to the conventional radiometer configuration position. In the figure, (1) is sunlight, (6) is calibration light, (7)
Is a radiometer, (10) is a one-dimensional array detector, (12) is a bundle fiber, (13) is a fiber entrance end, (14) is a fiber exit end, (15) is a first condenser lens, (16)
The image focal plane of the first condenser lens, (17) is the optical axis,
(18) is a mixer lens, (19) is a second condenser lens, (20) is an object focal plane of the second condenser lens,
(21) is the image focal plane of the second condenser lens, (23) is a collimator lens, (26) is the fiber incident end installation surface, and (2
8) is a light receiving optical system, (29) is a telecentric optical system,
(32) is a rod glass. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】フアイバを用いて導光した校正用光源の光
を放射計の検出器に入射させ、上記検出器を光学的に校
正する放射計校正装置において、フアイバと、上記フア
イバからの出射光の遠視野像を形成する光学系と、上記
光学系で形成された遠視野像を分割し、この分割された
遠視野像のそれぞれの部分を形成する光線束をそれぞれ
入射させ、同じ位置に重畳して結像させる光学系とを備
えたことを特徴とする放射計校正装置。
1. A radiometer calibration device for optically calibrating the detector by causing light from a calibration light source guided by a fiber to enter the detector of the radiometer, and the fiber and the output from the fiber. An optical system for forming a far-field image of incident light and a far-field image formed by the above-mentioned optical system are divided, and ray bundles forming respective parts of the divided far-field image are made incident, respectively, and at the same position. A radiometer calibration apparatus, comprising: an optical system for superimposing an image.
【請求項2】校正用光源の光として太陽光を、フアイバ
としてバンドルフアイバを用い、バンドルフアイバの太
陽光の入射端に太陽光の入射角度によらず出射角度が一
定の光線束を出射する光学系と、上記光学系で導光した
太陽光が入射し、光軸に平行な反射側面を有する導光ロ
ッドとを有する受光光学系を備えたことを特徴とする請
求項1記載の放射計校正装置。
2. An optical system in which sunlight is used as the light of the calibration light source and a bundle fiber is used as the fiber, and a bundle of light rays having a constant emission angle is emitted to the incident end of the sunlight of the bundle fiber regardless of the incident angle of the sunlight. 2. The radiometer calibration according to claim 1, further comprising a light receiving optical system having a system and a light guide rod having sunlight reflected by the optical system and having a reflecting side surface parallel to the optical axis. apparatus.
JP17178590A 1990-06-29 1990-06-29 Radiometer calibration device Expired - Fee Related JPH0718751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17178590A JPH0718751B2 (en) 1990-06-29 1990-06-29 Radiometer calibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17178590A JPH0718751B2 (en) 1990-06-29 1990-06-29 Radiometer calibration device

Publications (2)

Publication Number Publication Date
JPH0460427A JPH0460427A (en) 1992-02-26
JPH0718751B2 true JPH0718751B2 (en) 1995-03-06

Family

ID=15929643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17178590A Expired - Fee Related JPH0718751B2 (en) 1990-06-29 1990-06-29 Radiometer calibration device

Country Status (1)

Country Link
JP (1) JPH0718751B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2678530B2 (en) * 1991-04-24 1997-11-17 宇宙開発事業団 Sunlight calibration optics
AU2003272790A1 (en) 2002-10-08 2004-05-04 Honeywell International Inc. Semiconductor packages, lead-containing solders and anodes and methods of removing alpha-emitters from materials

Also Published As

Publication number Publication date
JPH0460427A (en) 1992-02-26

Similar Documents

Publication Publication Date Title
CN105929382B (en) A kind of coaxial fill-in light calibration device of the transmitting-receiving of active electro-optical system and method
US7064817B1 (en) Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system
CN105784335B (en) The fill-in light calibration device and method of a kind of reference-calibrating mirror normal direction
JP2767235B2 (en) Ring beam divergence angle control optical device
CN105223691B (en) Adaptive optical correcting device and method based on sodium layer structured beacon
US5768040A (en) Wide field-of-view imaging spectrometer
US20080135763A1 (en) Small Detector Array For Infrared Imaging Microscope
CN109407335B (en) Adjusting device and adjusting method for adjusting lens group
CN205899009U (en) Initiative optoelectronic system's coaxial fill light school device of receiving and dispatching
CN109579994A (en) Fast illuminated spectrum imaging method and its system based on micro reflector array
JPH0718751B2 (en) Radiometer calibration device
KR102642068B1 (en) Observing instrument including an autocollimator comprising a mirror mounted on a star tracker
JP2660364B2 (en) Radiometer calibration equipment
US20030226956A1 (en) Optical non-contact measuring probe
CN113252307B (en) Space-borne radiometric calibration method and device thereof
CN115597710A (en) Microlens array module integrated field of view polarization imaging spectrometer system and imaging method
Polz et al. Setups for alignment and on-ground calibration and characterization of the EnMAP hyperspectral imager
Murray et al. TEIFU: a high-resolution integral field unit for the William Herschel Telescope
EP3572783A1 (en) Portable device for producing a uniform uv-light beam with small angular size
US11448761B2 (en) Device for acquiring data on a target, platform and method therefor
CN113419247A (en) Laser detection system
JPWO2020115856A1 (en) Laser radar device
Grubsky et al. Adaptive lobster-eye hard x-ray telescope with high-angular resolution and wide field of view
Guivernau et al. High-performance akinetic parallel light field sensor for 3D imaging
CN114894122B (en) Perpendicularity measuring probe and measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees