JPH0718375A - Thin steel sheet excellent in impact resistance and its production - Google Patents

Thin steel sheet excellent in impact resistance and its production

Info

Publication number
JPH0718375A
JPH0718375A JP16471493A JP16471493A JPH0718375A JP H0718375 A JPH0718375 A JP H0718375A JP 16471493 A JP16471493 A JP 16471493A JP 16471493 A JP16471493 A JP 16471493A JP H0718375 A JPH0718375 A JP H0718375A
Authority
JP
Japan
Prior art keywords
less
rolled
steel sheet
log
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16471493A
Other languages
Japanese (ja)
Inventor
Eiji Iizuka
栄治 飯塚
Kazunori Osawa
一典 大沢
Kazuya Miura
和哉 三浦
Takaaki Hira
隆明 比良
Makoto Imanaka
誠 今中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16471493A priority Critical patent/JPH0718375A/en
Publication of JPH0718375A publication Critical patent/JPH0718375A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a thin steel sheet excellent in impact resistance by using high strength dead soft steel as a base, specifying the compsn. and producing conditions, reducing solid solution C and N, increasing precipitates and forming a structure in which the crystal axis ratio in ferrite is uniform. CONSTITUTION:This steel sheet contains, by weight, <=0.010% C, <=1.5% Si <=2.0% Mn, 0.02 to 1.00% Ni, 0.01 to 0.10% Nb, <=0.03% P and 0.01 to 0.10% Al, and the balance Fe and has a structure in which the crystal axis ratio Si in ferrite satisfied the formulae I and II (n: integer) in the cross-section of the optional sheet thickness direction. For producing this steel sheet, a steel slab having the same compsn. is subjected to hot rolling and is coiled at 570 to 710 deg.C into a hot rolled steel strip. At this time, the hot finish rolling temp. B ( deg.C) is defined by the inequality III (Tr=Ar3 transformation point) in such a manner that the cooling velocity V ( deg.C/sec) till the start of the coiling and the coiling temp. Tc( deg.C) satisfy the inequality IV. In this way, the thin steel sheet in which static dinamic strength ratio by the braking ratio=(the yield stress at 10<2> (s<-1>) strain rate)/ (the yield stress at 10<-3>(s<-1> strain rate) is regulated to <=1.6 can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐衝撃性に優れる薄鋼
板とその製造方法に関し、とくにプレス成形等の加工が
施されて自動車用鋼板として用いられるものであって、
とりわけ自動車が走行中に万一衝突した場合の特性, 即
ち耐衝撃性が求められる部位の素材として好適に用いら
れる薄鋼板とその製造方法についての提案である。最
近、地球環境保全の機運が高まってきたことから、自動
車からのCO2 排出量の低減が求められている。そのため
に、自動車車体の軽量化が図られており、それはまた、
鋼板の高強度化によって板厚を低減させることを意味す
ることから、素材としてはプレス成形性と強度の両方に
優れたものが求められている。さらに、自動車車体の設
計思想に着目すると、鋼板の単なる高強度化のみでな
く、より大切なことは走行中に万一衝突した場合の耐衝
撃性に優れた鋼板、すなわち高歪速度で変形した場合の
変形抵抗の大きくしかも薄い鋼板の開発が必要であり、
これを実現してこそ自動車の安全性の向上を伴った車体
の軽量化が図られ、より望ましい自動車用鋼板を提供す
ることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin steel sheet having excellent impact resistance and a method for producing the same, and in particular, it is used as a steel sheet for automobile after being subjected to processing such as press forming,
In particular, this is a proposal for a thin steel sheet that is preferably used as a material for a portion where an automobile has a collision during traveling, that is, a material for which impact resistance is required, and a manufacturing method thereof. Since the momentum for global environmental protection has recently increased, it is required to reduce CO 2 emission from automobiles. Therefore, the weight of the car body is being reduced, which is also
Since it means that the plate thickness is reduced by increasing the strength of the steel plate, a material excellent in both press formability and strength is required as a material. Furthermore, focusing on the design concept of automobile bodies, it is not only the strength of the steel plate that is simply strengthened, but more importantly, the steel plate has excellent impact resistance in the event of a collision during traveling, that is, it is deformed at a high strain rate. In this case, it is necessary to develop a steel plate that has large deformation resistance and is thin,
Only by realizing this, the weight of the vehicle body can be reduced while the safety of the automobile is improved, and a more desirable automobile steel plate can be provided.

【0002】[0002]

【従来の技術】従来、自動車用鋼板の材質強化の方法
は、フェライト単相組織鋼では主としてSi, Mn, Pとい
った置換型元素添加による固溶強化、あるいはNb, Tiと
いった炭・窒化物形成元素を添加することによる析出強
化といった方法が一般的である。例えば、特開昭56−13
9654号公報等に記載されているように、加工性、時効性
を改善するために極低炭素鋼にTi, Nbを含有させ、さら
に加工性を害しない範囲でP等の強化成分を含有させて
高強度化を図った鋼板が数多く提案されている。この他
にも、例えば特開昭59−193221号公報には、Si添加によ
ってさらに高強度化を図る方法の提案もなされている。
2. Description of the Related Art Conventionally, the method for strengthening the material of a steel sheet for automobiles has been the solid solution strengthening of ferrite single-phase structure steel by adding substitutional elements such as Si, Mn and P, or the carbon / nitride forming elements such as Nb and Ti. A general method is to strengthen the precipitation by adding. For example, JP-A-56-13
As described in Japanese Patent No. 9654, etc., ultra-low carbon steel contains Ti and Nb in order to improve workability and aging property, and further contains strengthening components such as P within a range not impairing workability. There are many proposals for steel sheets that have high strength. In addition to this, for example, JP-A-59-193221 proposes a method of further strengthening by adding Si.

【0003】たしかに、このような方法での鋼板の高強
度化によって、自動車ボディの板厚減少はある程度可能
となった。しかしながら、これらの提案は、鋼板強度の
指標である降伏強度あるいは引張強度を、歪速度が10-3
〜10-2(s-1) と極めて遅い静的な評価方法に基づいて判
断している。しかしながら、実際の自動車ボディの設計
では、このような“静的”な強度よりも、衝突時の安全
性を考慮した、歪速度10〜104 (s-1) での衝撃的な変形
を伴う“動的”な強度の方がより重要になるため、従来
のかような提案では、自動車車体の軽量化に対しては真
に有効な手段を提供するものとは言えない。
Certainly, by increasing the strength of the steel plate by such a method, it becomes possible to reduce the plate thickness of the automobile body to some extent. However, in these proposals, the yield rate or tensile strength, which is an index of steel plate strength, is determined by the strain rate of 10 −3.
The judgment is based on the extremely slow static evaluation method of ~ 10 -2 (s -1 ). However, in actual car body design, rather than such "static" strength, shock deformation at a strain rate of 10 4 to 10 4 (s -1 ) is taken into consideration in consideration of safety at the time of collision. Since "dynamic" strength becomes more important, such conventional proposals do not provide a truly effective means for reducing the weight of automobile bodies.

【0004】[0004]

【発明が解決しようとする課題】というのは、従来、上
述した静的な強度と動的な強度とは、同じ傾向をもつも
のとして一義的に取り扱っており、主として静的な強度
のみを基準にして判断していた。ところが、発明者らの
研究によると、動的な強度は、必ずしも静的な強度に対
応しておらず、従って、各種改良素材の静的強度の改良
がそのまま動的強度の向上にはつながらないということ
が判った。そして、この傾向は、とくに高張力鋼板につ
いて著しいものがあった。
Conventionally, the above-mentioned static strength and dynamic strength are uniquely treated as having the same tendency, and the static strength is mainly used as a standard. I was making a decision. However, according to the research conducted by the inventors, the dynamic strength does not always correspond to the static strength, so that the improvement of the static strength of various improved materials does not directly lead to the improvement of the dynamic strength. I knew that. And this tendency was remarkable especially in high-strength steel sheets.

【0005】すなわち 図1は、変形速度と強度との関
係に及ぼす軟鋼と高張力鋼との影響を示すものである。
この図に明らかなように、軟鋼板における変形速度10-3
〜10 -2(s-1) の静的強度と、10〜104 (s-1) の動的強度
は軟鋼板の静的強度ほどには高い値を示さないことが判
る。このことは、自動車用高張力鋼板の板厚を静的強度
値に基づいて薄肉化した場合には、動的強度, 即ち、耐
衝撃強度の方は不足するという結果になることを意味し
ている。そして、このことはまた、静的強度値だけを基
準にして高張力鋼板の薄肉化を図ってきた従来の考え方
は見直さなければならないことを示唆している。本発明
の目的は、上述した従来技術が抱えている問題点を克服
することにあり、とくに薄鋼板における静的強度値に対
する動的強度の値が、軟鋼板のそれと同等以上に高いた
めに優れた耐衝撃性を示すこととなる加工用薄鋼板を提
供することにある。
That is, FIG. 1 shows the relationship between deformation rate and strength.
It shows the effect of mild steel and high-strength steel on the engagement.
As is clear from this figure, the deformation rate of mild steel sheet is 10-3
~Ten -2(s-1) Static strength and 10 to 10Four(s-1) Dynamic strength
Is not as high as the static strength of mild steel.
It This means that the strength of high-strength steel sheets for automobiles is
When the wall thickness is reduced based on the value, the dynamic strength, that is, the resistance
It means that the impact strength will be insufficient.
ing. And this is also based only on static strength values.
Conventional way of thinking that has attempted to reduce the thickness of high-strength steel sheets
Suggests that it must be reviewed. The present invention
Aims to overcome the problems with the above-mentioned conventional technology
In particular, the static strength of thin steel sheets
The value of dynamic strength is higher than that of mild steel plate.
We propose a thin steel plate for processing that will exhibit excellent impact resistance for
To serve.

【0006】[0006]

【課題を解決するための手段】上述した課題に対してそ
の解決、とくに耐衝撃性の向上を目指して鋭意研究した
結果、軟鋼のように低歪速度下における強度のみなら
ず、高歪速度下における強度、即ち、耐衝撃強度にも優
れた薄鋼板とするには、単に静的強度だけが高い値を示
すものでは不十分であることが判った。このことはま
た、単に高歪速度下における強度、即ち動的強度だけが
高い値を示すものを開発すること(不経済である)で足
りることを意味しておらず、いわゆる、静的強度と動的
強度とがうまく釣り合っていることが必要であるという
ことが判った。すなわち、延性に優れると共に高歪速度
下での耐衝撃強度にも優れた鋼板は、 静動比=(歪速度 102(s-1) での降伏応力)/ (歪速度10
-3(s-1) での降伏応力) で定義される、静動比が 1.6以上の薄鋼板であれば、自
動車用部品として用いられた場合に、高歪速度下でも軟
鋼板と同等以上の高い強度の歪速度依存性が得られるの
で、自動車車体の安全性向上を軽量化の実現にあわせて
達成することができることが判った。
[Means for Solving the Problems] As a result of intensive research aimed at solving the above problems, in particular, improving impact resistance, as a result, not only the strength under a low strain rate such as mild steel but also under a high strain rate It has been found that, in order to obtain a thin steel sheet excellent in the strength in No. 1, that is, the impact strength, it is not enough that only the static strength shows a high value. This also does not mean that it is sufficient to develop a material having a high strain rate, that is, only a high dynamic strength (which is uneconomical). It has been found that it is necessary to have a good balance with the dynamic strength. In other words, a steel sheet that has excellent ductility as well as excellent impact strength at high strain rates has a static-dynamic ratio = (yield stress at strain rate 10 2 (s -1 )) / (strain rate 10
-3 (s -1 ) .The yield stress at (s -1 ), if the steel plate has a static-dynamic ratio of 1.6 or more, it is equivalent to a mild steel plate even under high strain rate when used as an automobile part. Since it is possible to obtain high strain rate dependence of strength, it has been found that the improvement in safety of the automobile body can be achieved along with the realization of weight reduction.

【0007】このような知見に基づき発明者らはさら
に、上記静動比におよぼす化学組成,組織ならびに製造
条件の影響を詳細に検討し、以下に述べるような要旨構
成からなる薄鋼板とそれの製造方法を開発した。すなわ
ち、本発明は、 (1) C:0.010 wt%以下、 Si:1.5 wt%以下、Mn:2.
0 wt%以下、 Ni:0.02〜1.00wt%、Nb:0.01〜0.10
wt%、 P:0.03wt%以下、Al:0.01〜0.10wt%以下を
含み、残部がFeおよび不可避的不純物からなり、かつフ
ェライトの結晶粒軸比Siが任意の板厚方向断面におい
て Σ|log (Si /Sa )|/n≦0.08 (n:整数) Sa =ΣSi /n を満足するような組織を有する耐衝撃性に優れる薄鋼
板。 (2) C:0.010 wt%以下、 Si:1.5 wt%以下、Mn:2.
0 wt%以下、 Ni:0.02〜1.00wt%、Nb:0.01〜0.10
wt%、 P:0.03wt%以下、Al:0.01〜0.10wt%以下を
含み、残部がFeおよび不可避的不純物からなる鋼スラブ
を、熱間圧延を施してから 570〜710 ℃の温度域にて巻
取って熱延鋼帯とする際に、熱間仕上圧延の温度B(
℃) を、次式; 145 ≦B−Tr−40.3 (log Nb) −27.1 (log Al) ≦175
(Tr =Ar3変態点) とし、巻取り開始までの冷却速度V(℃/sec)と巻取温
度 Tc(℃) とを、次式; 400 ≦ 1.2Tc− 7V+120(log Nb) −119(log Al) ≦43
0 (570≦Tc≦710) を満足するように制御することを特徴とする耐衝撃性に
優れる薄鋼板の製造方法。 (3) C:0.010 wt%以下、 Si:1.5 wt%以下、Mn:2.
0 wt%以下、 Ni:0.02〜1.00wt%、Nb:0.01〜0.10
wt%、 P:0.03wt%以下、Al:0.01〜0.10wt%以下を
含み、残部がFeおよび不可避的不純物からなる鋼スラブ
を、熱間圧延, 冷間圧延そして連続焼鈍をして冷延鋼帯
とする際に、熱間圧延を施してから 570〜710 ℃の温度
域にて巻取って熱延鋼帯とする際に、熱間仕上圧延の温
度B( ℃) を、次式; 145 ≦B−Tr−40.3 (log Nb) −27.1 (log Al) ≦175
(Tr =Ar3変態点) とし、巻取り開始までの冷却速度V(℃/sec)と巻取温
度 Tc(℃) とを、次式; 400 ≦ 1.2Tc− 7V+120(log Nb) −119(log Al) ≦43
0 (570≦Tc≦710) を満足するように制御し、そして冷間圧延後の連続焼鈍
を再結晶温度以上Ac3変態点以下の温度にて行い、その
後さらに調質圧延を施して冷延鋼帯とすることを特徴と
する耐衝撃性に優れる薄鋼板の製造方法、である。
Based on such knowledge, the inventors further studied in detail the influence of the chemical composition, structure and manufacturing conditions on the above-mentioned static-dynamic ratio. A manufacturing method was developed. That is, the present invention is: (1) C: 0.010 wt% or less, Si: 1.5 wt% or less, Mn: 2.
0 wt% or less, Ni: 0.02 to 1.00 wt%, Nb: 0.01 to 0.10.
wt%, P: 0.03 wt% or less, Al: 0.01 to 0.10 wt% or less, the balance consisting of Fe and inevitable impurities, and the crystal grain axial ratio S i of ferrite is Σ | A thin steel sheet excellent in impact resistance having a structure satisfying log (S i / S a ) | /n≦0.08 (n: integer) S a = ΣS i / n. (2) C: 0.010 wt% or less, Si: 1.5 wt% or less, Mn: 2.
0 wt% or less, Ni: 0.02 to 1.00 wt%, Nb: 0.01 to 0.10.
A steel slab containing wt%, P: 0.03 wt% or less, Al: 0.01 to 0.10 wt% or less, and the balance being Fe and unavoidable impurities is subjected to hot rolling in a temperature range of 570 to 710 ° C. When rolling to form hot rolled steel strip, the temperature of hot finish rolling B (
℃ ≦ B-Tr-40.3 (log Nb) −27.1 (log Al) ≦ 175
(Tr = Ar 3 transformation point), the cooling rate V (° C / sec) until the start of winding and the winding temperature Tc (° C) are calculated by the following equation: 400 ≤ 1.2Tc-7V + 120 (log Nb) -119 ( log Al) ≤43
A method of manufacturing a thin steel sheet having excellent impact resistance, which is characterized by controlling so as to satisfy 0 (570 ≦ Tc ≦ 710). (3) C: 0.010 wt% or less, Si: 1.5 wt% or less, Mn: 2.
0 wt% or less, Ni: 0.02 to 1.00 wt%, Nb: 0.01 to 0.10.
A steel slab containing wt%, P: 0.03 wt% or less, Al: 0.01 to 0.10 wt% or less, and the balance being Fe and unavoidable impurities is cold-rolled steel by hot rolling, cold rolling and continuous annealing. When forming a strip, when hot rolling is performed and then wound in a temperature range of 570 to 710 ° C. to form a hot rolled steel strip, the temperature B (° C.) of hot finish rolling is calculated by the following formula: 145 ≤B-Tr-40.3 (log Nb) -27.1 (log Al) ≤175
(Tr = Ar 3 transformation point), the cooling rate V (° C / sec) until the start of winding and the winding temperature Tc (° C) are calculated by the following equation: 400 ≤ 1.2Tc-7V + 120 (log Nb) -119 ( log Al) ≤43
0 (570 ≤ Tc ≤ 710) is controlled, and continuous annealing after cold rolling is performed at a temperature not lower than the recrystallization temperature and not higher than the Ac 3 transformation point, and then temper-rolled and cold rolled. A method for producing a thin steel sheet having excellent impact resistance, which is characterized by using a steel strip.

【0008】[0008]

【作用】発明者らは、上述した薄鋼板の成形性や製造特
性を阻害することなく、その静動比を向上させるべく、
まず、高強度極低炭素鋼をベースに、静動比に及ぼす冶
金学的要因、とくに、固溶C, Nを減少させて析出物を
多くする成分設計をすること、望ましい耐衝撃性を有す
るためにフェライトの結晶軸比を均一にした組織とする
ことと、そして、このような組織鋼を得るための成分組
成と製造条件とについて検討を重ねた。その結果、ま
ず、 成分組成については、鋼中の固溶Cと固溶Nをでき
るだけ減少させられるように適量のNb, Alの添加が有効
である。 組織については、静動比の向上のためには結晶粒軸
比を均一化することが有効であり、そのためには結晶粒
径の微細化が必要である。このことのために上記NbとAl
の添加ならびにC, Pの低減とNiの添加が有効である、 製造条件については、熱間圧延仕上温度, 冷却速
度, 巻取温度を制御すると、結晶粒軸比の均一化と結晶
粒径の微細化を同時に達成できる、ことが判った。
The inventors of the present invention have made it possible to improve the static-dynamic ratio without impairing the formability and manufacturing characteristics of the thin steel sheet described above.
First, based on high strength ultra-low carbon steel, metallurgical factors affecting static-dynamic ratio, especially by designing a component that reduces solid solution C and N and increases precipitates, has desirable impact resistance. To this end, the inventors have made repeated studies on the formation of a structure in which the crystal axis ratio of ferrite is uniform, and the component composition and manufacturing conditions for obtaining such a structural steel. As a result, first, regarding the component composition, it is effective to add appropriate amounts of Nb and Al so that the solid solution C and the solid solution N in the steel can be reduced as much as possible. Regarding the structure, it is effective to make the crystal grain axial ratio uniform in order to improve the static-dynamic ratio, and for that purpose, it is necessary to reduce the crystal grain size. Because of this, the above Nb and Al
It is effective to add C and P and reduce C and P. Addition of Ni is effective. As for the manufacturing conditions, if the hot rolling finishing temperature, cooling rate and coiling temperature are controlled, the grain axis ratio will be uniform and the grain size It turns out that miniaturization can be achieved at the same time.

【0009】とくに、自動車用薄鋼板における上記の静
動比が軟鋼板相当の静動比:1.6 以上を示すようになる
には、成分組成, 組織ならびに製造条件を適切な
ものに制御する必要があり、このような制御を行うと、
高・低両歪速度下での各強度の向上に対してとりわけ有
効に作用することも判った。そこで、以下に望ましい上
記の各条件について説明する。
In particular, in order for the above-mentioned static / dynamic ratio in a thin steel plate for automobiles to reach a static / dynamic ratio equivalent to that of mild steel plate: 1.6 or more, it is necessary to control the component composition, structure and manufacturing conditions to appropriate values. With this kind of control,
It was also found that it works particularly effectively for improving each strength under both high and low strain rates. Therefore, each of the above desirable conditions will be described below.

【0010】さて、本発明薄鋼板を構成する各化学成分
とその含有量は、静動比向上のために、次のような理由
によって限定される。 C:0.010 wt%以下 C量は、静動比に強く影響を及ぼす元素であり、とりわ
けTi, Nb等の組成にも関連するが、その含有量が0.0005
wt%未満では、静動比の向上に有利なNbC等の炭化物の
析出が少なくなり、一方、0.010 wt%を超えると析出物
が多くなりすぎて却って静動比の低下を招くので、C含
有量の上限を、0.010 wt%以下の範囲内に限定した。
The chemical components and their contents constituting the thin steel sheet of the present invention are limited for the following reasons in order to improve the static-dynamic ratio. C: 0.010 wt% or less C content is an element that strongly affects the static-dynamic ratio, and is related to the composition of Ti, Nb, etc., but its content is 0.0005.
If it is less than wt%, the precipitation of carbides such as NbC, which is advantageous for improving the static-dynamic ratio, will decrease, while if it exceeds 0.010 wt%, the amount of precipitates will be too large and the static-dynamic ratio will rather decline, so the content of C will be reduced. The upper limit of the amount was limited to the range of 0.010 wt% or less.

【0011】Si:1.5 wt%以下 Siは、固溶強化元素であり、高強度鋼板を製造するのに
有効な元素であることから、0.1 wt%以上の添加が望ま
しい。しかしながら、1.5 wt%超の含有は種々の内部欠
陥が増加し、高ひずみ速度域での強度低下を招くことか
ら、このSi含有量の上限は 1.5wt%に限定した。
Si: 1.5 wt% or less Si is a solid solution strengthening element and is an element effective for producing a high-strength steel sheet. Therefore, addition of 0.1 wt% or more is desirable. However, if the content exceeds 1.5 wt%, various internal defects increase and the strength decreases in the high strain rate region. Therefore, the upper limit of this Si content is limited to 1.5 wt%.

【0012】Mn:2.0 wt%以下 Mnは、固溶強化元素であるので、高強度鋼板を製造する
には有効な元素であることから、0.5 wt%以上の添加が
望ましい。しかしながら、2.0 wt%超の含有はコスト高
になる上、材料の脆化を招くため、このMn含有量の上限
を2.0 wt%に限定した。
Mn: 2.0 wt% or less Since Mn is a solid solution strengthening element and is an effective element for producing high strength steel sheet, addition of 0.5 wt% or more is desirable. However, if the content exceeds 2.0 wt%, the cost becomes high and the material becomes brittle, so the upper limit of this Mn content is limited to 2.0 wt%.

【0013】Ni:0.02〜1.00wt% Niは、高歪み速度域でのYSを上げる効果がある。この効
果は、0.02wt%以上含有させることによって顕著になる
が、1.00wt%超になると飽和する。従って、このNiの含
有量は0.02〜1.00wt%の範囲に限定した。
Ni: 0.02 to 1.00 wt% Ni has the effect of increasing YS in the high strain rate region. This effect becomes remarkable when the content is 0.02 wt% or more, but becomes saturated when the content exceeds 1.00 wt%. Therefore, the Ni content is limited to the range of 0.02 to 1.00 wt%.

【0014】Nb:0.01〜0.10wt% Nbは、鋼中で炭化物を形成し、0.01wt%以上含有させる
ことにより、焼鈍時の異常な粒成長を抑制する効果が生
じる。しかも、結晶粒の微細化および結晶粒軸比の均一
化に対しても有効である。しかしこの効果は、0.10wt%
で飽和し、これを超えると静動比の低下を招く。このた
め、このNbの含有量は、0.01〜0.10wt%の範囲に限定し
た。
Nb: 0.01 to 0.10 wt% Nb forms a carbide in the steel, and by containing 0.01 wt% or more, an effect of suppressing abnormal grain growth during annealing occurs. Moreover, it is also effective for making the crystal grains finer and making the crystal grain axial ratio uniform. However, this effect is 0.10wt%
Is saturated, and if it exceeds this, the static-dynamic ratio is lowered. Therefore, the Nb content is limited to the range of 0.01 to 0.10 wt%.

【0015】P:0.03wt%以下 Pは、高強度鋼板を製造する上で有効な元素であるが、
0.03wt%を超えると衝撃エネルギー吸収特性が著しく低
下するため高ひずみ速度域での強度低下を招くことか
ら、P含有量の上限を0.03wt%に限定した。
P: 0.03 wt% or less P is an effective element for producing a high strength steel plate,
If the content exceeds 0.03 wt%, the impact energy absorption characteristics are remarkably deteriorated and the strength is lowered in the high strain rate region. Therefore, the upper limit of the P content is limited to 0.03 wt%.

【0016】Al:0.01〜0.10wt% Alは、製鋼段階で脱酸剤として添加され、固溶NをAlN
として固定するのに有効な元素である。しかも、このAl
Nが鋼中に均一に分散されると、結晶粒微細化と結晶粒
軸比を均一化する働きがある。このような作用効果は0.
01wt%以上の添加によって顕著になる。しかしながら、
0.10wt%超の添加は静動比向上に障害となる他、コスト
高になることから、このAlの含有量は0.01〜0.10wt%の
範囲に限定した。
Al: 0.01 to 0.10 wt% Al is added as a deoxidizing agent in the steelmaking stage, and solid solution N is AlN.
Is an effective element to fix as. Moreover, this Al
When N is uniformly dispersed in the steel, it has the function of refining the crystal grains and homogenizing the crystal grain axial ratio. Such an effect is 0.
It becomes remarkable by adding more than 01wt%. However,
Since the addition of more than 0.10 wt% hinders the improvement of the static-dynamic ratio and raises the cost, the Al content is limited to the range of 0.01 to 0.10 wt%.

【0017】本発明にかかる薄鋼板は、少なくとも上述
した成分組成の鋼であることが必要であり、その上でさ
らに、以下に説明するような結晶組織にすることが必要
である。即ち、発明者らの研究によれば、上述した静動
比の向上のためには、フェライトの結晶粒軸比の均一化
が不可欠であるとの知見が得られた。というのは、フェ
ライトの結晶粒軸比が均一化すると、高速変形の降伏時
においては、個々の粒内の可動転位密度が増大するため
の臨界応力は軸比の均一化とともに均一化し、従って、
その下限値は飛躍的に上昇するために静動比が向上する
ものと思われる。
The thin steel sheet according to the present invention needs to be at least a steel having the above-described composition, and further needs to have a crystal structure as described below. That is, according to the research conducted by the inventors, it has been found that in order to improve the above-mentioned static-dynamic ratio, it is essential to make the crystal grain axial ratio of ferrite uniform. This is because if the ferrite grain axis ratio becomes uniform, the critical stress for increasing the mobile dislocation density in each grain becomes uniform as the axial ratio becomes uniform at the time of yielding during high-speed deformation, and therefore,
The lower limit value is expected to increase dramatically, so the static-dynamic ratio is expected to improve.

【0018】図2は、静動比に与える結晶粒軸比の影響
を示す図であるが、下記の(1) 式として示すXが、
FIG. 2 is a diagram showing the influence of the crystal grain axis ratio on the static-dynamic ratio. X shown as the following equation (1) is

【数1】 0.08以下のときに高い静動比、とくに 1.6 を大幅に越
えることが判る。従って、(1) 式で定まる任意の板厚方
向断面におけるフェライト結晶粒軸比を0.08以下にする
と、所期した静動比の薄鋼板を得ることができる。な
お、図2に示す試験は、C0.01wt%以下の化学成分の連
続鋳造スラブを1150〜1250℃に加熱し、仕上圧延温度 8
50〜930 ℃、冷却速度10〜60℃/sec、巻取温度 570〜71
0 ℃の条件にて熱延薄鋼帯を製造し、その静動比を調査
したものである。
[Equation 1] It can be seen that when it is 0.08 or less, the high static-dynamic ratio, especially 1.6, is greatly exceeded. Therefore, if the ferrite crystal grain axis ratio in an arbitrary cross section in the plate thickness direction determined by the equation (1) is 0.08 or less, it is possible to obtain a thin steel plate having a desired static-dynamic ratio. In the test shown in FIG. 2, a continuous casting slab having a chemical composition of 0.01 wt% or less of C was heated to 1150 to 1250 ° C., and the finish rolling temperature was 8
50 ~ 930 ℃, cooling rate 10 ~ 60 ℃ / sec, winding temperature 570 ~ 71
The hot-rolled thin steel strip was manufactured under the condition of 0 ° C, and the static-dynamic ratio was investigated.

【0019】本発明にかかる薄鋼板は、上述した成分組
成とフェライト結晶組織を有するものである。このよう
な薄鋼板の製造に当たっては、少なくとも次のような製
造条件の選択が必要である。 スラブ加熱温度:1250℃以下 スラブ加熱温度を1250℃以下にする理由は、低温でスラ
ブを加熱することにより、連続鋳造後の冷却時に析出し
た炭化物, 窒化物の再固溶が抑制され、最終的に鋼板内
の固溶C, 固溶N量を減少させて析出物を多くするのに
必要だからである。
The thin steel sheet according to the present invention has the above-described composition and ferrite crystal structure. In manufacturing such a thin steel sheet, it is necessary to select at least the following manufacturing conditions. Slab heating temperature: 1250 ° C or less The reason for setting the slab heating temperature to 1250 ° C or less is that by heating the slab at a low temperature, re-dissolution of carbides and nitrides precipitated during cooling after continuous casting is suppressed and This is because it is necessary to reduce the amount of solute C and solute N in the steel sheet and increase the amount of precipitates.

【0020】 熱間仕上圧延の条件 本発明においては、熱間仕上圧延時の圧延温度を、次
式;
Condition of Hot Finish Rolling In the present invention, the rolling temperature at the time of hot finish rolling is represented by the following formula:

【数2】 を満足するように制御する。上記式(2) は、次のような
考え方に立脚して構成されたものである。すなわち、静
動比の向上に適した結晶粒径の制御や、フェライト結晶
粒軸比を均一にするためには、Nb炭化物やAl窒化物を均
一に分散させること、あるいは結晶粒を適当な大きさに
成長させることが必要である。この点、熱間仕上圧延温
度は、結晶粒径や鋼中における化合物の析出挙動に影響
を及ぼす因子であることはよく知られており、そのため
に、結晶粒軸比を均一化するためには、AlとNbの含有量
に応じて仕上圧延温度を変化させることが必要である。
なお、上記(2) 式の右辺における上限値を 175としたの
は、これを超えると結晶粒が粗大化し、結晶粒軸比が不
均一になるためと、Nb炭化物やAl窒化物の分散状態が不
均一になるためである。一方、上記式の左辺の下限値を
145としたのは、これ未満では結晶粒が微細になりすぎ
るためである。また、結晶粒成長とNb炭化物やAl窒化物
の拡散は、NbおよびAlの添加量にも依存する。これらの
相互作用の詳細な機構は不明確であるが、上式の条件で
静動比に優れた鋼は得られることが判明したのである。
[Equation 2] Control to satisfy. The above formula (2) is constructed based on the following concept. That is, in order to control the crystal grain size suitable for improving the static-dynamic ratio and to make the ferrite crystal grain axial ratio uniform, Nb carbide or Al nitride should be dispersed uniformly, or the crystal grain should have an appropriate size. It is necessary to grow up. In this regard, it is well known that the hot finish rolling temperature is a factor that influences the grain size and the precipitation behavior of the compound in the steel. Therefore, in order to make the grain axis ratio uniform, It is necessary to change the finish rolling temperature according to the contents of Al, Nb and Al.
The upper limit on the right side of the above equation (2) is set to 175, because if it exceeds this value, the crystal grains become coarse and the crystal grain axial ratio becomes non-uniform, and the dispersed state of Nb carbides and Al nitrides. Is non-uniform. On the other hand, the lower limit of the left side of the above equation
The reason why it is set to 145 is that if it is less than this, the crystal grains become too fine. The grain growth and the diffusion of Nb carbides and Al nitrides also depend on the amounts of Nb and Al added. Although the detailed mechanism of these interactions is unclear, it has been found that a steel having an excellent static-dynamic ratio can be obtained under the above conditions.

【0021】 冷却速度、巻取温度Cooling rate, winding temperature

【数3】 本発明においては、熱間仕上圧延終了後の冷却速度なら
びに巻取温度を上記(3) 式に従って制御することが必要
である。その理由は、上述したように、フェライト結晶
粒軸比の均一化には、結晶粒径、析出物の大きさ、分布
状態等を制御する必要があるところ、冷却速度および巻
取温度を、上記(3) 式の範囲内に制御するとフェライト
結晶粒軸比を均一化できるからである。この式におい
て、Zの下限値を 400としたのは、AlN析出物が粗大化
することによってその分布状態が不均一になり、軸比が
均一化しないためである。また、Zの上限値を 430とし
たのは、結晶粒が微細になりすぎるためである。
[Equation 3] In the present invention, it is necessary to control the cooling rate and the coiling temperature after completion of hot finish rolling according to the above equation (3). The reason is that, as described above, in order to make the ferrite crystal grain axial ratio uniform, it is necessary to control the crystal grain size, the size of the precipitate, the distribution state, etc. This is because the ferrite crystal grain axial ratio can be made uniform by controlling within the range of the formula (3). In this equation, the lower limit of Z is set to 400 because the distribution state becomes uneven due to the coarsening of AlN precipitates, and the axial ratio is not uniform. The upper limit of Z is 430 because the crystal grains become too fine.

【0022】図3に、鋼板の静動比に及ぼすZ値の影響
を調べたグラフを示す。この図に明らかなように、静動
比はZ値が 400〜430 の範囲で高い値を示している。上
記の巻取り温度Tcの上限を 710℃以下に限定した理由
は、これ以上の温度では析出物が粗大化し、静動比に悪
影響を及ぼすためである。また、この温度Tcの下限を 5
70℃以上とした理由は、AlN析出量が少なくなると、そ
の後の焼鈍工程で結晶粒軸比の均一化が妨げられるため
である。なお、この図3に示す試験は、請求項1に示し
た化学成分の連続鋳造スラブを1150〜1250℃に加熱し、
式(2) を満足する条件で仕上圧延した後、冷却速度10〜
60℃/sec、巻取温度 500〜750 ℃で製造した熱延鋼帯の
静動比を調査したものである。
FIG. 3 is a graph showing the effect of Z value on the static-dynamic ratio of the steel sheet. As is apparent from this figure, the static-dynamic ratio shows a high value in the Z value range of 400 to 430. The reason why the upper limit of the coiling temperature Tc is limited to 710 ° C. or lower is that the precipitate coarsens and the static-dynamic ratio is adversely affected at a temperature higher than this. Also, the lower limit of this temperature Tc is set to 5
The reason for setting the temperature to 70 ° C. or higher is that if the amount of AlN precipitation decreases, it is hindered to make the crystal grain axial ratio uniform in the subsequent annealing step. In addition, in the test shown in FIG. 3, the continuously cast slab having the chemical composition shown in claim 1 is heated to 1150 to 1250 ° C.,
After finish rolling under the condition that satisfies equation (2), the cooling rate is 10 ~
The static-dynamic ratio of hot-rolled steel strip manufactured at 60 ℃ / sec and coiling temperature of 500-750 ℃ was investigated.

【0023】 冷延圧延工程での条件 最終製品が冷延鋼板の場合、好ましくは深絞り性向上の
ために60%以上の圧下率とする。そして、その後に行う
連続焼鈍は、再結晶温度〜Ac3変態点の温度域に加熱し
て行うことが望ましい。この理由は、再結晶温度未満で
は圧延組織のためプレス加工を行うのが不可能であり、
一方、Ac3変態点超では集合組織がランダム化し、延
性, プレス加工性が著しく劣化するからである。この再
結晶焼鈍の処理は、箱焼鈍または連続焼鈍法のいずれの
方法を適用してもよい。また、常法に従う 0.7〜1.0 %
のスキンパス圧延を行ってもよい。
Conditions in Cold Rolling Rolling Process When the final product is a cold rolled steel sheet, the rolling reduction is preferably 60% or more in order to improve deep drawability. The subsequent continuous annealing is preferably performed by heating in the temperature range from the recrystallization temperature to the Ac 3 transformation point. The reason for this is that it is impossible to press the rolled structure below the recrystallization temperature,
On the other hand, if it exceeds the Ac 3 transformation point, the texture becomes random and ductility and press workability are significantly deteriorated. This recrystallization annealing treatment may be performed by either box annealing or continuous annealing. In addition, 0.7 to 1.0% according to the usual method
The skin pass rolling may be performed.

【0024】[0024]

【実施例】【Example】

実施例(1) :熱延鋼板の例 表1に示した化学成分の連続鋳造スラブを、同表に示す
製造条件にて処理することにより、熱延鋼帯を製造し
た。なお、連鋳スラブを1200℃に加熱して熱間圧延を行
って、種々の冷却速度にて冷却することにより板厚 3.5
mmの熱延板とし、その後 500〜750 ℃の温度域で巻取っ
た。なお、静動比は上記熱延板からサンプルを採取し、
JIS 5号引張試験片に加工後、静的引張試験(歪速度:
10-3) と動的引張試験(歪速度:102)を行い、それぞれ
の降伏強さ(YP)を測定し、各鋼板の化学成分と静動
比(動的引張試験でのYP/静的引張試験でのYP)と
の関係を求めたものである。また、結晶粒軸比Xは、顕
微鏡観察で、結晶粒数(n)を測定したものである。そ
の結果を同表に示すが、本発明に適合する鋼成分のもの
(No.1, 4, 9) はいずれも静動比が2.5 以上と大きく、
耐衝撃性に優れていることが判明した。
Example (1): Example of hot-rolled steel sheet A hot-rolled steel strip was produced by treating a continuously cast slab having the chemical composition shown in Table 1 under the production conditions shown in the same table. The continuous cast slab is heated to 1200 ° C, hot-rolled, and cooled at various cooling rates to obtain a plate thickness of 3.5
A hot-rolled sheet of mm was prepared, and then rolled in a temperature range of 500 to 750 ° C. The static-dynamic ratio is obtained by sampling a sample from the hot-rolled sheet,
After processing into JIS No. 5 tensile test pieces, a static tensile test (strain rate:
10 -3 ) and a dynamic tensile test (strain rate: 10 2 ), the yield strength (YP) of each is measured, and the chemical composition and static-dynamic ratio of each steel plate (YP / static in the dynamic tensile test / static The relationship with YP) in a dynamic tensile test is obtained. The crystal grain axial ratio X is obtained by observing the number of crystal grains (n) under a microscope. The results are shown in the same table, but for steel components compatible with the present invention
(No. 1, 4, 9) all have large static-dynamic ratio of 2.5 or more,
It was found to have excellent impact resistance.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例2 また、表2に示す本発明に適合する成分組成であるA,
B,C鋼について、熱間仕上圧延温度、冷却速度、巻取
温度を種々変化させた例を表3に示すが、本発明に適合
する実施例は、いずれも高い静動比を示している。
Example 2 Further, as shown in Table 2, A, which is a component composition compatible with the present invention,
Table 3 shows examples in which the hot finish rolling temperature, the cooling rate, and the winding temperature of the B and C steels were variously changed, and the examples conforming to the present invention show high static-dynamic ratios. .

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】実施例3 :冷延鋼板の例 表4に示した成分組成の連続鋳造スラブを、同表に示す
製造条件にて処理することにより、冷延鋼帯を製造し
た。すなわち、まず連鋳スラブを1300℃以下の温度に加
熱し、熱間圧延を行って種々の冷却速度にて冷却し、板
厚3.5 mmの熱延板として種々の温度域で巻き取った。こ
の熱延板はその後酸洗してから冷間圧延を施し、板厚0.
8 mmの冷延板とした。次いで、連続焼鈍を行った。その
後、圧下率0.8%の調質圧延を施した後、JIS 5号引張
試験片に加工し、静的引張試験(歪速度:10-3) と動的
引張試験(歪速度:102)を行い、それぞれの降伏強さ
(YP)を測定し、各鋼板の静動比(動的引張試験での
YP/静的引張試験でのYP)を求めた。その結果、本
発明に適合する成分組成の鋼および組織の条件を満足す
る冷延鋼板はいずれも静動比が大きく、耐衝撃性に優れ
ていることが判明した。
Example 3: Example of cold rolled steel sheet A cold rolled steel strip was produced by treating a continuously cast slab having the composition shown in Table 4 under the production conditions shown in the same table. That is, first, the continuous cast slab was heated to a temperature of 1300 ° C. or lower, hot-rolled, cooled at various cooling rates, and wound into various temperature regions as a hot-rolled sheet having a plate thickness of 3.5 mm. This hot-rolled sheet is then pickled and cold-rolled to a plate thickness of 0.
An 8 mm cold rolled sheet was used. Then, continuous annealing was performed. Then, after temper rolling with a rolling reduction of 0.8%, it was processed into JIS No. 5 tensile test pieces and subjected to a static tensile test (strain rate: 10 -3 ) and a dynamic tensile test (strain rate: 10 2 ). Then, each yield strength (YP) was measured, and the static-dynamic ratio (YP in the dynamic tensile test / YP in the static tensile test) of each steel plate was determined. As a result, it has been found that the steels having the chemical compositions suitable for the present invention and the cold-rolled steel sheets satisfying the conditions of the structure have a large static-dynamic ratio and excellent impact resistance.

【0030】[0030]

【表4】 [Table 4]

【0031】実施例4 また、表5に示す本発明に適合する成分組成であるA,
B,C鋼について、熱間仕上圧延温度、冷却速度、巻取
温度を種々変化させた例を表6に示すが、本発明適合例
は、いずれも高い静動比を示した。
Example 4 In addition, as shown in Table 5, A, which is a component composition compatible with the present invention,
Table 6 shows examples in which the hot finish rolling temperature, the cooling rate, and the winding temperature of the B and C steels were variously changed, and all the conforming examples of the present invention showed a high static-dynamic ratio.

【0032】[0032]

【表5】 [Table 5]

【0033】[0033]

【表6】 [Table 6]

【0034】[0034]

【発明の効果】以上説明したようにこの発明によれば、
静動比で表わされる耐衝撃特性に優れた加工用薄鋼板を
得ることができる。
As described above, according to the present invention,
It is possible to obtain a thin steel plate for processing which is excellent in impact resistance represented by static-dynamic ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】変形速度と強度との関係に及ぼす軟鋼と高張力
鋼との影響を示す説明図。
FIG. 1 is an explanatory diagram showing the effect of mild steel and high-strength steel on the relationship between deformation rate and strength.

【図2】静動比に与える結晶粒軸比の影響を示す図。FIG. 2 is a diagram showing an influence of a crystal grain axis ratio on a static-dynamic ratio.

【図3】鋼板の静動比に及ぼすZ値の影響を示す図。FIG. 3 is a diagram showing an influence of a Z value on a static-dynamic ratio of a steel plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 和哉 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 比良 隆明 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 今中 誠 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kazuya Miura, Kazuya Miura, 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Takaaki Hira, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba (72) Inventor Makoto Imanaka 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Iron & Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】C:0.010 wt%以下、 Si:1.5 wt%以
下、 Mn:2.0 wt%以下、 Ni:0.02〜1.00wt%、 Nb:0.01〜0.10wt%、 P:0.03wt%以下、 Al:0.01〜0.10wt%以下を含み、 残部がFeおよび不可避的不純物からなり、かつフェライ
トの結晶粒軸比Siが任意の板厚方向断面において Σ|log (Si /Sa )|/n≦0.08 (n:整数) Sa =ΣSi /n を満足するような組織を有する耐衝撃性に優れる薄鋼
板。
1. C: 0.010 wt% or less, Si: 1.5 wt% or less, Mn: 2.0 wt% or less, Ni: 0.02 to 1.00 wt%, Nb: 0.01 to 0.10 wt%, P: 0.03 wt% or less, Al : 0.01 to 0.10 wt% or less, the balance consisting of Fe and unavoidable impurities, and the crystal grain axis ratio S i of ferrite is Σ | log (S i / S a ) | / n in an arbitrary plate thickness direction cross section. ≦ 0.08 (n: integer) A thin steel sheet having a structure satisfying S a = ΣS i / n and having excellent impact resistance.
【請求項2】C:0.010 wt%以下、 Si:1.5 wt%以
下、 Mn:2.0 wt%以下、 Ni:0.02〜1.00wt%、 Nb:0.01〜0.10wt%、 P:0.03wt%以下、 Al:0.01〜0.10wt%以下を含み、 残部がFeおよび不可避的不純物からなる鋼スラブを、熱
間圧延を施してから 570〜710 ℃の温度域にて巻取って
熱延鋼帯とする際に、熱間仕上圧延の温度B( ℃) を、
次式; 145 ≦B−Tr−40.3 (log Nb) −27.1 (log Al) ≦175
(Tr =Ar3変態点) とし、巻取り開始までの冷却速度V(℃/sec)と巻取温
度 Tc(℃) とを、次式; 400 ≦ 1.2Tc− 7V+120(log Nb) −119(log Al) ≦43
0 (570≦Tc≦710) を満足するように制御することを特徴とする耐衝撃性に
優れる薄鋼板の製造方法。
2. C: 0.010 wt% or less, Si: 1.5 wt% or less, Mn: 2.0 wt% or less, Ni: 0.02 to 1.00 wt%, Nb: 0.01 to 0.10 wt%, P: 0.03 wt% or less, Al : A steel slab containing 0.01 to 0.10 wt% or less, the balance of which is Fe and unavoidable impurities, is hot-rolled and then wound in the temperature range of 570 to 710 ℃ to form a hot rolled steel strip. , The temperature of hot finish rolling B (℃)
The following formula: 145 ≤ B-Tr-40.3 (log Nb) -27.1 (log Al) ≤ 175
(Tr = Ar 3 transformation point), the cooling rate V (° C / sec) until the start of winding and the winding temperature Tc (° C) are calculated by the following equation: 400 ≤ 1.2Tc-7V + 120 (log Nb) -119 ( log Al) ≤43
A method of manufacturing a thin steel sheet having excellent impact resistance, which is characterized by controlling so as to satisfy 0 (570 ≦ Tc ≦ 710).
【請求項3】C:0.010 wt%以下、 Si:1.5 wt%以
下、 Mn:2.0 wt%以下、 Ni:0.02〜1.00wt%、 Nb:0.01〜0.10wt%、 P:0.03wt%以下、 Al:0.01〜0.10wt%以下を含み、 残部がFeおよび不可避的不純物からなる鋼スラブを、熱
間圧延, 冷間圧延そして連続焼鈍をして冷延鋼帯とする
際に、熱間圧延を施してから 570〜710 ℃の温度域にて
巻取って熱延鋼帯とする際に、熱間仕上圧延の温度B(
℃) を、次式; 145 ≦B−Tr−40.3 (log Nb) −27.1 (log Al) ≦175
(Tr =Ar3変態点) とし、巻取り開始までの冷却速度V(℃/sec)と巻取温
度 Tc(℃) とを、次式; 400 ≦ 1.2Tc− 7V+120(log Nb) −119(log Al) ≦43
0 (570≦Tc≦710) を満足するように制御し、そして冷間圧延後の連続焼鈍
を再結晶温度以上Ac3変態点以下の温度にて行い、その
後さらに調質圧延を施して冷延鋼帯とすることを特徴と
する耐衝撃性に優れる薄鋼板の製造方法。
3. C: 0.010 wt% or less, Si: 1.5 wt% or less, Mn: 2.0 wt% or less, Ni: 0.02 to 1.00 wt%, Nb: 0.01 to 0.10 wt%, P: 0.03 wt% or less, Al : A steel slab containing 0.01 to 0.10 wt% or less and the balance of Fe and inevitable impurities is hot-rolled when cold-rolled and continuously annealed to form a cold-rolled steel strip. When rolled into a hot-rolled steel strip in the temperature range of 570 to 710 ℃, the hot finish rolling temperature B (
℃ ≦ B-Tr-40.3 (log Nb) −27.1 (log Al) ≦ 175
(Tr = Ar 3 transformation point), the cooling rate V (° C / sec) until the start of winding and the winding temperature Tc (° C) are calculated by the following equation: 400 ≤ 1.2Tc-7V + 120 (log Nb) -119 ( log Al) ≤43
0 (570 ≤ Tc ≤ 710) is controlled, and continuous annealing after cold rolling is performed at a temperature not lower than the recrystallization temperature and not higher than the Ac 3 transformation point, and then temper-rolled and cold rolled. A method for producing a thin steel sheet having excellent impact resistance, which is characterized by using a steel strip.
JP16471493A 1993-07-02 1993-07-02 Thin steel sheet excellent in impact resistance and its production Pending JPH0718375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16471493A JPH0718375A (en) 1993-07-02 1993-07-02 Thin steel sheet excellent in impact resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16471493A JPH0718375A (en) 1993-07-02 1993-07-02 Thin steel sheet excellent in impact resistance and its production

Publications (1)

Publication Number Publication Date
JPH0718375A true JPH0718375A (en) 1995-01-20

Family

ID=15798496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16471493A Pending JPH0718375A (en) 1993-07-02 1993-07-02 Thin steel sheet excellent in impact resistance and its production

Country Status (1)

Country Link
JP (1) JPH0718375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749334A (en) * 1996-03-08 1998-05-12 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control system and method for in-cylinder injection internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749334A (en) * 1996-03-08 1998-05-12 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control system and method for in-cylinder injection internal combustion engine

Similar Documents

Publication Publication Date Title
EP2415893B1 (en) Steel sheet excellent in workability and method for producing the same
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
US3988173A (en) Cold rolled steel sheet having excellent workability and method thereof
JP3039842B2 (en) Hot-rolled and cold-rolled steel sheets for automobiles having excellent impact resistance and methods for producing them
JP2001081533A (en) High tensile strength cold rolled steel sheet and its manufacture
JPH0555586B2 (en)
JPH11279693A (en) Good workability/high strength hot rolled steel sheet excellent in baking hardenability and its production
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
JP3458416B2 (en) Cold rolled thin steel sheet excellent in impact resistance and method for producing the same
JP3169293B2 (en) Automotive thin steel sheet excellent in impact resistance and method for producing the same
JPH0570836A (en) Manufacture of high strength cold rolled steel sheet for deep drawing
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JP3236339B2 (en) Manufacturing method of high strength hot rolled steel sheet
JPH0826411B2 (en) Method for manufacturing high strength cold rolled steel sheet with excellent deep drawability
JPH0718375A (en) Thin steel sheet excellent in impact resistance and its production
JP3799868B2 (en) High-tensile cold-rolled steel sheet with excellent roll formability and buckling resistance
JP3288484B2 (en) Thin steel sheet excellent in ductility and impact resistance and method for producing the same
JP3435737B2 (en) Thin steel sheet excellent in impact resistance and method for producing the same
KR20010062900A (en) A method for manufacturing p added extra low carbon cold rolled steel sheet with superior deep drawability
JPH0657373A (en) High r value high tensile strength cold rolled steel sheet excellent in secondary working brittleness resistance and its production
CN112522608A (en) Formability-enhanced hot-dip galvanized dual-phase steel with more than 590MPa level and preparation method thereof
JPH07188855A (en) Cold rolled high tensile strength steel sheet for deep drawing reduced in yield ratio and its production
JPH11100636A (en) Good workability and high strength cold rolled steel sheet having high dynamic deformation resistance and its production
JPH0835013A (en) Production of cold rolled steel sheet excellent in secondary workability