JPH0717925B2 - Molded body manufacturing method - Google Patents

Molded body manufacturing method

Info

Publication number
JPH0717925B2
JPH0717925B2 JP2076131A JP7613190A JPH0717925B2 JP H0717925 B2 JPH0717925 B2 JP H0717925B2 JP 2076131 A JP2076131 A JP 2076131A JP 7613190 A JP7613190 A JP 7613190A JP H0717925 B2 JPH0717925 B2 JP H0717925B2
Authority
JP
Japan
Prior art keywords
molded body
mold
pressure
raw material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2076131A
Other languages
Japanese (ja)
Other versions
JPH03274202A (en
Inventor
光雄 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2076131A priority Critical patent/JPH0717925B2/en
Priority to TW80101159A priority patent/TW235310B/zh
Priority to CA 2036043 priority patent/CA2036043C/en
Priority to GB919102858A priority patent/GB9102858D0/en
Priority to GB9102960A priority patent/GB2243160B/en
Priority to TW82110252A priority patent/TW496905B/en
Priority to FR919101696A priority patent/FR2658183B1/en
Priority to DE4104275A priority patent/DE4104275C2/en
Publication of JPH03274202A publication Critical patent/JPH03274202A/en
Priority to US08/076,500 priority patent/US5374391A/en
Priority to GB9401160A priority patent/GB2272910B/en
Priority to US08/299,306 priority patent/US5590388A/en
Publication of JPH0717925B2 publication Critical patent/JPH0717925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は成形体の製造方法に関し、一層詳細には、粉粒
体を用いる射出成形において通常付加される添加剤に代
えて液状添加剤を添加することにより粉粒体の流動性、
圧力の伝播能を著しく向上させるとともに、併せて脱脂
工程等を省略することにより効率的に成形体を得ること
が可能な、しかも脱脂等の工程により生ずる成形体の欠
陥原因を排除することができる成形体の製造方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a molded body, and more specifically, a liquid additive is used instead of an additive that is usually added in injection molding using a powder or granular material. Flowability of powder and granules by adding
The pressure-transmitting ability is remarkably improved, and a compact can be efficiently obtained by omitting the degreasing step and the cause of defects in the compact caused by the degreasing step can be eliminated. The present invention relates to a method for manufacturing a molded body.

[従来の技術] 従来より、粉粒体を成形する方法においては、製造サイ
クルタイムの向上、表面粗さの改善および量産性の向上
が希求され、射出成形を用いた方法が汎用されている。
[Prior Art] Conventionally, in a method for molding a powder or granular material, improvement in manufacturing cycle time, improvement in surface roughness, and improvement in mass productivity have been demanded, and a method using injection molding has been widely used.

この種の従来技術は、一般には以下のような工程によ
る。すなわち、先ず、所望の組成の粉粒体原料を秤取す
る。次いで、粉粒体の流動性および圧力伝播性および成
形性を改善するために全体量の20〜50重量%の石油パラ
フィンおよびフェノール性樹脂等の有機化合物からなる
添加剤を加え、これらを均一混合し、混合原料を得る。
This type of conventional technique generally involves the following steps. That is, first, the raw material powder or granular material having a desired composition is weighed. Next, in order to improve the fluidity, pressure propagation and moldability of the granular material, 20 to 50% by weight of the total amount of petroleum paraffin and an additive composed of an organic compound such as a phenolic resin are added, and these are uniformly mixed. Then, a mixed raw material is obtained.

そして混合原料の流動性を改善するために120℃から180
℃に加熱し、前記の混合原料を同様に予め加熱した金型
内に射出成形し、冷却固化して中間成形体を得る。
And from 180 ℃ to 180 ℃ to improve the fluidity of the mixed raw materials.
The mixture is heated to 0 ° C., the mixed raw material is similarly injection-molded in a preheated mold, and cooled and solidified to obtain an intermediate molded body.

そして混合原料の流動性を改善するために120℃から180
℃に加熱し、前記の混合原料を同様に予め加熱した金型
内に射出成形し、冷却固化して中間成形体を得る。
And from 180 ℃ to 180 ℃ to improve the fluidity of the mixed raw materials.
The mixture is heated to 0 ° C., the mixed raw material is similarly injection-molded in a preheated mold, and cooled and solidified to obtain an intermediate molded body.

さらに中間成形体から前記添加剤を除去する、所謂、脱
脂工程を行った後、中間成形体を焼成して成形体を得る
方法である。
Further, it is a method of obtaining a molded product by performing a so-called degreasing step of removing the additive from the intermediate molded product and then firing the intermediate molded product.

[発明が解決しようとする課題] しかしながら、前記の添加剤は、全体の20〜50重量%と
いう高い配合比により他の粉粒体原料と均一混合し、こ
れによって得られた混合原料を金型内に供給するために
は、その流動性を向上させる必要がある。この目的のた
めには金型、さらには粉粒体原料および添加剤を予め加
熱しておく必要がある。また、金型***出成形に次いで
冷却固化して成形体を得るためには、金型の温度管理を
厳密に行う必要がある。
[Problems to be Solved by the Invention] However, the above-mentioned additive is uniformly mixed with other powdery or granular material at a high compounding ratio of 20 to 50% by weight of the whole, and the mixed raw material thus obtained is molded into a mold. In order to supply in, it is necessary to improve its fluidity. For this purpose, it is necessary to preheat the mold, and further the raw material for powder and granules and the additive. Further, in order to obtain a molded product by cooling and solidifying following in-mold injection molding, it is necessary to strictly control the temperature of the mold.

さらにまた、前記添加剤は石油パラフィン、フェノール
樹脂等からなる有機化合物であるため、焼結時以前に脱
脂工程により分解除去しないとこれらが脆性の原因とな
ったり、また、成形体の欠陥の大きな原因となる不都合
が顕在化している。
Furthermore, since the additive is an organic compound composed of petroleum paraffin, phenolic resin, etc., unless it is decomposed and removed by a degreasing step before sintering, these may cause brittleness and a large defect of the molded body. The inconvenience that causes it is becoming apparent.

これらの不都合を克服すべく、前記添加剤、すなわち、
有機化合物を成形体に影響を与えることなく除去するた
めには、加圧下あるいは減圧下で5〜10日間加熱するこ
とが必要であり、製造サイクルの向上を希求する時、不
都合が露呈している。
In order to overcome these disadvantages, the additive, namely,
In order to remove the organic compound without affecting the molded product, it is necessary to heat it under pressure or under reduced pressure for 5 to 10 days, which is disadvantageous when the improvement of the production cycle is desired. .

そこで、本発明の目的は、前記の添加剤に代えて液状添
加剤を添加することにより、粉粒体の流動性および圧力
の伝播能を向上させるとともに、添加剤と原料との混合
能を向上させることにより金型内への粉粒体のスムーズ
な射出を行うための、所謂、加熱の工程を排し、しか
も、従来技術において前記添加剤を除去するために行っ
た脱脂工程を不要とすることにより品質に優れた成形体
を得ることが可能な成形体の製造方法を提供することに
ある。
Therefore, an object of the present invention is to improve the fluidity of powder and granules and the ability to propagate pressure and the ability to mix the additive and the raw material by adding a liquid additive in place of the additive. By doing so, the so-called heating step for smooth injection of the powder or granules into the mold is eliminated, and the degreasing step performed in the prior art for removing the additive is unnecessary. Accordingly, it is an object of the present invention to provide a method for producing a molded product, which enables a molded product having excellent quality to be obtained.

[課題を解決するための手段] 前記の課題を解決するために、本発明は、粉粒体原料と
液状添加剤を混合して混合原料を得る第1の工程と、 前記第1の工程で得た混合原料を金型内へ所定の圧力で
射出充填した後、前記射出充填した所定の圧力よりさら
に高い圧力を加え、過剰となった液状添加剤を金型外へ
排除して中間成形体を得る第2の工程と、 前記第2の工程で得られた前記中間成形体を焼結して成
形体を得る第3の工程と、 からなることを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention comprises a first step of mixing a powdery material and a liquid additive to obtain a mixed material; After injection-filling the obtained mixed raw material into the mold at a predetermined pressure, a pressure higher than the predetermined injection-filled pressure is applied to remove excess liquid additive to the outside of the mold to form an intermediate molded body. And a third step of sintering the intermediate molded body obtained in the second step to obtain a molded body.

また、本発明は、液状添加剤は、メタノール、エタノー
ル、2−プロパノール等のアルコール類、ベンゼン、ト
ルエン、キシレン等のアレーン類、アセトン等のケトン
類、ヘキサン等のアルカン類、フッ素を含有するアルカ
ン類、および水からなる化合物群のうち、いずれか一種
以上を含有することを特徴とする。
Further, in the present invention, the liquid additive includes alcohols such as methanol, ethanol and 2-propanol, arenes such as benzene, toluene and xylene, ketones such as acetone, alkanes such as hexane and alkanes containing fluorine. It is characterized in that it contains any one or more of a group of compounds consisting of a class and water.

さらに、本発明は、射出充填した所定の圧力よりさらに
高い圧力は、少なくとも、金型内で前記混合原料が静水
圧加圧状態を経た後、過剰な前記液状添加剤が金型外へ
排除される圧力であることを特徴とする。
Further, according to the present invention, at a pressure higher than the predetermined pressure charged by injection filling, at least after the mixed raw material has undergone hydrostatic pressure in the mold, excess liquid additive is removed from the mold. It is characterized by the pressure.

[作用] 本発明に係る成形体の製造方法では、粉粒体に対して液
状添加剤を添加することにより、脱脂工程が省略され、
全体として大幅は工程の短縮化を図ることができる。
[Operation] In the method for producing a molded body according to the present invention, the degreasing step is omitted by adding the liquid additive to the powder or granular material,
As a whole, the process can be greatly shortened.

また、液状添加剤を用いることにより射出成形時の金型
内で混合原料が静水圧加圧状態となるため、圧力の伝播
性が向上し、品質に優れた成形体が得られる。
Further, by using the liquid additive, the mixed raw material is brought into a hydrostatic pressure-pressurized state in the mold at the time of injection molding, so that the propagating property of pressure is improved and a molded product having excellent quality is obtained.

[構成の具体的説明] 本発明に係る成形体の製造方法では、粉粒体原料に添加
し、混合原料を得るためのエタノールにプロパノール等
のアルコール類、アセトン等のケトン類、ベンゼン、ト
ルエン、キシレン等のアレーン類、ヘキサン等のアルカ
ン類およびフッ素を含有するアルカン類、水からなる液
状添加剤が用いられ、この液状添加剤は粉粒体100重量
部に対して約5〜40重量部添加される。5重量部以下で
は粉粒体の流動性の向上が図れず、射出成形時の所期に
静水圧加圧状態が得られないため、粉粒体の塑性変形に
より気孔が閉塞され、加えた液分の排出路が塞がれてし
まうという理由による。また、40重量部以上では過剰な
液分が粉粒体原料に対する加圧時に分離し、粉粒体成分
が液中に分散懸濁され固定型と可動型の境界部分あるい
はIP抜き孔から金型外へ流出してしまうためである。さ
らに、液分が40重量部を超える場合、混合中に成分ある
いは粒度等の偏析を生じるという理由もある。さらにま
た、液状添加剤は従来用いられていた添加剤、すなわ
ち、混合原料全体の20〜50重量%の石油パラフィン、フ
ェノール樹脂等の有機物に比して高い流動性を有するた
め、粉粒体原料との混合能が高く、従って、混合原料を
供給するニーダおよび金型あるいは液状添加剤および混
合原料自体を予め加熱する必要がなく、均一に混合する
ことが可能である。
[Specific Description of Configuration] In the method for producing a molded body according to the present invention, alcohols such as propanol, ketones such as acetone, benzene, toluene, and the like are added to ethanol to obtain a mixed raw material, which is added to the raw material for powder or granular material. A liquid additive consisting of arenes such as xylene, alkanes such as hexane and alkanes containing fluorine, and water is used. The liquid additive is added in an amount of about 5 to 40 parts by weight with respect to 100 parts by weight of the granular material. To be done. If the amount is less than 5 parts by weight, the fluidity of the powder cannot be improved, and the hydrostatic pressure cannot be obtained at the intended time during injection molding. This is because the minute discharge path is blocked. In addition, when the amount is 40 parts by weight or more, excess liquid is separated at the time of pressurizing the granular material, and the granular component is dispersed and suspended in the liquid, and the mold is passed through the boundary between the fixed mold and the movable mold or the IP vent hole. This is because it will flow out. Further, when the liquid content exceeds 40 parts by weight, there is also a reason that segregation of components or particle size occurs during mixing. Furthermore, since the liquid additive has high fluidity compared to the conventionally used additive, that is, 20 to 50% by weight of the whole mixed raw material, such as petroleum paraffin and organic matter such as phenol resin, the granular raw material is used. Therefore, the kneader and die for supplying the mixed raw material or the liquid additive and the mixed raw material itself do not need to be heated in advance and can be uniformly mixed.

またさらに、均一に混合された混合原料は金型内に射出
成形され、さらに印加される加圧力により金型内で静水
圧加圧状態となる。従って、静水圧加圧状態下において
生起される液相を介して圧力の伝播が行われる。このた
め、従来、加圧時に粉体同士の摩擦や粉粒体のブリッジ
現象等により圧力分散が不均一であったり、過剰の圧力
を必要としていたが、静水圧加圧状態では圧力の伝播が
スムーズに行われるため、厚物の形成も可能となる。
Furthermore, the uniformly mixed mixed raw material is injection-molded in the mold, and is subjected to hydrostatic pressure in the mold by the applied pressure. Therefore, the pressure is propagated through the liquid phase generated under the hydrostatic pressure state. For this reason, conventionally, pressure distribution was uneven due to friction between powders or bridge phenomenon of powder particles during pressurization, or excessive pressure was required. Since it is performed smoothly, it is possible to form a thick material.

さらに、金型内の圧力が上昇してある閾値以上になる
と、金型内の静水圧加圧状態が破壊され、すなわち、金
型内混合物の液相が破壊され、金型のエア抜き孔、ある
いはその他の間隙を通し過剰の液分が排除される。そし
て、過剰の液分が排除された後は液状生成物含量が金属
成形体では略1〜5重量%未満、セラミックスでは3〜
15重量%未満となるように粉末の組成変形、所謂、絡み
合いの形状で保持される。さらには、これらの成形体は
過剰の液分が排出されるため、次工程としての乾燥工程
において、成形体からの液分の飛散、蒸発に伴う欠陥お
よび脆性の生成を未然に阻止することができる。さらに
は、成形体中に適当な液状生成物含量を残し、過剰な液
分が排除されるため、焼成前に長時間を要する脱脂工
程、すなわち、有機化合物からなる不要な添加剤の排除
工程が不必要となる。
Furthermore, when the pressure in the mold rises above a certain threshold value, the hydrostatic pressure state in the mold is destroyed, that is, the liquid phase of the mixture in the mold is destroyed, the air vent hole of the mold, Alternatively, excess liquid is removed through other gaps. After the excess liquid is removed, the liquid product content is about 1 to less than 5% by weight in the metal compact and 3 to less in the ceramic.
The composition of the powder is maintained in a so-called entangled shape so that the content of the powder becomes less than 15% by weight. Further, since excess liquid is discharged from these molded products, it is possible to prevent the generation of defects and brittleness due to scattering of liquid from the molded products and evaporation in the subsequent drying step. it can. Furthermore, since an appropriate liquid product content is left in the molded body and an excessive amount of liquid is removed, a degreasing process that requires a long time before firing, that is, a process of removing unnecessary additives consisting of organic compounds is required. Unnecessary.

なお、液相を介して金型と成形体が接し、さらには、液
状添加剤中にフッ素を含有するフロンソルブ等、洗浄能
力に優れた化合物が含有されると、金型は常に清浄に保
たれ、且つ原材料の金型への融着、かじりが生ぜず、金
型自体の耐久性が向上し、しかも、表面の粗さが少ない
高品質な成形体を得ることが可能となる。
When the mold and the molded body are in contact with each other through the liquid phase, and further, when the liquid additive contains a compound having excellent cleaning ability such as fluorocarbon-containing fluorocarbon solvent, the mold is always kept clean. In addition, it is possible to obtain a high-quality molded product in which the raw material is not fused to the mold and galling does not occur, the durability of the mold itself is improved, and the surface roughness is small.

[実施例] 以下に本発明の実験例を示す。Example An experimental example of the present invention is shown below.

〈実験例1〉 −325メッシュの粒径を有する電解銅粉を98.3重量部、
平均粒径2μmの金属クロム粉を0.8重量部、平均粒径
0.6μmの酸化アルミニウム粉末を0.5重量部、−325メ
ッシュで分級したとき、篩を通過する大きさの粒径を有
するチタン粉末0.3重量部および−325メッシュで分級し
たとき、篩の目を通過する粒径を有する金属アルミニウ
ム粉末0.1重量部となるよう夫々秤取し、粉粒体原料と
した。
<Experimental Example 1> 98.3 parts by weight of electrolytic copper powder having a particle size of -325 mesh,
0.8 parts by weight of metallic chromium powder having an average particle size of 2 μm, average particle size
When 0.5 part by weight of 0.6 μm aluminum oxide powder is classified by -325 mesh, 0.3 part by weight of titanium powder having a particle size of the size that passes through the sieve and when classified by -325 mesh, passes through the mesh of the sieve. Each of them was weighed to obtain 0.1 part by weight of metallic aluminum powder having a particle size, and used as a raw material for powder or granules.

次いで、エタノール80容量%、2プロパノール20容量%
からなる液状添加剤を前記粉粒体原料を100重量部とし
たとき、12重量部となるよう添加し均一になるまで混合
して混合原料を得た。さらに、前記混合原料を射出成形
機を用いて300〜2000kgt/cm2の加圧力で射出成形機を用
いて300〜2000kgt/cm2の加圧力で射出成形し、中間成形
体を得た。この中間成形体は径18×80mmである。さらに
この中間成形体を100℃で32時間乾燥し、乾燥後の重量
と乾燥前の重量から液状生成部の含量を算出し、密度を
算定した。このときの含量と加圧力との関係を第1図の
グラフに、また、このときの密度と加圧力との関係を第
2図のグラフに示す。
Next, 80% by volume of ethanol, 20% by volume of 2 propanol
The liquid additive consisting of 10 parts by weight of the powdered or granular material was added so as to be 12 parts by weight and mixed until uniform to obtain a mixed raw material. Further, the mixed raw material was injection-molded using an injection molding machine at a pressure of 300 to 2000 kgt / cm 2 and an injection molding machine at a pressure of 300 to 2000 kgt / cm 2 to obtain an intermediate molded body. This intermediate compact has a diameter of 18 × 80 mm. Further, this intermediate molded body was dried at 100 ° C. for 32 hours, and the content of the liquid-forming part was calculated from the weight after drying and the weight before drying to calculate the density. The relationship between the content and the pressing force at this time is shown in the graph of FIG. 1, and the relationship between the density and the pressing force at this time is shown in the graph of FIG.

そして、前記中間成形体を焼結炉を用いて15℃/分の昇
温速度で250℃で30分、350℃で30分、650℃で30分それ
ぞれ保持した後、950℃で30分、1000℃で30分、1050℃
で2時間各々保持して焼結体を得、これを成形体とし
た。
Then, the intermediate compact was held at 250 ° C. for 30 minutes, 350 ° C. for 30 minutes, 650 ° C. for 30 minutes at a heating rate of 15 ° C./min using a sintering furnace, and then held at 950 ° C. for 30 minutes. 30 minutes at 1000 ℃, 1050 ℃
Each was held for 2 hours to obtain a sintered body, which was used as a molded body.

成形体の密度と加圧力との関係を第3図のグラフに示
す。第1図および第2図のグラフより過剰の液分の排出
は概ね800kgf/cm2の加圧力にて完了していることが判断
できる。また、1800kgf/cm2を超過した場合において
も、若干の密度の上昇がなされるが、これらは排出限界
を超え塑性変形が大きくなっているためと判断される。
The relationship between the density of the molded body and the applied pressure is shown in the graph of FIG. From the graphs of Fig. 1 and Fig. 2 , it can be judged that the discharge of the excess liquid content has been completed at a pressure of approximately 800 kgf / cm 2 . Moreover, even if it exceeds 1800 kgf / cm 2 , the density is slightly increased, but it is considered that these are because the plastic deformation becomes large beyond the discharge limit.

第3図のグラフにおいては、800kgf/cm2を超過すると、
密度は略一定になることがわかる。また、1800kgf/cm2
を超過すると加圧により塑性変形が起こり、流路が閉塞
される。この結果、気孔が閉塞された状態で存在するた
め、密度の低下が起こったものと詳解される。
In the graph of Fig. 3, when 800kgf / cm 2 is exceeded,
It can be seen that the density becomes almost constant. Also, 1800kgf / cm 2
If it exceeds, plastic deformation occurs due to pressurization and the flow path is blocked. As a result, since the pores exist in a closed state, it is explained in detail that the density has decreased.

〈実験例2〉 −325メッシュの粒径を有するアルミ急冷凝固粉に20容
量%となるよう、炭素化ケイ素、ウィスカを分散させた
ものを粉末粉粒体原料とした。前記粉末粉粒体原料100
重量部に対し、液状添加剤としてフッ素を含有するアル
カン類、所謂、フロンソルブを11重量部となるよう添加
し、均一になるまで混合し混合原料を得た。
<Experimental Example 2> A powdered granular material was obtained by dispersing silicon carbide and whiskers in an aluminum rapidly solidified powder having a particle size of -325 mesh so as to be 20% by volume. The powder powder material 100
Alkanes containing fluorine as a liquid additive, so-called flonsolve, was added to 11 parts by weight to 11 parts by weight, and mixed until uniform to obtain a mixed raw material.

次いで、前記混合原料を射出成形機を用い加圧力300〜2
000kgf/cm2で室温にて射出成形した。前記射出成形によ
って得られた中間成形体は径35×100mmの形状を有す
る。その後、80℃で24時間、加熱しフロンソルブを除去
した後、10℃/分の昇温速度で150℃で30分、280℃で30
分それぞれ保持した後、600℃まで加熱し、アルゴンガ
ス雰囲気下で1時間焼結し、成形体を得た。この時の加
圧力と密度との関係を第4図のグラフに示す。
Next, the mixed raw material is applied with an injection molding machine at a pressure of 300 to 2
Injection molding was performed at room temperature at 000 kgf / cm 2 . The intermediate molded body obtained by the injection molding has a shape of 35 × 100 mm in diameter. Then, after heating at 80 ° C for 24 hours to remove the CFCs, 30 ° C for 30 minutes at 280 ° C for 30 minutes at a heating rate of 10 ° C / min.
After holding each minute, it was heated to 600 ° C. and sintered in an argon gas atmosphere for 1 hour to obtain a molded body. The relationship between the pressing force and the density at this time is shown in the graph of FIG.

次いで、前記成形体を緻密で強度の高い製品とするため
に、熱間均衡圧縮(以下、HIPと呼称する)を行った。
先ず、前記成形体を径28×70mmに加工し、ステンレスカ
プセル中に入れ、脱気した後真空封入し、アルゴンガス
雰囲気下560℃で2000気圧にて30分間HIPした。
Next, hot equilibrium compression (hereinafter referred to as HIP) was performed in order to make the molded body a dense and high-strength product.
First, the molded body was processed into a diameter of 28 × 70 mm, placed in a stainless capsule, degassed, and then vacuum-sealed, followed by HIP at 560 ° C. and 2000 atmospheric pressure for 30 minutes in an argon gas atmosphere.

そして、HIP後の密度を測定したところ、200kgf/cm2
上の加圧により焼結したものはほぼ理論密度の97%以上
の実質密度を示した。なお、従来技術に係る通常の射出
条件では、流動性の改善、充填性の向上を目的として添
加する石油パラフィン、フェノール樹脂等の添加剤はそ
の除去の工程において完全に揮発を行うためには600℃
まで加熱する必要がある。従って、600℃まで上昇させ
た後、脱脂工程を行うと、基材のアルミと反応してしま
うため、アルミを素材とした射出成形は不可能であっ
た。そのため、従来の技術においては、一軸成形法、押
出成形を行って素材を得た後、鋳造により成形を行って
いた。また、添加剤を加えない場合においては、ウィス
カが凝集し、金型内への供給が困難となり、成形体を得
ることは不可能であった。
Then, when the density after HIP was measured, those sintered by pressurization of 200 kgf / cm 2 or more showed a substantial density of 97% or more of the theoretical density. Under normal injection conditions of the prior art, additives such as petroleum paraffin and phenol resin, which are added for the purpose of improving fluidity and filling property, are required to be 600 to completely volatilize in the removal process. ℃
Need to heat up. Therefore, if the degreasing process is performed after the temperature is raised to 600 ° C., it reacts with the aluminum of the base material, so that injection molding using aluminum as the raw material is impossible. Therefore, in the conventional technique, the material is obtained by performing the uniaxial molding method and the extrusion molding, and then the molding is performed by casting. Further, in the case where the additive was not added, the whiskers aggregated and it became difficult to supply the whiskers into the mold, making it impossible to obtain a molded product.

一方、本発明に係る成形体の製造方法では、アルミを素
材とする成形体の射出成形が容易になった。
On the other hand, in the method for manufacturing a molded body according to the present invention, injection molding of a molded body made of aluminum becomes easy.

〈実験例3〉 平均粒径0.8μmの窒化ケイ素粉末89重量部、平均粒径
0.4μmの酸化イットリウム粉末5重量部、平均粒径0.6
μmの酸化アルミニウム粉末4重量部、平均粒径1μm
の酸化ランタン粉末2重量部となるよう各々秤取し、粉
粒体原料とした。次いで、前記粉粒体原料100重量部に
対し精製水20重量部を液状添加剤として加え、ボールミ
ルを用いて24時間湿式混合し、減圧状態で消泡し、水分
含量が20重量%となるよう調整して混合原料を得た。次
いで、前記混合原料を用い、ニーダにて練合した後、射
出成形機を用いて300〜2000kgf/cm2の加圧力で射出成形
し、中間成形体を得た。
<Experimental Example 3> 89 parts by weight of silicon nitride powder having an average particle diameter of 0.8 μm, average particle diameter
5 parts by weight of 0.4 μm yttrium oxide powder, average particle size 0.6
4 parts by weight of aluminum oxide powder of μm, average particle size 1 μm
The lanthanum oxide powder (2) was weighed so as to obtain 2 parts by weight, and used as a raw material for powder or granules. Then, 20 parts by weight of purified water as a liquid additive is added to 100 parts by weight of the raw material for powder and granules, and the mixture is wet-mixed for 24 hours using a ball mill and defoamed under reduced pressure so that the water content becomes 20% by weight. It adjusted and the mixed raw material was obtained. Then, after kneading the mixed raw material with a kneader, injection molding was performed with an injection molding machine at a pressure of 300 to 2000 kgf / cm 2 to obtain an intermediate molded body.

次いで、24時間乾燥後、密度を算定した。第5図のグラ
フは加圧力と密度との関係を示したものである。
Then, after drying for 24 hours, the density was calculated. The graph of FIG. 5 shows the relationship between the pressing force and the density.

また、比較例として、実験例3と同じ粉粒体原料、すな
わち、平均粒径0.8μmの窒化ケイ素粉末89重量部、平
均粒径0.4μmの酸化イットリウム5重量部、平均粒径
0.6μmの酸化アルミニウム粉末4重量部、平均粒径1
μmの酸化ナンタン粉末2重量部となるように秤取した
粉粒体原料を用い、添加剤としてベークライト30容量
%、石油パラフィンろう70重量%からなる添加剤を前記
粉粒体原料100容量%に対して40容量%になるよう添加
し、均一になるよう混合して混合原料を得た。
In addition, as a comparative example, the same granular material as in Experimental Example 3, that is, 89 parts by weight of silicon nitride powder having an average particle size of 0.8 μm, 5 parts by weight of yttrium oxide having an average particle size of 0.4 μm, and an average particle size of
4 parts by weight of 0.6 μm aluminum oxide powder, average particle size 1
Using the powdery or granular raw material weighed out so as to obtain 2 parts by weight of μm nantan oxide powder, the additive consisting of 30% by volume of Bakelite and 70% by weight of petroleum paraffin wax was added to 100% by volume of the aforementioned granular material. 40% by volume was added thereto and mixed so as to be uniform to obtain a mixed raw material.

次に、予め160℃まで加熱したニーダでよく練合した。
そして、予め80℃に加熱した金型に300〜2000kgf/cm2
加圧力で射出成形し、中間成形体を得た。なお、このと
きのサイクルは射出後の加圧保持時間を含め40秒とし
た。次に、比較例、すなわち、添加剤を添加したものに
ついては5℃/分で180℃まで昇温し、4時間保持し、2
60℃で6時間、300℃で6時間保持し、300℃から1℃/1
0分の昇温速度で330℃で6時間、350℃で6時間、380℃
で6時間、420℃で6時間保持した。さらに、220℃から
1℃/10分の昇温速度で330℃で6時間、350℃で6時
間、380℃で6時間、380℃で6時間、420℃で6時間保
持した。さらに、420℃から1℃/20分の昇温速度で430
℃で12時間、450℃で12時間、480℃で12時間、500℃で1
2時間、520℃で12時間、540℃で12時間、560℃で12時間
で各々保持し、その後、炉冷した。なお、以上の脱脂工
程に要した総時間は約7日間であった。このときの密度
を第5図のグラフに合わせて白丸印○で示した。
Then, the mixture was well kneaded with a kneader which was previously heated to 160 ° C.
Then, injection molding was performed with a pressing force of 300 to 2000 kgf / cm 2 in a mold heated in advance to 80 ° C. to obtain an intermediate molded body. The cycle at this time was 40 seconds including the pressure holding time after injection. Next, in a comparative example, that is, in the case where the additive was added, the temperature was raised to 180 ° C. at 5 ° C./min, and the temperature was maintained for 4 hours.
Hold at 60 ℃ for 6 hours, 300 ℃ for 6 hours, from 300 ℃ to 1 ℃ / 1
At a heating rate of 0 minutes, 330 ° C for 6 hours, 350 ° C for 6 hours, 380 ° C.
6 hours and 420 ° C. for 6 hours. Further, the temperature was raised from 220 ° C to 1 ° C / 10 minutes at 330 ° C for 6 hours, 350 ° C for 6 hours, 380 ° C for 6 hours, 380 ° C for 6 hours, and 420 ° C for 6 hours. Furthermore, 430 from the temperature of 420 ℃ to 1 ℃ / 20 minutes
12 hours at ℃, 12 hours at 450 ℃, 12 hours at 480 ℃, 1 at 500 ℃
It was held for 2 hours, 520 ° C. for 12 hours, 540 ° C. for 12 hours, and 560 ° C. for 12 hours, and then cooled in a furnace. The total time required for the above degreasing process was about 7 days. The density at this time is shown by a white circle ◯ in accordance with the graph of FIG.

第5図から理解されるように、比較例、すなわち、添加
剤を用いた場合には、前述の条件設定より明らかなよう
に、複雑且つ長時間にわたる温度設定による脱脂工程お
よび焼結工程が必要であるとともに、第5図から明らか
なように、実験例3に比べ比較例では健全な成形体は11
00〜1300kgf/cm2の範囲でのみ成形可能であり、その他
の範囲ではすべてクラックが生起したことより、狭い範
囲でのみ成形が可能である。
As can be seen from FIG. 5, in the comparative example, that is, in the case of using the additive, the degreasing process and the sintering process by the temperature setting for a complicated and long time are required, as is clear from the above-mentioned condition setting. In addition, as is clear from FIG. 5, compared with Experimental Example 3, in the comparative example, the sound molded body has 11
Molding is possible only in the range of 00 to 1300 kgf / cm 2 , and cracking occurs in all other ranges, so molding is possible only in a narrow range.

また、実験例3において、1800kgf/cm2以上の範囲でク
ラックが発生した。この領域以上では静水加圧状態が破
壊され、粉粒体同士がせめぎ合い、大きな残留応力が焼
成中開放されたものと諒解される。また、実験例3の70
0kgf/cm2では部分的な成形密度の偏析等により粒子間の
距離が大きくなるため、効果的な焼結をなし得なかった
と諒解される。すなわち、実験例3においては、成形体
の製造に際して複雑且つ長時間にわたる温度設定を必要
とする脱脂工程および焼結は不要であるばかりか、その
成形体の健全な成形が可能な安定化領域が広範囲にわた
っていることが確認できる。
Further, in Experimental Example 3, cracks occurred in the range of 1800 kgf / cm 2 or more. It is understood that in this region and above, the hydrostatic pressure state is broken, the powders and granules crush each other, and large residual stress is released during firing. In addition, 70 of Experimental Example 3
It is clear that at 0 kgf / cm 2 , since the distance between the particles becomes large due to the partial segregation of the molding density and the like, effective sintering could not be achieved. That is, in Experimental Example 3, not only the degreasing step and sintering, which require complicated and long-time temperature setting in the production of the molded body, are unnecessary, but also a stable region in which the molded body can be molded soundly is provided. It can be confirmed that it covers a wide area.

[発明の効果] 以上のように、本発明に係る成形体の製造方法によれ
ば、射出成形時における流動性、充填性の向上を目的と
して添加していたフェノール樹脂、石油パラフィン等の
添加剤に代えて低粘性の液状添加剤を用いている。この
ため、従来、添加剤と粉粒体原料との混合能の向上を目
的として行われていた各装置および原料の加熱の工程、
欠陥原因および脆性の形成を回避することを目的として
行われていた焼結工程前の高粘性添加剤の除去、所謂、
脱脂工程を省略することができる。また、本発明では、
厳密な温度管理を必要としないため、全体として製造工
程の大幅な短縮化を図ることができる。
[Advantages of the Invention] As described above, according to the method for producing a molded article according to the present invention, an additive such as a phenol resin or petroleum paraffin that has been added for the purpose of improving fluidity and filling property during injection molding. Instead, a low-viscosity liquid additive is used. Therefore, conventionally, each device and the heating process of the raw material, which has been performed for the purpose of improving the mixing ability of the additive and the granular material,
Removal of the highly viscous additive before the sintering process, which was performed for the purpose of avoiding the cause of defects and the formation of brittleness, so-called,
The degreasing step can be omitted. Further, in the present invention,
Since strict temperature control is not required, the manufacturing process as a whole can be significantly shortened.

さらにまた、本発明では、液状添加剤を用いることによ
り静水加圧状態で成形が行われるため、成形体内部の密
度の差を小さく形成することができる。さらには、静水
加圧状態により得られる液相により粉粒体同士の摩擦が
低減され、そのために圧力が均一に伝わるとともに、該
液状添加剤が洗浄能力を有するため、常に金型が清潔に
保たれることになる。この結果、金型の耐用性が著しく
向上できるばかりか、表面の粗さが少ない高品質な成形
体を得ることができる。
Furthermore, in the present invention, since the liquid additive is used for molding in a hydrostatic pressure state, it is possible to form a small difference in density inside the molded body. Furthermore, the liquid phase obtained by the hydrostatic pressure state reduces friction between the particles, and therefore the pressure is transmitted uniformly, and since the liquid additive has a cleaning ability, the mold is always kept clean. You will be drunk. As a result, not only the durability of the mold can be remarkably improved, but also a high-quality molded product having less surface roughness can be obtained.

さらには、液状添加剤を用いることによる静水加圧で圧
力伝播能が向上することおよび静水加圧状態により液相
が形成され、粉粒体同士の摩擦数が低下することによ
り、加圧力を著しく低下させることができるという特有
の効果が得られる。
Furthermore, the pressure propagating ability is improved by the hydrostatic pressurization by using the liquid additive, and the liquid phase is formed by the hydrostatic pressurization state, and the friction number between the particles is reduced, so that the pressing force is remarkably increased. There is a unique effect that it can be lowered.

【図面の簡単な説明】[Brief description of drawings]

第1図は実験例1に係る液含有量と加圧力との関係を示
すグラフ、 第2図は実験例1に係る密度と加圧力との関係を示すグ
ラフ、 第3図は実験例2に係る密度と加圧力との関係を示すグ
ラフ、 第4図は実験例3に係る密度と加圧力との関係を示すグ
ラフ、 第5図は実験例3および比較例に係る密度と加圧力との
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the liquid content and the pressing force according to Experimental Example 1, FIG. 2 is a graph showing the relationship between the density and the pressing force according to Experimental Example 1, and FIG. 4 is a graph showing the relationship between the density and the pressing force, FIG. 4 is a graph showing the relationship between the density and the pressing force according to Experimental Example 3, and FIG. 5 is a graph showing the density and the pressing force according to Experimental Example 3 and Comparative Example. It is a graph which shows a relationship.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/00 108 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C04B 35/00 108

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】粉粒体原料と液状添加剤を混合して混合原
料を得る第1の工程と、 前記第1の工程で得た混合原料を金型内へ所定の圧力で
射出充填した後、前記射出充填した所定の圧力よりさら
に高い圧力を加え、過剰となった液状添加剤を金型外へ
排除して中間成形体を得る第2の工程と、 前記第2の工程で得られた前記中間成形体を焼結して成
形体を得る第3の工程と、 からなることを特徴とする成形体の製造方法。
1. A first step of mixing a granular material and a liquid additive to obtain a mixed raw material, and after injection-filling the mixed raw material obtained in the first step into a mold at a predetermined pressure A second step of applying a pressure higher than the injection-filled predetermined pressure to remove excess liquid additive outside the mold to obtain an intermediate molded body; and the second step. A third step of sintering the intermediate molded body to obtain a molded body, the method for manufacturing a molded body.
【請求項2】請求項1記載の成形体の製造方法におい
て、液状添加剤は、メタノール、エタノール、2−プロ
パノール等のアルコール類、ベンゼン、トルエン、キシ
レン等のアレーン類、アセトン等のケトン類、ヘキサン
等のアルカン類、フッ素を含有するアルカン類、および
水からなる化合物群のうち、いずれか一種以上を含有す
ることを特徴とする成形体の製造方法。
2. The method for producing a molded article according to claim 1, wherein the liquid additive is alcohols such as methanol, ethanol and 2-propanol, arenes such as benzene, toluene and xylene, ketones such as acetone, A method for producing a molded product, comprising at least one of a compound group consisting of alkanes such as hexane, alkanes containing fluorine, and water.
【請求項3】請求項1記載の成形体の製造方法におい
て、射出充填した所定の圧力よりさらに高い圧力は、少
なくとも、金型内で前記混合原料が静水圧加圧状態を経
た後、過剰な前記液状添加剤が金型外へ排除される圧力
であることを特徴とする成形体の製造方法。
3. The method for producing a molded article according to claim 1, wherein the pressure higher than the predetermined pressure injected and filled is excessive at least after the mixed raw material has undergone hydrostatic pressure in the mold. A method for producing a molded article, wherein the liquid additive is at a pressure to be removed from the mold.
JP2076131A 1990-02-13 1990-03-26 Molded body manufacturing method Expired - Fee Related JPH0717925B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2076131A JPH0717925B2 (en) 1990-03-26 1990-03-26 Molded body manufacturing method
TW80101159A TW235310B (en) 1990-02-13 1991-02-02
CA 2036043 CA2036043C (en) 1990-02-13 1991-02-08 Molded ceramic articles and production method thereof
GB919102858A GB9102858D0 (en) 1990-02-13 1991-02-11 Molded ceramic articles and production method thereof
GB9102960A GB2243160B (en) 1990-02-13 1991-02-12 A method of producing a moulded article
TW82110252A TW496905B (en) 1990-02-13 1991-02-12 Molded ceramic articles and production method thereof
DE4104275A DE4104275C2 (en) 1990-02-13 1991-02-13 Molding and process for its manufacture
FR919101696A FR2658183B1 (en) 1990-02-13 1991-02-13 MOLDED CERAMIC ARTICLE BASED ON COPPER, AND ITS MANUFACTURING METHOD.
US08/076,500 US5374391A (en) 1990-02-13 1993-06-09 Molded ceramic articles and production method thereof
GB9401160A GB2272910B (en) 1990-02-13 1994-01-21 Molded articles
US08/299,306 US5590388A (en) 1990-02-13 1994-09-01 Molded ceramic articles and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076131A JPH0717925B2 (en) 1990-03-26 1990-03-26 Molded body manufacturing method

Publications (2)

Publication Number Publication Date
JPH03274202A JPH03274202A (en) 1991-12-05
JPH0717925B2 true JPH0717925B2 (en) 1995-03-01

Family

ID=13596392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076131A Expired - Fee Related JPH0717925B2 (en) 1990-02-13 1990-03-26 Molded body manufacturing method

Country Status (1)

Country Link
JP (1) JPH0717925B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170603A (en) * 1989-11-29 1991-07-24 Mitsui Toatsu Chem Inc Manufacture of sintered powder compact

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170603A (en) * 1989-11-29 1991-07-24 Mitsui Toatsu Chem Inc Manufacture of sintered powder compact

Also Published As

Publication number Publication date
JPH03274202A (en) 1991-12-05

Similar Documents

Publication Publication Date Title
JP4236285B2 (en) Process for producing molded articles from ceramic and metal powders
JP4261130B2 (en) Silicon / silicon carbide composite material
JP2002129204A (en) Method for manufacturing porous metal
JPS6254162B2 (en)
US5445788A (en) Method of producing elements from powders
JPH0717925B2 (en) Molded body manufacturing method
US3857157A (en) Method of producing hot pressed components
JP3270798B2 (en) Method for producing silicon carbide sintered body
JP4405038B2 (en) Method for producing porous sintered compact
JP2629551B2 (en) Composite mold for superplastic forming and superplastic forming method
JP3420786B2 (en) Manufacturing method of molded body
WO1997037789A1 (en) Molding process feedstock using a copper triflate catalyst
JP2007022914A (en) Method for manufacturing silicon/silicon carbide composite material
JPH08117247A (en) Manufacture of powder-sintered dental inlay
JPH0647682B2 (en) Manufacturing method of sintered metal
JPH0483759A (en) Production of sintered composite boron nitride
JPH0483752A (en) Mixture of sinterable substance
JP2000117714A (en) Inorganic powder injection molding composition and manufacture of inorganic sintered body
JPH07187807A (en) Source material for press forming of sic sintered body and press forming method
JP2932763B2 (en) Method of manufacturing injection molded powder metallurgy products
JPH11291213A (en) Method for forming castable refractory block
JP3479718B2 (en) Method for producing shaped article made of metal or ceramic
JPH08108415A (en) Ceramic molding method
JPH06207202A (en) Production of molded article
JPH10298685A (en) Electrode parts for semiconductor producing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees