JPH07178726A - Pelletizing die - Google Patents

Pelletizing die

Info

Publication number
JPH07178726A
JPH07178726A JP5326884A JP32688493A JPH07178726A JP H07178726 A JPH07178726 A JP H07178726A JP 5326884 A JP5326884 A JP 5326884A JP 32688493 A JP32688493 A JP 32688493A JP H07178726 A JPH07178726 A JP H07178726A
Authority
JP
Japan
Prior art keywords
molten resin
flow path
circular
die
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5326884A
Other languages
Japanese (ja)
Other versions
JP3032675B2 (en
Inventor
Toshiharu Ogoshi
俊治 大越
Masaharu Ishida
正治 石田
Yasuhiko Ishida
康彦 石田
Minoru Yoshida
稔 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP5326884A priority Critical patent/JP3032675B2/en
Publication of JPH07178726A publication Critical patent/JPH07178726A/en
Application granted granted Critical
Publication of JP3032675B2 publication Critical patent/JP3032675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/582Component parts, details or accessories; Auxiliary operations for discharging, e.g. doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/147Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle
    • B29C48/1472Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle at the die nozzle exit zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain good quality pellets by using a pelletizing die which particularly permits low pressure loss by a uniform heating of a nozzle and the underwater starting. CONSTITUTION:A pelletizing die is provided with a plurality of radial passages 20 radially formed in communication with a molten resin passage 2, a circular or arcuate passage 21 in communication with each radial passage 20, a circular or arcuate groove passage 21a, a rod-like heater 6A in the center of each passage 21 and a plurality of nozzles 7 each of which is provided for corresponding one of the passages 21, whereby a uniform temperature of resin is obtained by a uniform heating of the nozzle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、造粒用ダイスに関し、
特に、ノズルの均一加熱による低圧力損失並びに水中ス
タートを可能とし、良質のペレットを得るための新規な
改良に関する。
FIELD OF THE INVENTION The present invention relates to a die for granulation,
In particular, it relates to a new improvement for obtaining good quality pellets, which enables low pressure loss due to uniform heating of the nozzle and start in water.

【0002】[0002]

【従来の技術】一般に、造粒用ダイスとしては水中で樹
脂をカットする大容量型及び空中又はミスト状で用いる
ための小容量型とがあるが、近年、合理化のため、前述
の大容量型が多く採用されている。この場合、その中で
も2T/H以上の大容量処理では多数のノズルを均一に
加熱するためにジャケット構造として熱媒体による加熱
方法が採用されているが、2T/H以下の小容量処理で
は、この方法を用いると設備費が高くなるため、電熱加
熱による方法が一般的である。この電熱加熱の場合、図
5で示される第1従来例、図6及び図7で示される第2
従来例、図8及び図9で示される第3従来例を挙げるこ
とができる。すなわち、図5で示される第1従来例の場
合、図において符号1で示されるものは押出機(図示せ
ず)の先端に設けられ略筒状をなし溶融樹脂流路2を有
するダイホルダであり、このダイホルダ1の外周には加
熱体3が設けられると共に、前記溶融樹脂流路2は前記
ダイホルダ1の前端1aにおいてテーパ状に拡開してい
る。
2. Description of the Related Art Generally, there are a large-capacity type for cutting a resin in water and a small-capacity type for use in the air or mist as a granulating die. Has been adopted. In this case, a heating method using a heating medium is employed as a jacket structure in order to uniformly heat a large number of nozzles in the large capacity treatment of 2 T / H or more, but in the small capacity treatment of 2 T / H or less, Since the equipment cost increases when the method is used, the method using electrothermal heating is generally used. In the case of this electric heating, the first conventional example shown in FIG. 5 and the second conventional example shown in FIG. 6 and FIG.
The conventional example and the third conventional example shown in FIGS. 8 and 9 can be cited. That is, in the case of the first conventional example shown in FIG. 5, the reference numeral 1 in the drawing is a die holder provided at the tip of an extruder (not shown) and having a substantially cylindrical shape and having a molten resin flow path 2. A heating body 3 is provided on the outer periphery of the die holder 1, and the molten resin flow path 2 is expanded in a tapered shape at the front end 1 a of the die holder 1.

【0003】前記ダイホルダ1の前端1aには、複数の
締付ボルト4を介して略円板形状のダイス5が着脱自在
に設けられており、このダイス5の周面にはヒータ6が
設けられている。このダイス5には輪状に配設された複
数のノズル7が設けられている。前記ダイス5の吐出面
5a側に設けられたカッターボックス12には、モータ
8及びカッタ駆動装置8Aにより回転駆動される回転軸
9がダイス5の吐出面5aに対して鉛直に突き出され、
その先端にカッタホルダ10が設けられており、このカ
ッタホルダ10の周縁には回転軸9の軸直角方向に放射
状に設けられた複数のカッタ刃11が前記各ノズル7の
先端であるダイス5の吐出面5aにほぼ接する状態で配
設されている。
At the front end 1a of the die holder 1, a substantially disk-shaped die 5 is detachably provided via a plurality of tightening bolts 4, and a heater 6 is provided on the peripheral surface of the die 5. ing. The die 5 is provided with a plurality of nozzles 7 arranged in a ring shape. In the cutter box 12 provided on the ejection surface 5a side of the die 5, a rotation shaft 9 which is rotationally driven by a motor 8 and a cutter driving device 8A is vertically projected with respect to the ejection surface 5a of the die 5,
A cutter holder 10 is provided at the tip thereof, and a plurality of cutter blades 11 radially provided in a direction perpendicular to the axis of rotation 9 are provided on the peripheral edge of the cutter holder 10 at the discharge surface of the die 5, which is the tip of each nozzle 7. It is arranged so as to be almost in contact with 5a.

【0004】従って、前述の図5の構成において、図示
しない押出機から押出された溶融樹脂は、ダイホルダ1
の溶融樹脂流路2を介してダイス5のノズル7から冷却
水12Aを充満させたカッターボックス12の水中に吐
出され、各カッタ刃11によって次々と切断されペレッ
ト12B化される。
Therefore, in the structure shown in FIG. 5, the molten resin extruded from the extruder (not shown) is transferred to the die holder 1.
It is discharged from the nozzle 7 of the die 5 into the water of the cutter box 12 filled with the cooling water 12A through the molten resin flow path 2, and is sequentially cut by each cutter blade 11 to be pellets 12B.

【0005】次に、図6及び図7に示される構成は、図
5のヒータ6の他の従来例を示すもので、棒状に構成さ
れた複数本のヒータ6Aがダイス5の外周から放射方向
にその先端が輪状に配設された複数のノズル7の外周部
に到達するように挿入配置され、各ヒータ6間のスペー
スを利用して複数の締付ボルト4を介してダイス5がダ
イホルダ1に固定された構成である。
Next, the structure shown in FIGS. 6 and 7 shows another conventional example of the heater 6 shown in FIG. 5, in which a plurality of rod-shaped heaters 6A are radiated from the outer periphery of the die 5. Is inserted and arranged so that its tip reaches the outer peripheral portions of the plurality of nozzles 7 arranged in a ring shape, and the space between the heaters 6 is utilized to insert the die 5 through the plurality of tightening bolts 4 into the die holder 1. It is a fixed structure.

【0006】次に、図8及び図9に示される構成は、図
6及び図7に示された棒状に構成されたヒータ6Aによ
る他の従来例を示すものであり、複数のノズル7を各棒
状ヒータ6Aの両側に沿って放射状に配設し、各ノズル
7の温度ムラを改善する構成が提案されている。
Next, the structure shown in FIGS. 8 and 9 shows another conventional example using the heater 6A having the rod shape shown in FIGS. A configuration is proposed in which the rod-shaped heaters 6A are radially arranged along both sides to improve temperature unevenness of each nozzle 7.

【0007】[0007]

【発明が解決しようとする課題】従来の造粒用ダイス
は、以上のように構成されていたため、次のような課題
が存在していた。すなわち、ダイス表面は常に冷却水に
さらされるため、図5で示されるようにダイスの外径部
に設けられたヒータでは、ノズル近辺の温度は冷却水の
温度の影響を強く受け、ダイスのノズル近辺の温度が低
下するとともに、樹脂温度が下がり、粘度が高くなり、
部分的に目詰まりを生じることがある。それゆえ、この
ような加熱方法は粘度変化の少ない限られた樹脂材料の
みにしか採用出来ない欠点があった。また、図6及び図
7に示される従来例ではノズル近辺を加熱する方法とし
て、棒状のヒータが放射状に複数配置されているが、ヒ
ータと各ノズルとの距離が異なるためヒータの近辺は高
温でもそれから遠ざかると温度は低くなり、温度が低い
部分で目詰まり現象が生じていた。さらに、図8及び図
9のように、棒状のヒータの左右にノズルが配置される
場合、各ノズルは同一の加熱状態となるがカッタ刃の最
低周速が通常10m/sec以上必要であるため、内側に
配置されたノズルの位置におけるカッタ刃の周速を基準
として外径方向にノズルを配置することになり、それに
よってダイスが大径化し、カッタの駆動動力も前述の従
来例に比べると、大きくなっていた。また、ダイスの大
径化に伴い図5で示す受圧部内径D寸法が大きくなって
ダイスの溶融樹脂圧力に対する受圧面積が増すため、強
度的にもダイス自体の厚さを厚くする必要があった。こ
れによって大幅なコストアップとなると共に、圧力損失
が増大する等の欠点があった。さらに、前述の各従来例
のようにダイス表面が冷却水に直接接触するダイスで
は、運転開始時に大きな問題をかかえている。すなわ
ち、カッターボックス内に通水前のダイスは加熱されて
全体がほぼ均一な温度に保たれていても、通水と同時に
ダイス表面は急冷されノズル内の溶融状態の樹脂は冷却
されて固化するため、冷却水の通水と同時に瞬時にノズ
ルから溶融樹脂を吐出させなければならず、また通水前
に早めに吐出させるとカッタ刃に樹脂が付着して切断出
来なくなっていた。そのため、通水と、ノズルからの樹
脂の吐出には微妙なタイミングが必要となり、実際の操
作においては操作者の微妙な感を必要とし、熟練者以外
では、操作は極めて困難であった。
Since the conventional granulating die has the above-mentioned structure, the following problems exist. That is, since the surface of the die is always exposed to the cooling water, in the heater provided on the outer diameter portion of the die as shown in FIG. 5, the temperature near the nozzle is strongly influenced by the temperature of the cooling water, and the nozzle of the die is As the temperature in the vicinity decreases, the resin temperature decreases and the viscosity increases,
Partial clogging may occur. Therefore, such a heating method has a drawback that it can be applied only to a limited resin material having a small change in viscosity. Further, in the conventional example shown in FIGS. 6 and 7, as a method of heating the vicinity of the nozzle, a plurality of rod-shaped heaters are radially arranged. However, since the distance between the heater and each nozzle is different, even if the vicinity of the heater is high in temperature. When the temperature was further away, the temperature became lower, and the clogging phenomenon occurred at the low temperature part. Further, as shown in FIGS. 8 and 9, when nozzles are arranged on the left and right of the rod-shaped heater, the nozzles are in the same heating state, but the minimum peripheral speed of the cutter blade is usually 10 m / sec or more. , The nozzle is arranged in the outer diameter direction with reference to the peripheral speed of the cutter blade at the position of the nozzle arranged inside, thereby increasing the diameter of the die and the driving power of the cutter as compared with the above-mentioned conventional example. , Was getting bigger. Further, as the diameter of the die increases, the inner diameter D of the pressure receiving portion shown in FIG. 5 increases and the pressure receiving area for the molten resin pressure of the die increases, so it is necessary to increase the thickness of the die itself in terms of strength. . As a result, there are drawbacks such as a large increase in cost and an increase in pressure loss. Further, in the dies whose surface directly contacts the cooling water as in the above-mentioned conventional examples, there is a serious problem at the start of operation. That is, even if the die before water flow is heated in the cutter box and the whole is kept at a substantially uniform temperature, the surface of the die is rapidly cooled at the same time as water is passed, and the molten resin in the nozzle is cooled and solidified. Therefore, the molten resin must be instantaneously discharged from the nozzle simultaneously with the passage of the cooling water, and if the molten resin is discharged early before the passage of the water, the resin adheres to the cutter blade and cannot be cut. Therefore, delicate timing is required for water flow and resin ejection from the nozzle, and a delicate feeling of the operator is required in the actual operation, and it is extremely difficult for a person other than an expert to perform the operation.

【0008】本発明は、以上のような課題を解決するた
めになされたもので、特に、複数のノズルを均一に加熱
し、低圧力損失並びに容易な運転開始を可能にし、良質
のペレットを得るようにした造粒用ダイスを提供するこ
とを目的とする。
The present invention has been made to solve the above problems, and in particular, it uniformly heats a plurality of nozzles to enable low pressure loss and easy operation start, and obtain good quality pellets. An object of the present invention is to provide a granulating die thus prepared.

【0009】[0009]

【課題を解決するための手段】本発明による造粒用ダイ
スは、押出機の先端に設けられ内部に直線状の溶融樹脂
流路と両端にフランジ部とを有する略筒状のダイホルダ
の下流側フランジ部に保持され、略円板形状を成して前
記溶融樹脂流路に連通する複数のノズルを厚み方向に貫
通して設けられ、前記押出機から前記溶融樹脂流路を経
て押出される溶融樹脂を前記複数のノズルから吐出する
よう構成された造粒用ダイスにおいて、前記溶融樹脂流
路の下流側フランジ部の端面に、前記溶融樹脂流路に連
通して放射状に形成された複数の放射状流路と、前記各
放射状流路の先端に連通して円状または円弧状に形成さ
れた円状流路または円弧状流路とを形成されたダイホル
ダに対し、前記ダイホルダとの接合面から吐出面方向へ
前記各円状流路または円弧状流路を延長して形成された
深溝状の円状溝流路または円弧状溝流路を有し、前記各
ノズルは前記各円状溝流路または円弧状溝流路の溝底か
ら前記吐出面に貫通してそれぞれ複数設けられると共
に、前記各円状流路または円弧状流路、前記各円状溝流
路または円弧状溝流路及び各複数のノズルの中央部に前
記吐出面に対して鉛直方向にかつ前記下流側フランジ部
の背面から棒状ヒータが挿入されて配置された構成であ
る。
The granulating die according to the present invention is provided on the downstream side of a substantially cylindrical die holder which is provided at the tip of an extruder and has a linear molten resin flow path inside and flange portions at both ends. A plurality of nozzles, which are held by a flange portion and have a substantially disc shape and which communicate with the molten resin flow passage, are provided so as to penetrate in the thickness direction, and are melted and extruded from the extruder through the molten resin flow passage. In a granulating die configured to discharge a resin from the plurality of nozzles, a plurality of radials radially formed in communication with the molten resin flow path on an end surface of a downstream flange portion of the molten resin flow path. For a die holder having a flow path and a circular flow path or a circular flow path formed in a circular shape or an arc shape in communication with the tips of the radial flow paths, discharge from a joint surface with the die holder In the plane direction, Has a deep groove-shaped circular groove channel or an arc-shaped groove channel formed by extending an arc-shaped channel, and each nozzle has a groove bottom of each circular groove channel or arc-shaped groove channel. From each of the circular flow paths or arc-shaped flow paths, the circular groove flow paths or the arc-shaped groove flow paths, and the plurality of nozzles at the center of the discharge path. The rod-shaped heater is inserted and arranged in the direction perpendicular to the surface and from the rear surface of the downstream side flange portion.

【0010】また、本発明による造粒用ダイスは、押出
機の先端に設けられ内部に直線状の溶融樹脂流路と両端
にフランジ部とを有する略筒状のダイホルダの下流側フ
ランジ部に保持され、略円板形状を成して前記溶融樹脂
流路に連通する複数のノズルを厚み方向に貫通して設け
られ、前記押出機から前記溶融樹脂流路を経て押出され
る溶融樹脂を前記複数のノズルから吐出するよう構成さ
れた造粒用ダイスにおいて、前記溶融樹脂流路を有する
前記ダイホルダに対し、前記ダイホルダの下流側フラン
ジ部の端面との接合面部に、前記溶融樹脂流路に連通し
て放射状に形成された複数の放射状流路と、前記各放射
状流路の先端に連通して円状または円弧状に形成され吐
出面方向に深溝状をなす円状溝流路または円弧状溝流路
とを有し、前記各ノズルは前記各円状溝流路または円弧
状溝流路の溝底から前記吐出面に貫通してそれぞれ複数
設けられると共に、前記各円状溝流路または円弧状溝流
路及び各複数のノズルの中央部に前記吐出面に対して鉛
直方向にかつ前記下流側フランジ部の背面から棒状ヒー
タが挿入されて配置された構成である。
The granulating die according to the present invention is held by a downstream flange portion of a substantially cylindrical die holder which is provided at the tip of an extruder and has a linear molten resin flow passage and flange portions at both ends. And a plurality of nozzles that are substantially disk-shaped and that communicate with the molten resin flow path and that penetrate through the nozzle in the thickness direction and that are extruded from the extruder through the molten resin flow path. In a granulating die configured to be discharged from the nozzle of, with respect to the die holder having the molten resin flow channel, the molten resin flow channel is connected to the joint surface portion with the end face of the downstream flange portion of the die holder. And a plurality of radial flow channels formed in a radial shape, and circular flow channels or circular flow channels that communicate with the tips of the radial flow channels and are formed in a circular or arc shape and form a deep groove in the discharge surface direction. And each have said A plurality of nozzles are provided so as to penetrate from the groove bottom of each circular groove channel or arc groove channel to the discharge surface, and each circular groove channel or arc groove channel and each nozzle. A rod-shaped heater is arranged in the central portion of the above in a direction perpendicular to the discharge surface and from the back surface of the downstream side flange portion.

【0011】[0011]

【作用】本発明による造粒用ダイスにおいては、押出機
等からダイホルダの溶融樹脂流路を経て押出された溶融
樹脂は、溶融樹脂流路の下流端においてダイホルダと造
粒用ダイスとの接合面部に連通して設けられた複数の放
射状流路さらにその先端に連通する円状流路または円弧
状流路あるいは円状溝流路または円弧状溝流路へ分岐さ
れて流入し、各円状溝流路または円弧状溝流路に連通し
て造粒用ダイスに吐出面へ貫通して設けられた各溝流路
の複数のノズルに流入し、ノズル先端から細い紐状(ス
トランド)となって吐出される。この間、棒状ヒータ
は、各円状流路または円弧状流路あるいは円状溝流路ま
たは円弧状溝流路及び円状または円弧状に配置された複
数のノズルに対し、長区間にわたり等距離の位置に平行
して配置され、またその先端が造粒用ダイスの吐出面近
くまで挿入されているので、各流路及びノズルの内部を
流動する溶融樹脂は、長区間均等にそしてノズル先端部
まで充分に加熱される。さらに、各円状溝流路または円
弧状溝流路が造粒用ダイスの厚み方向に深く形成され、
流路断面積の小さいノズルの長さが短縮されることによ
り流路抵抗が減少し、それらの内部を流動する溶融樹脂
の流動抵抗が前述の充分な加熱との相乗効果により大幅
に減少する、すなわち押出機の押出し圧力が低下する。
In the granulating die according to the present invention, the molten resin extruded from the extruder or the like through the molten resin channel of the die holder has a joining surface portion between the die holder and the granulating die at the downstream end of the molten resin channel. A plurality of radial flow paths provided in communication with the circular flow path, a circular flow path, a circular flow path or a circular groove flow path that communicates with the tip of the radial flow path. It flows into a plurality of nozzles of each grooved channel that is provided in communication with the channel or arc-shaped grooved channel and penetrates the granulation die to the discharge surface, and becomes a thin string (strand) from the nozzle tip. Is ejected. During this period, the rod-shaped heater is arranged at an equal distance over a long section with respect to each circular channel, arc-shaped channel, circular groove channel, or arc-shaped groove channel and a plurality of nozzles arranged in a circular or arc shape. Since it is arranged parallel to the position and the tip is inserted up to near the discharge surface of the granulating die, the molten resin flowing inside each flow path and nozzle is evenly distributed over a long section and up to the nozzle tip. It is heated sufficiently. Furthermore, each circular groove channel or arc groove channel is formed deep in the thickness direction of the granulating die,
The flow path resistance is reduced by shortening the length of the nozzle having a small flow path cross-sectional area, and the flow resistance of the molten resin flowing inside them is greatly reduced by the synergistic effect with the above-mentioned sufficient heating. That is, the extrusion pressure of the extruder decreases.

【0012】[0012]

【実施例】以下、図面と共に本発明による造粒用ダイス
の好適な実施例について詳細に説明する。なお、従来例
と同一又は同等部分には同一符号を付して説明する。図
1は本発明による造粒用ダイスの全体構成を示す断面
図、図2は図1のA−A断面図、図3は図2の他の実施
例を示す断面図、図4は他の実施例の全体構成を示す断
面図である。図において符号1で示されるものは略筒状
をなし両端(上流側、下流側)にフランジ部1aを形成
し溶融樹脂流路2をその軸中心に有するダイホルダであ
り、下流側フランジ部1aには、略円板形状のダイス5
が複数の締付ボルト4で保持されている。このダイホル
ダ1の筒状部の外周には加熱体3が設けられると共に、
前記溶融樹脂流路2は下流側フランジ部1aの前端面部
において、図2に示されるように、放射方向に形成され
た複数の溝状又は孔からなる放射状流路20が形成さ
れ、この各放射状流路20の先端部位置には円状をなす
溝又は孔からなる円状流路21が形成されている。隣接
する前述円状流路21あるいはそれに連通してダイス5
に形成された後述の円状溝流路21a及びその溝底に形
成されたノズル群7Aの各中間位置には、それぞれ締付
ボルト4が配置可能に構成され、ダイス5がダイホルダ
1に固定され保持されている。
The preferred embodiments of the granulating die according to the present invention will be described in detail below with reference to the drawings. It should be noted that the same or equivalent parts as those of the conventional example are designated by the same reference numerals for description. FIG. 1 is a sectional view showing the entire structure of a granulating die according to the present invention, FIG. 2 is a sectional view taken along the line AA of FIG. 1, FIG. 3 is a sectional view showing another embodiment of FIG. 2, and FIG. It is sectional drawing which shows the whole structure of an Example. In the figure, reference numeral 1 is a die holder having a substantially tubular shape and having flange portions 1a formed at both ends (upstream side, downstream side) and having a molten resin flow channel 2 at its axial center. Is a substantially disk-shaped die 5.
Are held by a plurality of tightening bolts 4. A heating element 3 is provided on the outer periphery of the cylindrical portion of the die holder 1, and
As shown in FIG. 2, the molten resin flow passage 2 has a radial flow passage 20 formed of a plurality of grooves or holes formed in the radial direction on the front end face portion of the downstream side flange portion 1a. A circular flow path 21 formed of a circular groove or hole is formed at the position of the tip of the flow path 20. The adjacent circular flow path 21 or the dice 5 communicating with it
The tightening bolts 4 can be arranged at the respective intermediate positions of the circular groove channel 21a described later and the nozzle group 7A formed at the groove bottom, and the die 5 is fixed to the die holder 1. Is held.

【0013】前記各円状流路21は、図1に示すよう
に、前記ダイホルダ1及びダイス5にわたって深い溝状
に形成されており、この各円状流路21のダイホルダ1
の側すなわち、ダイホルダ1の下流側フランジ部1aの
前端面部は流路の進行方向に流路断面積が徐々に減少す
るように形成されている。すなわち、溶融樹脂流量が円
状流路21に連通している後述される複数のノズル7に
順次分岐されて吐出されることにより、流路の進行方向
に減少するので、この減少量に合わせて円状流路21は
その流路断面積を進行方向に徐々に減少させるように形
成されている。前記ダイス5のダイホルダ1側接合面部
には、前記各円状流路21を吐出面5a方向へ延長して
深溝状の円状溝流路21aが形成され、この円状溝流路
21aの溝底から吐出面5aに貫通して複数のノズル7
が形成され、各円状溝流路21aごとに複数のノズル7
によってノズル群7Aを構成している。各ノズル群7A
の複数のノズル7は通常等間隔に配置されている。
As shown in FIG. 1, each of the circular flow paths 21 is formed in a deep groove shape over the die holder 1 and the die 5, and the die holder 1 of each circular flow path 21 is formed.
Side, that is, the front end face portion of the downstream side flange portion 1a of the die holder 1 is formed so that the flow passage cross-sectional area gradually decreases in the flow passage proceeding direction. That is, since the flow rate of the molten resin is sequentially branched and discharged to a plurality of nozzles 7 to be described later that communicate with the circular flow path 21, the flow rate decreases in the advancing direction of the flow path. The circular flow passage 21 is formed so as to gradually reduce the flow passage cross-sectional area in the traveling direction. A deep groove-shaped circular groove flow passage 21a is formed by extending the circular flow passages 21 in the direction of the ejection surface 5a on the joint surface portion of the die 5 on the die holder 1 side, and the groove of the circular groove flow passage 21a is formed. A plurality of nozzles 7 penetrates from the bottom to the ejection surface 5a.
Is formed, and a plurality of nozzles 7 are provided for each circular groove channel 21a.
The nozzle group 7A is configured by. Each nozzle group 7A
The plurality of nozzles 7 are normally arranged at equal intervals.

【0014】前記円状溝流路21aは、曲率半径の小さ
い円形溝なので円形溝を含む円形平面面積は小さく、こ
の円形平面に作用する溶融樹脂による圧力すなわち円形
状に配置されたノズル群7Aの隣接するノズル7間の壁
面に作用する剪断力が小さいので、この壁面の長さすな
わち、ノズル7の長さを短くすることが可能となる。従
って、壁面の剪断強度の許容範囲まで前記円状溝流路2
1aの円形溝を深く形成することが可能であり、溶融樹
脂の流路抵抗が低下し、吐出に必要な圧力が低くなる。
また、前記円状溝流路21aを浅くすることにより、前
記ダイス5の厚みを薄くすることも可能となる。
Since the circular groove passage 21a is a circular groove having a small radius of curvature, the area of the circular plane including the circular groove is small, and the pressure of the molten resin acting on the circular plane, that is, the nozzle group 7A arranged in a circular shape. Since the shearing force acting on the wall surface between the adjacent nozzles 7 is small, the length of this wall surface, that is, the length of the nozzle 7 can be shortened. Therefore, the circular groove flow path 2 is within the allowable range of the shear strength of the wall surface.
The circular groove 1a can be formed deeply, the flow resistance of the molten resin is reduced, and the pressure required for discharge is reduced.
Further, by making the circular groove flow path 21a shallow, it becomes possible to reduce the thickness of the die 5.

【0015】前記各円状流路21及び円状溝流路21a
の中央部には、棒状をなす長手形状の棒状ヒータ6Aが
各々設けられている。この棒状ヒータ6Aは前記ダイホ
ルダ1の下流側フランジ部1aの背面からダイホルダ1
及びダイス5にわたって前記ダイス5の厚み方向に吐出
面5a近くまで形成された案内孔23内に挿入保持され
ている。すなわち、棒状ヒータ6Aは、円状溝流路21
a及びノズル群7Aの各ノズル7に対して等距離に位置
するように配置されている。
Each circular flow channel 21 and circular groove flow channel 21a
In the central portion of each of them, a rod-shaped heater 6A having a long rod shape is provided. The rod-shaped heater 6A is mounted on the die holder 1 from the rear surface of the downstream side flange portion 1a of the die holder 1.
Also, it is inserted and held in a guide hole 23 formed over the die 5 in the thickness direction of the die 5 to near the ejection surface 5a. That is, the rod-shaped heater 6A has the circular groove flow path 21.
a and each nozzle 7 of the nozzle group 7A are arranged at equal distances.

【0016】前記ダイス5の外端位置には、前記ノズル
7の先端近傍の温度を検出するための熱電対24が設け
られている。前記ダイス5の吐出面5a側に配設された
カッターボックス12には、モータ(図示せず)により
回転駆動される回転軸9がダイス5の吐出面5aに対し
て鉛直に突き出され、その先端にカッタホルダ10が設
けられている。このカッタホルダ10の周縁には回転軸
9の軸直角方向に放射状に設けられた複数のカッタ刃1
1が前記各ノズル7の先端であるダイス5の吐出面5a
にほぼ接する状態で配設されている。
At the outer end position of the die 5, a thermocouple 24 for detecting the temperature near the tip of the nozzle 7 is provided. In the cutter box 12 disposed on the discharge surface 5a side of the die 5, a rotary shaft 9 which is rotationally driven by a motor (not shown) is vertically projected to the discharge surface 5a of the die 5, and the tip thereof is provided. The cutter holder 10 is provided in the. A plurality of cutter blades 1 that are radially provided in the peripheral direction of the cutter holder 10 in the direction perpendicular to the axis of rotation 9 are provided.
The discharge surface 5a of the die 5 is the tip of each nozzle 7.
Are arranged so as to be almost in contact with.

【0017】次に、動作について述べる。前述の図1及
び図2の構成において、図示しない押出機あるいはギヤ
ポンプ等の昇圧装置から押出された溶融樹脂は、溶融樹
脂流路2、放射状流路20、円状流路21及び円状溝流
路21aを経てノズル7からカッターボックス12の冷
却水12A中に吐出され、各カッタ刃11によって切断
され、次々とペレット12B化される。
Next, the operation will be described. In the configurations of FIGS. 1 and 2 described above, the molten resin extruded from a pressure increasing device such as an extruder or a gear pump (not shown) is a molten resin flow channel 2, a radial flow channel 20, a circular flow channel 21, and a circular groove flow. It is discharged from the nozzle 7 into the cooling water 12A of the cutter box 12 through the passage 21a, cut by the cutter blades 11 and turned into pellets 12B one after another.

【0018】前記円状流路21を流動する溶融樹脂は、
円状溝流路21aを経て順次ノズル7に分岐され吐出さ
れるので徐々に流動量が減少するが、この減少量に合わ
せて流路断面積が進行方向に徐々に減少されるように形
成されているので、円状流路21の先端まで常時一定の
流速で流動し、ノズル群7Aの全ノズル7において同一
の吐出圧力が発生する。従って、ノズル群7Aの全ノズ
ル7において、溶融樹脂が同一の吐出条件で吐出され
る。
The molten resin flowing through the circular channel 21 is
The flow amount gradually decreases as it is sequentially branched and discharged to the nozzle 7 through the circular groove flow passage 21a, but the flow passage cross-sectional area is gradually reduced in the advancing direction according to this decrease amount. Therefore, the fluid always flows to the tip of the circular flow path 21 at a constant flow rate, and the same discharge pressure is generated in all the nozzles 7 of the nozzle group 7A. Therefore, the molten resin is discharged under the same discharge conditions from all the nozzles 7 of the nozzle group 7A.

【0019】さらに、各ノズル群7Aの中央には棒状ヒ
ータ6Aがダイホルダ1からダイス5の吐出面5aに鉛
直に吐出面5a近くまで埋設されている。この棒状ヒー
タ6Aは各円状溝流路21a及びノズル群7Aに対しそ
れらの内周面に沿って等距離の位置に配置されているの
で、各円状溝流路21a及び各ノズル7を流動する溶融
樹脂は均一かつ均一温度に効率良く加熱され、各ノズル
7の先端まで充分に加熱される。
Further, at the center of each nozzle group 7A, a rod-shaped heater 6A is embedded vertically from the die holder 1 to the ejection surface 5a of the die 5 up to the vicinity of the ejection surface 5a. Since the rod-shaped heater 6A is arranged at an equidistant position along the inner peripheral surface of each circular groove passage 21a and the nozzle group 7A, it flows through each circular groove passage 21a and each nozzle 7. The molten resin is efficiently heated to a uniform and uniform temperature, and is sufficiently heated to the tip of each nozzle 7.

【0020】また、棒状ヒータ6Aがダイス5の吐出面
5a近くまで挿入されているので、ノズル7の吐出面5
a近くの溶融材料は吐出面5aから冷却水12Aへ放熱
される熱量を補って充分に加熱され、常時吐出可能状態
に維持される。すなわち、溶融樹脂は複数のノズル7内
で均一に加熱され、冷却水12Aによる冷却効果に対し
ても、吐出可能状態に充分加熱される。
Since the rod-shaped heater 6A is inserted up to the vicinity of the ejection surface 5a of the die 5, the ejection surface 5 of the nozzle 7 is
The molten material near a is sufficiently heated by supplementing the amount of heat radiated from the discharge surface 5a to the cooling water 12A, and is constantly maintained in a dischargeable state. That is, the molten resin is uniformly heated in the plurality of nozzles 7 and is sufficiently heated to a dischargeable state even with the cooling effect of the cooling water 12A.

【0021】以上のことから、ダイス5における溶融樹
脂の流路は流路断面積の小さいノズル7部の長さが短く
なって流路抵抗が減少すると共に棒状ヒータ6Aによる
溶融樹脂の加熱が充分に行われることにより、溶融樹脂
の流動抵抗が大幅に減少し、低い吐出圧力で吐出面5a
から吐出される。
From the above, in the flow path of the molten resin in the die 5, the length of the nozzle 7 having a small flow passage cross-sectional area is shortened to reduce the flow path resistance and the molten resin is sufficiently heated by the rod-shaped heater 6A. The flow resistance of the molten resin is drastically reduced by being carried out, and the discharge surface 5a is maintained at a low discharge pressure.
Is discharged from.

【0022】また、曲率半径の小さい円形溝で構成され
る円状溝流路の先端に形成されたノズル群7Aの各ノズ
ル7間の壁面に作用する剪断力が溶融樹脂の低い吐出圧
力に比例して小さくなり、ノズル7の長さをさらに短く
することが可能となる。従って、耐圧強度の低い薄い円
板状のダイス5とすることが可能となる。さらには、ダ
イス5とダイホルダ1との締付ボルト4を円状溝流路2
1の中間部に設けることにより、円板状のダイス5を小
径とすることが可能となる。
Further, the shearing force acting on the wall surface between the nozzles 7 of the nozzle group 7A formed at the tip of the circular groove passage formed by the circular groove having a small radius of curvature is proportional to the low discharge pressure of the molten resin. The nozzle 7 can be made smaller, and the length of the nozzle 7 can be further shortened. Therefore, it is possible to form the thin disk-shaped die 5 having low pressure resistance. Further, the tightening bolt 4 for fixing the die 5 and the die holder 1 to the circular groove flow path 2
The disc-shaped die 5 can be made small in diameter by providing it in the intermediate portion of 1.

【0023】また、溶融樹脂がダイス5のノズル7先端
部においても充分加熱されることにより、ダイス5の吐
出面5aが冷却水で冷却されても溶融樹脂は容易に吐出
可能状態とすることができる。
Further, the molten resin is sufficiently heated even at the tip portion of the nozzle 7 of the die 5, so that the molten resin can be easily discharged even if the discharge surface 5a of the die 5 is cooled by cooling water. it can.

【0024】従来例では、ヒータ6がダイス5の外周面
あるいは、棒状ヒータ6Aが外周面から放射方向内側に
向けて配置されており、ヒータ6あるいは棒状ヒータ6
Aの配線及び付属部品類は、ダイス5の外周部に設けら
れ、外周径をさらに大きくしていたが、本発明によれ
ば、棒状ヒータ6Aが円板形状のダイス5の面に鉛直か
つその内部に配置されるように構成されているので、配
線及び付属部品類をダイス5の外周径以内に配置構成す
ることが可能となる。
In the conventional example, the heater 6 is arranged on the outer peripheral surface of the die 5, or the rod-shaped heater 6A is arranged radially inward from the outer peripheral surface.
The wiring and accessory parts of A were provided on the outer peripheral portion of the die 5 to further increase the outer diameter. However, according to the present invention, the rod-shaped heater 6A is perpendicular to the surface of the disk-shaped die 5 and its shape is improved. Since it is configured to be arranged inside, it is possible to arrange the wiring and accessory parts within the outer diameter of the die 5.

【0025】また、図3で示す他の実施例の構成では、
前記円状流路21及び円状溝流路21aを半円状の円弧
状流路21A及び円弧状溝流路21Aaとし、この円弧
状流路21A及び円弧状溝流路21Aaの円中心位置に
前記棒状ヒータ6Aが配設されている。この実施例は図
1に示される大容量処理構成に対して小容量処理構成を
得ることができる。なお、前記円弧状流路21A及び円
弧状溝流路21Aaは半円に限定されるものではなく、
処理能力に応じて任意の中心角を有する円弧形状とする
ことができる。
Further, in the configuration of another embodiment shown in FIG. 3,
The circular flow channel 21 and the circular groove flow channel 21a are defined as a semicircular arc-shaped flow channel 21A and an arc-shaped groove flow channel 21Aa, and the circular center flow channel 21A and the arc-shaped groove flow channel 21Aa are located at the center positions of the circles. The rod-shaped heater 6A is arranged. This embodiment can obtain a small capacity processing configuration with respect to the large capacity processing configuration shown in FIG. The arcuate flow path 21A and the arcuate groove flow path 21Aa are not limited to a semicircle,
An arc shape having an arbitrary central angle can be formed according to the processing capacity.

【0026】さらに、図4で示す他の実施例の構成で
は、放射状流路20及び円状流路21あるいは円弧状流
路21Aを構成する溝がダイス5側に形成されたもので
ある。このような構成においても、前述の構成と同様の
作用・効果を得ることができる。
Further, in the structure of another embodiment shown in FIG. 4, grooves forming the radial flow path 20 and the circular flow path 21 or the arc-shaped flow path 21A are formed on the die 5 side. Even with such a configuration, the same operation and effect as those of the above-described configuration can be obtained.

【0027】[0027]

【発明の効果】本発明による造粒用ダイスは、以上のよ
うに構成されているため、次のような効果を得ることが
できる。すなわち、 (1) 各円状流路または円弧状流路あるいは円状溝流路
または円弧状溝流路及びノズル群に沿ってダイス表面の
近傍までその中央部に配置された棒状ヒータにより、そ
れらの流路中を流動する溶融樹脂がノズル先端部まで均
一かつ均一温度に熱効率良く加熱される。従って、ダイ
スの吐出面が冷却水で冷却された状態においても吐出可
能状態に加熱可能であり、目詰まりせず造粒のスタート
が容易に行える。 (2) 流路断面積の小さいノズル部の長さが短く溶融樹
脂が充分に加熱されて流動抵抗が小さくなると共に各円
状溝流路または円弧状溝流路の曲率半径が小さいのでそ
の溝底に円形状に配置されたノズル群の隣接するノズル
間に作用する吐出圧力による剪断力が小さくなることに
より所要耐圧強度が低くなり、円形状のノズル群で構成
することにより外周径が小さくなり、ダイスを薄く小径
化するすなわち小型軽量化することが可能になると共
に、棒状ヒータをダイスの吐出面に鉛直に配置すること
により配線及び付属部品類をダイスの外周径以内に整理
してまとめることが可能になる。
Since the granulating die according to the present invention is constituted as described above, the following effects can be obtained. That is, (1) each circular flow path or arc-shaped flow path or circular groove flow path or arc-shaped groove flow path and a rod-shaped heater arranged in the central portion along the nozzle group up to the vicinity of the die surface The molten resin flowing in the channel is heated to the tip of the nozzle uniformly and at a uniform temperature with good thermal efficiency. Therefore, even when the discharge surface of the die is cooled with cooling water, the discharge surface can be heated to a dischargeable state, and granulation can be easily started without clogging. (2) Since the length of the nozzle with a small cross-sectional area of the flow path is short and the molten resin is sufficiently heated to reduce the flow resistance and the radius of curvature of each circular groove path or arc-shaped groove flow path is small, The required compressive strength is reduced by reducing the shearing force due to the discharge pressure that acts between adjacent nozzles of the nozzle groups arranged in a circular shape on the bottom, and the outer diameter is reduced by using a circular nozzle group. , The die can be made thinner and smaller, that is, smaller and lighter, and by arranging the rod-shaped heater vertically on the discharge surface of the die, the wiring and accessories can be organized within the outer diameter of the die. Will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による造粒用ダイスの全体構成を示す断
面図である。
FIG. 1 is a sectional view showing the overall structure of a granulating die according to the present invention.

【図2】図1のII−II断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】図2の他の実施例を示す断面図である。FIG. 3 is a cross-sectional view showing another embodiment of FIG.

【図4】他の実施例の全体構成を示す断面図である。FIG. 4 is a cross-sectional view showing the overall configuration of another embodiment.

【図5】従来の造粒用ダイスを示す断面図である。FIG. 5 is a cross-sectional view showing a conventional granulating die.

【図6】他の従来の造粒用ダイスを示す構成図である。FIG. 6 is a configuration diagram showing another conventional granulating die.

【図7】図6を側面からみた断面図である。7 is a cross-sectional view of FIG. 6 viewed from the side.

【図8】他の従来の造粒用ダイスを示す構成図である。FIG. 8 is a configuration diagram showing another conventional granulation die.

【図9】図8を側面からみた断面図である。9 is a cross-sectional view of FIG. 8 viewed from the side.

【符号の説明】[Explanation of symbols]

1 ダイホルダ 2 溶融樹脂流路 4 締付ボルト 5 ダイス 5a 吐出面 6A 棒状ヒータ 7 ノズル 20 放射状流路 21 円状流路 21A 円弧状流路 1 Die Holder 2 Molten Resin Flow Path 4 Tightening Bolt 5 Die 5a Discharge Surface 6A Rod Heater 7 Nozzle 20 Radial Flow Path 21 Circular Flow Path 21A Arc Flow Path

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年12月12日[Submission date] December 12, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図6】 [Figure 6]

【図7】 [Figure 7]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図8】 [Figure 8]

【図9】 [Figure 9]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 稔 広島県広島市安芸区船越南1丁目6番1号 株式会社日本製鋼所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Minoru Yoshida 1-6-1, Funakoshi Minami, Aki-ku, Hiroshima City, Hiroshima Prefecture Japan Steel Works, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 押出機の先端に設けられ内部に直線状の
溶融樹脂流路(2)と両端にフランジ部とを有する略筒状
のダイホルダ(1)の下流側フランジ部(1a)に保持され、
略円板形状を成して前記溶融樹脂流路(2)に連通する複
数のノズル(7)を厚み方向に貫通して設けられ、前記押
出機から前記溶融樹脂流路(2)を経て押出される溶融樹
脂を前記複数のノズル(7)から吐出するよう構成された
造粒用ダイスにおいて、 前記溶融樹脂流路(2)の下流側フランジ部(1a)の端面
に、前記溶融樹脂流路(2)に連通して放射状に形成され
た複数の放射状流路(20)と、前記各放射状流路(20)の先
端に連通して円状または円弧状に形成された円状流路(2
1)または円弧状流路(21A)とを形成されたダイホルダ(1)
に対し、 前記ダイホルダ(1)との接合面から吐出面(5a)方向へ前
記各円状流路(21)または円弧状流路(21A)を延長して形
成された深溝状の円状溝流路(21a)または円弧状溝流路
を有し、前記各ノズル(7)は前記各円状溝流路(21a)また
は円弧状溝流路の溝底から前記吐出面(5a)に貫通してそ
れぞれ複数設けられると共に、前記各円状流路(21)また
は円弧状流路(21A)、前記各円状溝流路(21a)または円弧
状溝流路及び各複数のノズル(7)の中央部に前記吐出面
(5a)に対して鉛直方向にかつ前記下流側フランジ部(1a)
の背面から棒状ヒータ(6)が挿入されて配置された構成
からなることを特徴とする造粒用ダイス。
1. A downstream flange portion (1a) of a substantially cylindrical die holder (1) provided at the tip of an extruder and having a linear molten resin flow channel (2) inside and flange portions at both ends. Is
A plurality of nozzles (7) having a substantially disc shape and communicating with the molten resin flow channel (2) are provided to penetrate in the thickness direction, and extruded from the extruder through the molten resin flow channel (2). In the granulation die configured to discharge the molten resin from the plurality of nozzles (7), the molten resin flow path on the end face of the downstream flange portion (1a) of the molten resin flow path (2) (2) a plurality of radial flow paths (20) formed in a radial shape in communication with each other, and a circular flow path formed in a circular or arc shape in communication with the tips of the radial flow paths (20) ( 2
1) or die holder (1) with arcuate flow path (21A)
On the other hand, a deep groove-shaped circular groove formed by extending each circular flow path (21) or arc-shaped flow path (21A) in the discharge surface (5a) direction from the bonding surface with the die holder (1). The nozzle (7) has a flow channel (21a) or an arc-shaped groove flow channel, and each nozzle (7) penetrates from the groove bottom of the circular groove channel (21a) or the arc-shaped groove channel to the discharge surface (5a). And each of the plurality of circular channels (21) or arc-shaped channels (21A), each of the circular groove channels (21a) or arc groove channel and each of the plurality of nozzles (7) The discharge surface at the center of
(5a) in the vertical direction and the downstream side flange portion (1a)
A granulating die having a structure in which a rod-shaped heater (6) is inserted and arranged from the back surface of the granulating die.
【請求項2】 押出機の先端に設けられ内部に直線状の
溶融樹脂流路(2)と両端にフランジ部とを有する略筒状
のダイホルダ(1)の下流側フランジ部(1a)に保持され、
略円板形状を成して前記溶融樹脂流路(2)に連通する複
数のノズル(7)を厚み方向に貫通して設けられ、前記押
出機から前記溶融樹脂流路(2)を経て押出される溶融樹
脂を前記複数のノズル(7)から吐出するよう構成された
造粒用ダイスにおいて、 前記溶融樹脂流路(2)を有する前記ダイホルダ(1)に対
し、 前記ダイホルダ(1)の下流側フランジ部(1a)の端面との
接合面部に、前記溶融樹脂流路(2)に連通して放射状に
形成された複数の放射状流路(20)と、前記各放射状流路
(20)の先端に連通して円状または円弧状に形成され吐出
面(5a)方向に深溝状をなす円状溝流路(21a)または円
弧状溝流路とを有し、前記各ノズル(7)は前記各円状溝
流路(21a)または円弧状溝流路の溝底から前記吐出面(5
a)に貫通してそれぞれ複数設けられると共に、前記各円
状溝流路(21a)または円弧状溝流路及び各複数のノズル
(7)の中央部に前記吐出面に対して鉛直方向にかつ前記
下流側フランジ部(1a)の背面から棒状ヒータ(6)が挿入
されて配置された構成からなることを特徴とする造粒用
ダイス。
2. A downstream flange portion (1a) of a substantially cylindrical die holder (1) provided at the tip of an extruder and having a linear molten resin flow channel (2) inside and flange portions at both ends. Is
A plurality of nozzles (7) having a substantially disc shape and communicating with the molten resin flow channel (2) are provided to penetrate in the thickness direction, and extruded from the extruder through the molten resin flow channel (2). In a granulating die configured to discharge the molten resin from the plurality of nozzles (7), with respect to the die holder (1) having the molten resin flow path (2), downstream of the die holder (1) A plurality of radial flow paths (20) radially formed in communication with the molten resin flow path (2) at the joint surface portion with the end surface of the side flange portion (1a), and each of the radial flow paths.
Each of the nozzles has a circular groove flow path (21a) or an arc groove flow path (21a) communicating with the tip of (20) and formed in a circular or arc shape and forming a deep groove shape in the discharge surface (5a) direction. (7) is from the groove bottom of each circular groove channel (21a) or arc groove channel to the discharge surface (5
A plurality of nozzles are provided so as to penetrate through a), and each circular groove channel (21a) or arc groove channel and each plurality of nozzles.
(7) Granules, characterized in that the rod-shaped heater (6) is arranged in the central portion of the discharge surface in a direction perpendicular to the discharge surface and from the rear surface of the downstream side flange portion (1a). For dice.
JP5326884A 1993-12-24 1993-12-24 Die for granulation Expired - Fee Related JP3032675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5326884A JP3032675B2 (en) 1993-12-24 1993-12-24 Die for granulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5326884A JP3032675B2 (en) 1993-12-24 1993-12-24 Die for granulation

Publications (2)

Publication Number Publication Date
JPH07178726A true JPH07178726A (en) 1995-07-18
JP3032675B2 JP3032675B2 (en) 2000-04-17

Family

ID=18192827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5326884A Expired - Fee Related JP3032675B2 (en) 1993-12-24 1993-12-24 Die for granulation

Country Status (1)

Country Link
JP (1) JP3032675B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990073391A (en) * 1999-07-08 1999-10-05 김동희 Apparatus for manufacturing foamed thermoplastic resin pellets
JP2001198918A (en) * 1999-10-08 2001-07-24 Sumika Color Kk Method and apparatus for producing double layer pellet
WO2004080678A1 (en) * 2003-03-12 2004-09-23 Sekisui Plastics Co., Ltd. Granulation die, granulation apparatus and process for producing expandable thermoplastic resin granule
KR100508909B1 (en) * 2001-05-23 2005-09-14 주식회사 아산케미칼 Method for Preparing Pellet-Type Foams Of Non-crosslinked Polypropylene Resin Having Lower Melting Point
WO2008102874A1 (en) * 2007-02-23 2008-08-28 Sekisui Plastics Co., Ltd. Granulating die, granulating apparatus, and process for producing expandable thermoplastic resin grain
US7815828B2 (en) 2003-09-17 2010-10-19 Sekisui Plastics Co., Ltd. Influence of each of the parameters on the foamed product strength
JP2012512049A (en) * 2008-12-16 2012-05-31 エレマ エンジニアリング リサイクリング マシネン ウント アンラーゲン ゲゼルシャフト ミット ベシュレンクテル ハフトフング Hot cut granulation equipment
WO2013185921A1 (en) * 2012-06-15 2013-12-19 Automatik Plastics Machinery Gmbh Nozzle plate for a granulation device, and granulation device comprising a nozzle plate
JP2014139015A (en) * 2008-08-13 2014-07-31 Gala Ind Inc Insulated die plate for underwater pelletization or the like
EP4378653A1 (en) * 2022-11-29 2024-06-05 Sulzer Management AG Granulating device for producing pellets of a polymer core being coated with at least one layer of a polymeric and/or non-polymeric material, related methods and pellet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642520B2 (en) * 2005-03-28 2011-03-02 住化カラー株式会社 DIE DEVICE AND METHOD FOR PRODUCING MULTILAYER EXTRUSION PRODUCT USING THE SAME

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990073391A (en) * 1999-07-08 1999-10-05 김동희 Apparatus for manufacturing foamed thermoplastic resin pellets
JP4542252B2 (en) * 1999-10-08 2010-09-08 住化カラー株式会社 DIE APPARATUS, AND METHOD AND APPARATUS FOR PRODUCING MULTILAYER PELLET USING THE SAME
JP2001198918A (en) * 1999-10-08 2001-07-24 Sumika Color Kk Method and apparatus for producing double layer pellet
KR100508909B1 (en) * 2001-05-23 2005-09-14 주식회사 아산케미칼 Method for Preparing Pellet-Type Foams Of Non-crosslinked Polypropylene Resin Having Lower Melting Point
WO2004080678A1 (en) * 2003-03-12 2004-09-23 Sekisui Plastics Co., Ltd. Granulation die, granulation apparatus and process for producing expandable thermoplastic resin granule
US7294299B2 (en) 2003-03-12 2007-11-13 Sekisui Plastics Co., Ltd. Granulating die, granulation device and method of manufacturing expandable thermoplastic resin granules
KR100807927B1 (en) * 2003-03-12 2008-02-28 세키스이가세이힝코교가부시키가이샤 Granulation die, granulation apparatus and process for producing expandable thermoplastic resin granule
US7815828B2 (en) 2003-09-17 2010-10-19 Sekisui Plastics Co., Ltd. Influence of each of the parameters on the foamed product strength
WO2008102874A1 (en) * 2007-02-23 2008-08-28 Sekisui Plastics Co., Ltd. Granulating die, granulating apparatus, and process for producing expandable thermoplastic resin grain
JP4799664B2 (en) * 2007-02-23 2011-10-26 積水化成品工業株式会社 Die for granulation, granulator, and method for producing expandable thermoplastic resin particles
JP2014139015A (en) * 2008-08-13 2014-07-31 Gala Ind Inc Insulated die plate for underwater pelletization or the like
JP2012512049A (en) * 2008-12-16 2012-05-31 エレマ エンジニアリング リサイクリング マシネン ウント アンラーゲン ゲゼルシャフト ミット ベシュレンクテル ハフトフング Hot cut granulation equipment
WO2013185921A1 (en) * 2012-06-15 2013-12-19 Automatik Plastics Machinery Gmbh Nozzle plate for a granulation device, and granulation device comprising a nozzle plate
DE102012012070A1 (en) * 2012-06-15 2013-12-19 Automatik Plastics Machinery Gmbh Nozzle plate for a granulator and granulator with a nozzle plate
CN104428119A (en) * 2012-06-15 2015-03-18 自动化塑料机械有限责任公司 Nozzle plate for a granulation device, and granulation device comprising a nozzle plate
EP4378653A1 (en) * 2022-11-29 2024-06-05 Sulzer Management AG Granulating device for producing pellets of a polymer core being coated with at least one layer of a polymeric and/or non-polymeric material, related methods and pellet
WO2024115309A1 (en) * 2022-11-29 2024-06-06 Sulzer Management Ag Granulating device for producing pellets of a polymer core being coated with at least one layer of a polymeric and/or non-polymeric material, related method and pellet

Also Published As

Publication number Publication date
JP3032675B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
JPH07178726A (en) Pelletizing die
US3867082A (en) A granulating device for granulating synthetic plastics material in a flowable stage
US4321026A (en) Device for granulating plastic strands
US4794777A (en) Continuous extrusion of metals
JP2537625B2 (en) Extrusion die with insulated inside
US3564650A (en) Apparatus for extruding plastic strands and cutting them up into pellets
KR101591121B1 (en) Method and device for extrusion of hollow pellets
US4728275A (en) Multi-bladed disc cutter for underwater pelletizers
JPH0624736B2 (en) Method and device for manufacturing finned tubes made of synthetic material
JPS59206113A (en) Continuous extruder
US6976834B2 (en) Pelletizing die with even heat distribution and with polymer channel to orifice transition zone, process for orifice thermal stabilization and process for forming a pelletizing die with brazing and thin hard face layer
JP3035480B2 (en) Underwater granulation method of thermoplastic resin material and underwater granulation die
JP2828601B2 (en) Granulating dies for synthetic resin and method for producing the same
JP2006297788A (en) Cutter holder and pelletizer
US3673298A (en) Method for cooling pellets severed from extruded plastic strands
JP5085195B2 (en) Underwater cut granulator
JP4521112B2 (en) Granulation mold for pelletizer
KR20000064928A (en) Plastic screw
JP3137439U (en) Quick cooling device
JPH0576889B2 (en)
JP3434111B2 (en) Method and apparatus for granulating plastic
JP3010263U (en) Granulation extrusion equipment for thermoplastics
JP3894448B2 (en) Underwater cut granulator
JP5149145B2 (en) Dies for underwater cut granulator
US3608142A (en) Apparatus for cooling pellets severed from extruded plastic strands

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees