JPH07178315A - Method and device for desulfurizing flue gas - Google Patents

Method and device for desulfurizing flue gas

Info

Publication number
JPH07178315A
JPH07178315A JP5328825A JP32882593A JPH07178315A JP H07178315 A JPH07178315 A JP H07178315A JP 5328825 A JP5328825 A JP 5328825A JP 32882593 A JP32882593 A JP 32882593A JP H07178315 A JPH07178315 A JP H07178315A
Authority
JP
Japan
Prior art keywords
tower
exhaust gas
absorption tower
mist
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5328825A
Other languages
Japanese (ja)
Inventor
Takanori Nakamoto
隆則 中本
Shigeru Nozawa
滋 野沢
Masakatsu Nishimura
正勝 西村
Kozo Obata
晃三 小幡
Toshio Katsube
利夫 勝部
Atsushi Katagawa
篤 片川
Hiroyuki Kako
宏行 加来
Naruhito Takamoto
成仁 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP5328825A priority Critical patent/JPH07178315A/en
Publication of JPH07178315A publication Critical patent/JPH07178315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Separation Of Particles Using Liquids (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To provide a flue gas desulfurizer provided with a high-performance and compact absorption tower capable of economically removing the mist without being affected by the superficial velocity of a waste gas in the tower. CONSTITUTION:A spray 20 directed toward the wall of an absorption tower 3 at the turning of a waste gas 1 at the tower top is provided to form a wetted wall on the wall surface of the tower top, the waste gas 1 is turned on the wetted wall, the liq. mist tending to splash toward the downstream side along with the waste gas is inertially collided with the wall surface at the turning and collected on the wall surface. The amt. of mist is remarkably reduced at the outlet of the tower 3, and the remaining fine droplet only is removed by a vertical demister 18. A horizontal in-tower demister which has been set in the tower 3 can be dispensed with, hence the height of the tower is reduced, and the superficial velocity of the tower is determined only in consideration of absorptivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排煙脱硫装置と方法に係
り、特に排煙中の硫黄酸化物(SOx)と媒塵を低減す
るに好適な排煙脱硫装置と方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flue gas desulfurization apparatus and method, and more particularly to a flue gas desulfurization apparatus and method suitable for reducing sulfur oxides (SOx) and dust particles in flue gas.

【0002】[0002]

【従来の技術】従来の脱硫装置の系統図を図3に示す。
ボイラなどから排ガス1はダクトにより吸収塔3に導入
され、排ガス中のSOx、媒塵は吸収塔3内に設置され
たスプレ段4を介してスプレノズル17より噴霧され
る、例えばカルシウム系の吸収剤である石灰石スラリの
液滴と接触する。この気液接触部分で排ガス中のSOx
は液滴表面で吸収され、媒塵は液滴との衝突により除去
され、ガスに同伴するミストは塔内デミスタ21および
塔出口のミストエリミネータ18により除去され清浄ガ
ス2が排出される。清浄ガス2は必要により再加熱され
て図示してない煙突より排出される。また、塔内デミス
タ21およびミストエリミネータ18は水洗スプレ19
により定期的に洗浄される。
2. Description of the Related Art A system diagram of a conventional desulfurization apparatus is shown in FIG.
Exhaust gas 1 is introduced from a boiler or the like into an absorption tower 3 by a duct, and SOx and dust in the exhaust gas are sprayed from a spray nozzle 17 through a spray stage 4 installed in the absorption tower 3, for example, a calcium-based absorbent. It comes in contact with droplets of limestone slurry. SOx in the exhaust gas at this gas-liquid contact part
Is absorbed on the surface of the liquid droplets, the dust is removed by collision with the liquid droplets, the mist entrained in the gas is removed by the internal demister 21 and the mist eliminator 18 at the outlet of the tower, and the clean gas 2 is discharged. The clean gas 2 is reheated if necessary and discharged from a stack (not shown). In addition, the tower demister 21 and the mist eliminator 18 are washed with a water spray 19
To be cleaned regularly.

【0003】一方、石灰石スラリは、石灰石供給設備1
0から石灰石スラリポンプ15により導管6を経由して
吸収塔循環タンク22に供給される。石灰石スラリは循
環ポンプ7により昇圧され、導管5により吸収塔3内の
スプレ段4に供給される。吸収塔3内で除去されたSO
xは吸収剤中のカルシウム成分と反応し、中間生成物と
して重亜硫酸カルシウムを生成し、循環タンク22内の
吸収液中に供給される空気により石膏に酸化され最終生
成物となる。また、吸収塔3で除去された排ガス中の媒
塵も吸収液とともに循環タンク22に落下する。そし
て、循環タンク22内で石膏を生成した吸収液の一部は
導管12により石膏脱水設備11に送られ、粉体の石膏
として回収され、分離された水の一部は不純物の濃縮を
防ぐため系外にブローダウン水14としてポンプ16に
より排出され、残りは系内で再利用される。
On the other hand, the limestone slurry is a limestone supply facility 1
It is supplied from 0 to the absorption tower circulation tank 22 via the conduit 6 by the limestone slurry pump 15. The limestone slurry is pressurized by the circulation pump 7 and supplied to the spray stage 4 in the absorption tower 3 by the conduit 5. SO removed in absorption tower 3
x reacts with the calcium component in the absorbent to produce calcium bisulfite as an intermediate product, which is oxidized into gypsum by the air supplied into the absorbent in the circulation tank 22 to become a final product. The dust particles in the exhaust gas removed by the absorption tower 3 also fall into the circulation tank 22 together with the absorbing liquid. Then, a part of the absorbing liquid that generated gypsum in the circulation tank 22 is sent to the gypsum dehydration equipment 11 through the conduit 12 and is recovered as powder gypsum, and part of the separated water is used to prevent the concentration of impurities. The blowdown water 14 is discharged to the outside of the system by the pump 16, and the rest is reused in the system.

【0004】[0004]

【発明が解決しようとする課題】図3に示す排煙脱硫装
置では、吸収塔3に水平置きの塔内デミスタ21が一段
ないし三段設置され、排ガスに同伴されたスプレ液滴を
捕集し、吸収塔3後流への飛散を防止していた。しか
し、上記水平置きの塔内デミスタ21は様々な形状のも
のが一般に使用されているが、その捕集性能を発揮させ
るために、形状が少々異なっても、概ねその空塔速度を
3.5m/s以下とする必要があった。なぜなら、一旦
捕集された液滴は水平置きの塔内デミスタ21のエレメ
ントを伝わって液膜となって下方へ落ちるが、この液膜
は排ガス流れが速くなると、エレメントから剥離し、後
流へ流される再飛散現象を起こすためである。
In the flue gas desulfurization apparatus shown in FIG. 3, a horizontal demister 21 is installed in the absorption tower 3 in one or three stages to collect spray droplets entrained in the exhaust gas. , Was prevented from scattering to the downstream of the absorption tower 3. However, although the horizontal demister 21 in a horizontal position is generally used in various shapes, in order to exert its trapping performance, even if the shape is slightly different, the superficial velocity is about 3.5 m. It was necessary to make it below / s. This is because the once-collected liquid droplets travel down the element of the horizontally placed demister 21 in the tower to form a liquid film that drops downward, but when the exhaust gas flow becomes faster, this liquid film separates from the element and flows to the downstream. This is because the phenomenon of re-scattering is caused.

【0005】従って、吸収塔3の空塔速度は脱硫性能の
観点から決定されるというよりもむしろこのミストの再
飛散を起こさない3.5m/s以下が好ましいとされて
きた。このため、吸収塔3の塔径は水平置き塔内デミス
タ21を使用する限り必然的に大きくなり、かつそのデ
ミスタ21の設置に伴う塔高の増大により設備費が高く
なる問題があった。本発明の目的は吸収塔内の排ガスの
空塔速度に支配されずに、しかも経済的にミストを除去
することができ、高性能化かつコンパクト化した吸収塔
を備えた湿式排煙脱硫装置と方法を提供することであ
る。
Therefore, it has been considered that the superficial velocity of the absorption tower 3 is preferably 3.5 m / s or less, which does not cause re-scattering of the mist, rather than being determined from the viewpoint of desulfurization performance. Therefore, there is a problem that the tower diameter of the absorption tower 3 is inevitably large as long as the horizontally placed tower demister 21 is used, and the equipment cost is increased due to the increase in tower height accompanying the installation of the demister 21. An object of the present invention is a wet flue gas desulfurization apparatus equipped with a highly efficient and compact absorption tower that can economically remove mist without being controlled by the superficial velocity of exhaust gas in the absorption tower. Is to provide a method.

【0006】[0006]

【課題を解決するための手段】本発明の上記目的は、次
の構成によって達成される。すなわち、塔下部から導入
した排ガスに吸収剤スラリを噴霧して、排ガス中の硫黄
酸化物と媒塵を除去して塔頂部より排出させる吸収塔を
備えた排煙脱硫装置において、吸収塔における排ガスの
上方向流を横方向へターンさせるターン部壁面と該ター
ン部壁面を濡れ壁とするための塔頂部スプレ部を設けた
排煙脱硫装置、または、吸収塔の塔下部から導入した排
ガスに吸収剤スラリを噴霧して、排ガス中の硫黄酸化物
と媒塵を除去して塔頂部より排出させる排煙脱硫方法に
おいて、吸収塔内に導入された排ガスの上方向流を横方
向へターンさせ、該排ガスのターンする部分の塔壁面を
濡れ壁にする排煙脱硫方法である。本発明では吸収塔か
ら排出するミストを除去する竪置きデミスタ(ミストエ
リミネータ)を吸収塔出口ダクトに設けることが望まし
い。また、吸収塔内の排ガスの空塔速度が2〜7m/s
であることが望ましい。
The above object of the present invention can be achieved by the following constitutions. That is, in the flue gas desulfurization device equipped with an absorption tower that sprays the absorbent slurry into the exhaust gas introduced from the lower part of the tower, removes the sulfur oxides and dust in the exhaust gas, and discharges from the top of the tower, the exhaust gas in the absorption tower Flue gas desulfurization device provided with a turn wall surface for turning the upward flow laterally and a tower top spray portion for making the turn wall surface a wet wall, or absorbed by the exhaust gas introduced from the lower part of the absorption tower In the flue gas desulfurization method of spraying the agent slurry, removing the sulfur oxides and dust in the exhaust gas and discharging from the tower top, the upward flow of the exhaust gas introduced into the absorption tower is turned laterally, This is a flue gas desulfurization method in which the tower wall surface of the portion where the exhaust gas turns is made a wet wall. In the present invention, it is desirable to provide a vertical demister (mist eliminator) for removing the mist discharged from the absorption tower in the absorption tower outlet duct. Moreover, the superficial velocity of the exhaust gas in the absorption tower is 2 to 7 m / s.
Is desirable.

【0007】[0007]

【作用】吸収塔の塔頂部における排ガスのターン部の塔
壁面に向かうスプレ部を設けることにより、塔頂部壁面
に濡れ壁を形成し、かつ該塔頂部の濡れ壁で排ガスをタ
ーンさせることにより、排ガスと共に後流側へ飛散しよ
うとする液滴ミストを該ターン部の塔壁面へ慣性衝突さ
せ、濡れ壁により捕集する。これにより吸収塔出口のミ
スト量を大幅に低減でき、残りの微粒液滴のみを竪置き
のデミスタ(ミストエリミネータ)で除去する。これに
より吸収塔内に設置されていた水平置きの塔内デミスタ
が不要にできるので、吸収塔塔高を低減することが可能
となり、また吸収塔の空塔速度は吸収性能を主体に決定
することができる。こうして、本発明によれば、高脱硫
率を得ることができる吸収塔径の小さいコンパクトな吸
収塔を備えた排煙脱硫装置とすることができる。
By providing a spray portion toward the tower wall surface of the exhaust gas turn portion at the tower top of the absorption tower, a wetting wall is formed on the tower top wall surface, and the exhaust gas is turned by the wetting wall at the tower top, A droplet mist that tends to fly to the downstream side together with the exhaust gas is caused to inertially collide with the wall surface of the tower at the turn portion and is collected by the wetting wall. As a result, the amount of mist at the outlet of the absorption tower can be greatly reduced, and only the remaining fine droplets are removed by a vertical demister (mist eliminator). This makes it possible to eliminate the horizontal demister inside the absorber that was installed inside the absorber, so it is possible to reduce the height of the absorber, and the superficial velocity of the absorber should be determined mainly by the absorption performance. You can Thus, according to the present invention, a flue gas desulfurization apparatus including a compact absorption tower with a small absorption tower diameter capable of obtaining a high desulfurization rate can be provided.

【0008】[0008]

【実施例】本発明の一実施例を図1を使用して説明す
る。ボイラなどからの排ガス1は吸収塔3に導入され、
排ガス中のSOx、媒塵は吸収塔3内に設置されたスプ
レ段4およびスプレ液滴密度が高くなるように考慮され
たスプレ部20を通過する際に吸収除去または衝突除去
され、排ガス1に同伴されるミストはミストエリミネー
タ18により除去され、清浄ガス2として排出される。
吸収剤である石灰石は石灰石供給設備10および石灰石
スラリポンプ15により導管6を経由して循環タンク2
2に供給される。吸収剤スラリは循環ポンプ7により昇
圧され、導管5により吸収塔3内のスプレ段4に供給さ
れる。吸収塔3でSOx除去に伴い生成された吸収液中
の重亜硫酸カルシウムは循環タンク22内の吸収液に供
給される空気により酸化され石膏となる。石膏を含む吸
収液の一部は導管12を経由して石膏脱水設備11によ
り脱水され、粉体の石膏として回収されるとともに、分
離された水は系内での不純物の濃度を防ぐため、一部は
ブローダウン水14として排出され、残りは系内で再利
用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. Exhaust gas 1 from a boiler or the like is introduced into an absorption tower 3,
The SOx and dust in the exhaust gas are absorbed or removed by collision when passing through the spray stage 4 installed in the absorption tower 3 and the spray section 20 which is considered to have a high spray droplet density, and thus the exhaust gas 1 is exhausted. The entrained mist is removed by the mist eliminator 18 and discharged as the clean gas 2.
The limestone as an absorbent is supplied to the circulation tank 2 via the conduit 6 by the limestone supply facility 10 and the limestone slurry pump 15.
2 is supplied. The absorbent slurry is pressurized by the circulation pump 7 and supplied to the spray stage 4 in the absorption tower 3 by the conduit 5. The calcium bisulfite in the absorption liquid generated by the SOx removal in the absorption tower 3 is oxidized by the air supplied to the absorption liquid in the circulation tank 22 to become gypsum. A part of the absorption liquid containing gypsum is dehydrated by the gypsum dehydration equipment 11 via the conduit 12 and recovered as powder gypsum, and the separated water prevents the concentration of impurities in the system. The part is discharged as blowdown water 14, and the rest is reused in the system.

【0009】スプレノズル17から噴霧された液滴のう
ち粒径の粗いものは排ガスと接触しながら重力により塔
下部の循環タンク22に落下するが、微細な液滴は吸収
塔3を上昇する排ガス流に同伴されて上昇していく。そ
して、排ガスは塔頂部の排ガスターン部において、ある
程度偏流しながらもターンして後流ダクトへ流れて行く
が、微細な噴霧液滴は比重が1以上であるため、その上
昇流の慣性で、塔頂部の適度に形成された濡れ壁を有す
る壁面に衝突し、そのほとんどが捕集される。さらに、
後流ダクトに設置された竪置きのミストエリミネータ1
8によりミストは効率良く除去される。また、ミストエ
リミネータ18は水洗スプレ19により定期的に洗浄さ
れる。
Of the liquid droplets sprayed from the spray nozzle 17, those having a coarse particle diameter fall into the circulation tank 22 at the bottom of the tower due to gravity while coming into contact with the exhaust gas, while fine liquid droplets flow up the absorption tower 3 in the exhaust gas flow. Is accompanied by and rises. Then, in the exhaust gas turn portion at the top of the tower, the exhaust gas turns while flowing to a wake duct while being partially biased, but since the fine spray droplets have a specific gravity of 1 or more, due to the inertia of the upward flow, It collides with the wall surface having a properly formed wet wall at the top of the tower, and most of it is collected. further,
Vertical mist eliminator 1 installed in the downstream duct
8 effectively removes mist. Further, the mist eliminator 18 is regularly washed by a water washing spray 19.

【0010】スプレ式の吸収塔3内での排ガスと吸収剤
のスプレ液滴との気液接触による排ガス中のSOxの吸
収性能は、吸収剤中の石灰石濃度、循環液量、排ガスの
空塔速度、単位体積当りの接触面積(単位吸収塔体積当
りのスプレ液表面積)により支配される。特に空塔速度
は高いほど噴霧される吸収剤スプレ液滴と排ガスとの気
液接触が良好となり、従って、高い脱硫性能が得られ、
かつ塔径を小さくできる。しかし、過度に空塔速度が高
い場合、例えば10m/s以上の吸収塔内空塔速度では
吸収塔3の圧力損失を過大に増加させるので、空塔速度
は2〜7m/sが好ましい。図2に10,000m3
/hのパイロットプラントで得られた空塔速度と塔外デ
ミスタ(図1のミストエリミネータ18に相当)の入
口、出口のミスト量の関係を示すが、吸収塔空塔速度の
増加に伴い塔外デミスタ入口のミスト量は増加し、特に
6m/sあたりから急激に増加し7m/sを超えるとこ
ろではもはや現実的ではない。一方、塔外デミスタ出口
ミスト量は空塔速度の増加に伴いデミスタの捕集効率が
高まり入口ミスト量が増加しているにもかかわらず、む
しろ減少する。ただし、これはデミスタ形状により異な
るものの、デミスタでの速度が概ね7〜8m/s以上と
なると捕集ミストの再飛散が始まるため出口ミスト量も
急激に増加する。スプレ段4の最終段と排ガスターン部
との距離は液滴が上方への慣性を有する程度の直線距離
をとってあれば良く、従来の水平置きデミスタ21のエ
レメントおよびその水洗設備を含めた高さに比べ数mの
塔高低減が図られる。また塔頂部の構造は、排ガスをタ
ーンさせるため塔頂部の一部を傾斜させることが好まし
いが、特にこの構造に限定されない。
The absorption performance of SOx in the exhaust gas by the gas-liquid contact between the exhaust gas and the spray droplets of the absorbent in the spray type absorption tower 3 is as follows. The limestone concentration in the absorbent, the circulating liquid amount, the exhaust gas empty tower It is governed by the speed and the contact area per unit volume (spray liquid surface area per unit absorption tower volume). In particular, the higher the superficial velocity, the better the gas-liquid contact between the sprayed absorbent spray droplets and the exhaust gas, and therefore high desulfurization performance can be obtained.
Moreover, the tower diameter can be reduced. However, when the superficial velocity is excessively high, for example, when the superficial velocity in the absorption column is 10 m / s or more, the pressure loss of the absorption column 3 is excessively increased. Therefore, the superficial velocity is preferably 2 to 7 m / s. In Figure 2, 10,000m 3 N
/ H shows the relationship between the superficial velocity obtained in the pilot plant and the amount of mist at the inlet and outlet of the external demister (corresponding to the mist eliminator 18 in Fig. 1). The amount of mist at the entrance of the demister increases, and in particular, it suddenly increases from around 6 m / s, and is no longer realistic at a position exceeding 7 m / s. On the other hand, the amount of mist at the outlet of the demister outside the tower decreases rather than the amount of mist at the inlet increasing as the collection efficiency of the demister increases as the superficial velocity increases. However, although this varies depending on the shape of the demister, when the speed in the demister becomes approximately 7 to 8 m / s or more, re-scattering of the collected mist begins, and the amount of outlet mist also sharply increases. The distance between the final stage of the spray stage 4 and the exhaust gas turn part may be a linear distance to the extent that the liquid droplet has an upward inertia, and it is high including the conventional horizontal demister 21 element and its water washing equipment. The height of the tower can be reduced by several meters. Further, the structure of the tower top is preferably tilted at a part of the tower top in order to turn the exhaust gas, but is not particularly limited to this structure.

【0011】塔頂部の濡れ壁形成のため塔頂部にスプレ
部20を配置する必要がある。この濡れ壁形成用スプレ
部20なしでも、下部から飛散し塔頂部に衝突したミス
ト自身によりある程度の濡れ壁が形成され、ミストの捕
集に寄与するが、その濡れ壁はスプレ部20を配置して
形成される濡れ壁に比べ不均一でありこれによるミスト
捕集は性能的に劣る。また、吸収剤スラリのミスト中に
は、石膏、CaCO3、CaSO3、石炭灰などからなる固形
物が含まれており、排ガス条件や運転条件によって塔頂
部でのミスト捕集の際に塔頂部壁面に付着しスケールを
形成することがある。このスケール形成を防止する意味
でもスプレ部20を配置し濡れ壁を形成すると共に壁面
を洗浄することが重要である。スプレ部20からの水等
のスプレは連続で行うことが最も好ましいが、間欠でも
濡れ壁形成および壁面洗浄に充分効果がある。またこの
スプレに使用する水は、固形物を含まない、かつ溶解成
分の少ない補給水が最も好ましいが、石膏を脱水して得
られるろ過水や多少の固形物を含有するハイドロサイク
ロンのオーバーフロー水を使用しても効果が得られる。
使用する水による違いは主に壁面の清浄度合いであり、
本来の目的であるミストの捕集に対して大した差はな
い。
In order to form a wet wall at the top of the tower, it is necessary to dispose a spray section 20 at the top of the tower. Even without the spray portion 20 for forming a wet wall, a certain amount of wet wall is formed by the mist itself scattered from the lower part and colliding with the tower top, which contributes to the collection of the mist. It is not uniform compared to the wet wall formed by the above method, and the mist collection by this is inferior in performance. In addition, the mist of the absorbent slurry contains solids such as gypsum, CaCO 3 , CaSO 3 , and coal ash. Depending on the exhaust gas conditions and operating conditions, the mist may be collected at the top of the tower. May adhere to walls and form scale. In order to prevent this scale formation, it is important to arrange the spray portion 20 to form a wet wall and wash the wall surface. It is most preferable to continuously spray water or the like from the spray section 20, but even if it is intermittent, it is sufficiently effective for forming a wet wall and cleaning the wall surface. The water used for this spray is most preferably make-up water that does not contain solids, and has a small amount of dissolved components. The effect can be obtained even when used.
The difference depending on the water used is mainly the cleanliness of the wall surface,
There is not much difference from the original purpose of collecting mist.

【0012】本発明の上記実施例に記載された吸収塔3
と従来技術に記載された吸収塔3の比較を10,000
3N/hのパイロットプラントで行った結果を表1に
示す。運転条件は下記のとおりである。 ガス量:10,000m3N/h、 入口SO2濃度:
2,000ppm 入口媒塵濃度:100mg/m3N、液循環量:200
3/h スプレ段:4段 塔内デミスタ:2段水平置き(従来技術のみ) なし (本発明の実施例) 塔外デミスタ:1段竪置き (従来技術のみ) 2段竪置き (本発明の実施例)
Absorption tower 3 described in the above embodiment of the present invention
And a comparison of the absorption tower 3 described in the prior art with 10,000
Table 1 shows the results obtained in the m 3 N / h pilot plant. The operating conditions are as follows. Gas amount: 10,000 m 3 N / h, inlet SO 2 concentration:
2,000 ppm inlet dust concentration: 100 mg / m 3 N, liquid circulation amount: 200
m 3 / h Spray stage: 4 stages In-tower demister: 2 stages horizontal placement (conventional technology only) None (Example of the present invention) Outer tower demister: 1 stage vertical placement (conventional technology only) 2 stage vertical placement (present invention) Example)

【表1】 このように、吸収塔3の空塔速度を本発明の実施例と従
来技術と同一としても本発明の実施例の場合は吸収塔3
の空塔速度を塔内にデミスタを設けることなく、従来技
術以上のミスト除去能力を発揮できる。また、従来用い
られていた塔内デミスタが必要ないので、それに付随す
る塔内洗浄設備が不要となる。
[Table 1] Thus, even if the superficial velocity of the absorption tower 3 is the same as that of the embodiment of the present invention and that of the prior art, in the case of the embodiment of the present invention, the absorption tower 3
With a superficial velocity of 1, the mist removing ability higher than that of the prior art can be exhibited without providing a demister in the tower. Further, since the in-tower demister used in the past is not necessary, the in-tower cleaning equipment associated therewith becomes unnecessary.

【0013】[0013]

【発明の効果】本発明によれば、従来用いられていた塔
内デミスタおよび塔内洗浄設備が不要となるので、従来
同様の出口ミスト量を維持しながら吸収塔塔高が低くで
き、かつシステムの簡素化が図れる。また、吸収塔の空
塔速度を従来のデミスタ最適流速に縛られること無く、
吸収性能に最適な流速を選定できるので、吸収塔の高性
能化およびコンバクト化ができる。
EFFECTS OF THE INVENTION According to the present invention, since the in-tower demister and the in-tower cleaning equipment that have been conventionally used are not required, the absorption tower tower height can be lowered while maintaining the same amount of outlet mist as in the prior art, and the system Can be simplified. Also, without being restricted by the conventional demister optimal flow velocity of the superficial velocity of the absorption tower,
Since the optimum flow rate for absorption performance can be selected, the absorption tower can be made highly efficient and compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の排煙脱硫装置を示す図で
ある。
FIG. 1 is a diagram showing a flue gas desulfurization apparatus according to an embodiment of the present invention.

【図2】 吸収塔空塔速度とミスト量の関係を示す図で
ある。
FIG. 2 is a diagram showing the relationship between the absorption tower superficial velocity and the amount of mist.

【図3】 従来技術の排煙脱硫装置を示す図である。FIG. 3 is a diagram showing a conventional flue gas desulfurization apparatus.

【符号の説明】[Explanation of symbols]

1…排ガス、2…清浄ガス、3…吸収塔、4…スプレ
段、10…石灰石供給設備、11…石膏脱水設備、17
…スプレノズル、18…ミストエリミネータ、19…水
洗スプレ、20…スプレ部、22…循環タンク
1 ... Exhaust gas, 2 ... Clean gas, 3 ... Absorption tower, 4 ... Spray stage, 10 ... Limestone supply equipment, 11 ... Gypsum dewatering equipment, 17
... Spray nozzle, 18 ... Mist eliminator, 19 ... Water spray, 20 ... Spray part, 22 ... Circulation tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/18 F ZAB E 53/34 ZAB B01D 53/34 125 Q (72)発明者 小幡 晃三 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 勝部 利夫 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 片川 篤 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 加来 宏行 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 高本 成仁 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01D 53/18 F ZAB E 53/34 ZAB B01D 53/34 125 Q (72) Inventor Kozo Obata Hiroshima 6-9 Takaracho, Kure-shi, Kure Babcock Hitachi Kure Factory (72) Inventor Toshio Kabe 6-9 Takaracho, Kure-shi, Hiroshima Babcock Hitachi Ltd. Kure Factory (72) Inventor Atsushi Katakawa Kure-shi, Hiroshima Takaramachi 6-9 Babcock Hitachi Co., Ltd. Kure Factory (72) Inventor Hiroyuki Kaku 3 36 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Co., Ltd. Kure Laboratory (72) Inventor Shigehito Takamoto 3 Takaracho, Kure City, Hiroshima Prefecture No. 36 Babcock Hitachi Kure Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 塔下部から導入した排ガスに吸収剤スラ
リを噴霧して、排ガス中の硫黄酸化物と媒塵を除去して
塔頂部より排出させる吸収塔を備えた排煙脱硫装置にお
いて、 吸収塔における排ガスの上方向流を横方向へターンさせ
るターン部壁面と該ターン部壁面を濡れ壁とするための
塔頂部スプレ部を設けたことを特徴とする排煙脱硫装
置。
1. A flue gas desulfurization apparatus equipped with an absorption tower for spraying an absorbent slurry onto the exhaust gas introduced from the lower part of the tower to remove sulfur oxides and dust in the exhaust gas and discharge the exhaust gas from the top of the tower. A flue gas desulfurization apparatus comprising: a turn portion wall surface for laterally turning an upward flow of exhaust gas in a tower; and a tower top spray portion for making the turn portion wall surface a wet wall.
【請求項2】 吸収塔から排出するミストを除去する竪
置きデミスタを吸収塔出口ダクトに設けたことを特徴と
する請求項1記載の排煙脱硫装置。
2. The flue gas desulfurization apparatus according to claim 1, wherein a vertical demister for removing mist discharged from the absorption tower is provided in the absorption tower outlet duct.
【請求項3】 吸収塔の塔下部から導入した排ガスに吸
収剤スラリを噴霧して、排ガス中の硫黄酸化物と媒塵を
除去して塔頂部より排出させる排煙脱硫方法において、 吸収塔内に導入された排ガスの上方向流を横方向へター
ンさせ、該排ガスのターンする部分の塔壁面を濡れ壁に
することを特徴とする排煙脱硫方法。
3. A flue gas desulfurization method in which an absorbent slurry is sprayed onto the exhaust gas introduced from the lower part of the absorption tower to remove the sulfur oxides and dust in the exhaust gas and discharged from the top of the tower. A method for flue gas desulfurization, characterized in that the upward flow of the exhaust gas introduced into the chamber is turned laterally, and the wall surface of the tower at the portion where the exhaust gas turns is made a wet wall.
【請求項4】 吸収塔内の排ガスの空塔速度が2〜7m
/sであることを特徴とする請求項3記載の排煙脱硫方
法。
4. The superficial velocity of the exhaust gas in the absorption tower is 2 to 7 m.
It is / s, The flue gas desulfurization method of Claim 3 characterized by the above-mentioned.
JP5328825A 1993-12-24 1993-12-24 Method and device for desulfurizing flue gas Pending JPH07178315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5328825A JPH07178315A (en) 1993-12-24 1993-12-24 Method and device for desulfurizing flue gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5328825A JPH07178315A (en) 1993-12-24 1993-12-24 Method and device for desulfurizing flue gas

Publications (1)

Publication Number Publication Date
JPH07178315A true JPH07178315A (en) 1995-07-18

Family

ID=18214511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5328825A Pending JPH07178315A (en) 1993-12-24 1993-12-24 Method and device for desulfurizing flue gas

Country Status (1)

Country Link
JP (1) JPH07178315A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482926B1 (en) * 2002-05-03 2005-04-14 박미애 Washer type air conditioner device
WO2015159657A1 (en) * 2014-04-15 2015-10-22 株式会社Ihi Desulfurization apparatus, and exhaust gas treatment system equipped with same
CN107530609A (en) * 2015-03-31 2018-01-02 三菱重工业株式会社 Demister unit and egr system
JP2019157777A (en) * 2018-03-14 2019-09-19 三菱化工機株式会社 Scrubber, and scrubber system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482926B1 (en) * 2002-05-03 2005-04-14 박미애 Washer type air conditioner device
WO2015159657A1 (en) * 2014-04-15 2015-10-22 株式会社Ihi Desulfurization apparatus, and exhaust gas treatment system equipped with same
JPWO2015159657A1 (en) * 2014-04-15 2017-04-13 株式会社Ihi Desulfurization apparatus and exhaust gas treatment system using the same
AU2015247201B2 (en) * 2014-04-15 2017-07-27 Ihi Corporation Desulfurization apparatus and exhaust gas processing system using the same
US10603631B2 (en) 2014-04-15 2020-03-31 Ihi Corporation Desulfurization apparatus and exhaust gas processing system using the same
CN107530609A (en) * 2015-03-31 2018-01-02 三菱重工业株式会社 Demister unit and egr system
JP2019157777A (en) * 2018-03-14 2019-09-19 三菱化工機株式会社 Scrubber, and scrubber system
WO2019176469A1 (en) * 2018-03-14 2019-09-19 株式会社ジャパンエンジンコーポレーション Scrubber and scrubber system
KR20200078651A (en) * 2018-03-14 2020-07-01 가부시키가이샤 자판엔진코포레숀 Scrubber and scrubber system
CN111684148A (en) * 2018-03-14 2020-09-18 日本发动机股份有限公司 Washing tower and washing tower system

Similar Documents

Publication Publication Date Title
US9468885B2 (en) Method and apparatus for wet desulfurization spray towers
US4039307A (en) Countercurrent flow horizontal spray absorber
EP0738178B1 (en) Flue gas scrubbing apparatus
US3948608A (en) Apparatus for treating stack gases
KR950012520B1 (en) Method and apparatus for the treatment of a waste gas containing dusts and chemical contaminants
US6550751B1 (en) Gas-liquid contactor with liquid redistribution device
JP3035624B2 (en) Exhaust gas treatment method and apparatus
JPH06254345A (en) Horizontal wet type cleaning device and method for removing sulfur dioxide from gaseous stream
CN204816213U (en) High -efficient wet flue gas desulfurization dust removal integrated device
KR970703808A (en) IMPROVED ENTRAINMENT SEPARATOR FOR HIGH VELOCITY GASES AND REHEATING OF SCRUBBER GASES
CN105056678B (en) The dust removal integrated flue gas cleaner of desulphurization denitration, demercuration
KR200295322Y1 (en) Sanitation apparatus of odor and noxious gas using ball venturi
JPH07178315A (en) Method and device for desulfurizing flue gas
US4481170A (en) Apparatus for treating stack gases
KR100742131B1 (en) Dust collector by flushing
KR102589114B1 (en) Hazardous Exhaust Gas Wet Purification device
WO2000066250A1 (en) Flue gas scrubbing apparatus
JPH08229341A (en) Gas-liquid contacting method and device thereof
KR200333254Y1 (en) Double Perforated Hole Type Sieve Plate Scrubber
CN2636098Y (en) Double-cylinder type foam desulfurization dust removing integrated device
JP3517298B2 (en) Flue gas desulfurization equipment
JP3338209B2 (en) Absorption tower of wet flue gas desulfurization unit
JPH0478412A (en) Gas absorption method
JP3322456B2 (en) Water spray type air purification device
EP0013299B1 (en) Method and apparatus for treating flue gases