JPH0717704A - Method for refining silicon by dissolution with electron beam - Google Patents

Method for refining silicon by dissolution with electron beam

Info

Publication number
JPH0717704A
JPH0717704A JP5153121A JP15312193A JPH0717704A JP H0717704 A JPH0717704 A JP H0717704A JP 5153121 A JP5153121 A JP 5153121A JP 15312193 A JP15312193 A JP 15312193A JP H0717704 A JPH0717704 A JP H0717704A
Authority
JP
Japan
Prior art keywords
silicon
electron beam
sio2
sio
gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5153121A
Other languages
Japanese (ja)
Inventor
Koji Nishikawa
浩二 西川
Hisae Terajima
久栄 寺嶋
Yasuhiko Sakaguchi
泰彦 阪口
Kenkichi Yushimo
憲吉 湯下
Hiroyuki Baba
裕幸 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5153121A priority Critical patent/JPH0717704A/en
Publication of JPH0717704A publication Critical patent/JPH0717704A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification

Abstract

PURPOSE:To make it possible to remove B by oxidation and to obtain high purity by oxidizing the surface of raw material silicon powder to form prescribed SiO2, then irradiating the SiO2 with an electron beam under a reduced pressure, thereby dissolving the silicon. CONSTITUTION:Metallic silicon having about 1.5mm average grain size is charged at about 1.5kg into a quartz reaction tube internally having a screw made of quartz and >=1 kinds of gases selected from a group of O2, H2O and CO2 are introduced together with gases contg. 1 to 20vol.% gaseous Ar or N2 into this reaction tube where the gases are heated and oxidized for about two hours at 600 to 1000 deg.C. The silicon formed with the SiO2 on the surface of the silicon powder at 1.5 to 15kg as the weight of the SiO2 per 1kg is obtd. This silicon is then charged into a copper crucible cooled with water and is dissolved by irradiation with the electron beam of about 30KW beam output under a vacuum, by which the B is oxidized away and the refined silicon of <6ppm B in the silicon is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子ビーム溶解法を用
いてシリコン中の特にB元素の除去を効果的に行うシリ
コンの精錬方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining silicon which effectively removes element B in silicon by using an electron beam melting method.

【0002】[0002]

【従来の技術】例えば、太陽電池に用いられるシリコン
の純度は99.9999 %以上が必要とされている。従来、市
販の金属シリコンの純度は99.5%程度であり、これから
上記高純度のシリコンを製造するには、Al、Fe、Ti等の
金属不純物元素については固液分配係数の小さいことを
利用した一方向凝固精製により除去し、CについてはSi
C の場合は凝固の際に表面に析出させ、また固溶してい
るCの場合はCOとして除去している。またPはその蒸気
圧の高いことを利用して減圧除去しており、Bについて
はH2O 、CO2 あるいはO2 を添加したArプラズマ溶解に
より除去する。そして最後に減圧によりOを蒸発除去す
る方法が提案されている。これらの製造工程の1例を図
1に示す。
2. Description of the Related Art For example, the purity of silicon used for solar cells is required to be 99.9999% or more. Conventionally, the purity of commercially available metallic silicon has been about 99.5%, and in order to produce the above-mentioned high-purity silicon, it has been utilized that the solid-liquid partition coefficient of metallic impurity elements such as Al, Fe, and Ti is small. Removed by directional solidification refining, and for C, Si
In the case of C, it is deposited on the surface during solidification, and in the case of solid solution, it is removed as CO. Further, P is removed under reduced pressure by utilizing its high vapor pressure, and B is removed by Ar plasma melting with H 2 O, CO 2 or O 2 added. Finally, a method of evaporating and removing O by reducing pressure has been proposed. An example of these manufacturing steps is shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】前記の製造方法によれ
ば、各不純物元素の除去方法がそれぞれに異なり、工程
が煩雑になるばかりでなく、次工程に移る際のシリコン
のロスによる歩留まりの悪さなどの問題点があった。と
りわけCについてはSiC をシリコンインゴット表面に析
出させてこれを切断除去する必要があり、またBについ
てはプラズマ溶解という高温溶解のため、設備的な制限
から処理量を大きくできないという問題点を有してい
た。
According to the above-mentioned manufacturing method, the method of removing each impurity element is different, which not only complicates the process, but also deteriorates the yield due to the loss of silicon when moving to the next process. There were problems such as. In particular, for C, it is necessary to deposit SiC on the surface of the silicon ingot and cut and remove it, and for B, because of high temperature melting such as plasma melting, there is a problem that the processing amount cannot be increased due to facility restrictions. Was there.

【0004】一方、電子ビーム溶解法により、溶解量50
gのシリコンをビーム出力5kw、溶解時間30分、真空度
10-5から10-4Torrの条件で、Bを初期濃度の90%除去し
得るという報告{池田ら、材料とプロセス、vol.3(199
0)−1644}がある。ただし、これは初期濃度 100〜150p
pmw が10ppmw程度まで下がったというものであり、本発
明者らが目標とするBには達していない。
On the other hand, the amount of dissolution is 50 by the electron beam melting method.
beam power of 5gw, melting time 30 minutes, vacuum degree
A report that 90% of the initial concentration of B can be removed under the condition of 10 -5 to 10 -4 Torr {Ikeda et al., Materials and Processes, vol.3 (199
0) -1644}. However, this is the initial concentration 100-150p
It is said that pmw has dropped to about 10 ppmw, which is below the B targeted by the present inventors.

【0005】さらに同報告者らによる他の報告{ISIJ I
nternational、vol.32(1992)、 No.5 635−642 }で
は、同じく電子ビーム溶解により溶解量50gのシリコン
をビーム出力 3.8〜6.5kw 、溶解時間30分、真空度10-5
から10-4Torrの条件で、Bは初期濃度15〜20ppmwのまま
で変化しないとされている。なお、上記いずれの報告に
おいてもシリコン粉の表面は意識的に酸化されていな
い。
Further reports by the same reporters {ISIJ I
nternational, vol.32 (1992), No.5 635-642}, the same beam quantity of silicon with a melting amount of 50 g was produced by electron beam melting with a beam output of 3.8 to 6.5 kw, a melting time of 30 minutes, and a vacuum degree of 10 -5.
From 10 to 10 -4 Torr, B is said to remain unchanged at the initial concentration of 15 to 20 ppmw. The surface of the silicon powder was not intentionally oxidized in any of the above reports.

【0006】本発明は前記問題点を解決するため、とり
わけ各不純物元素の除去工程の煩雑を避け、これをでき
るだけ簡略化するために、電子ビーム溶解による不純物
の蒸発除去なる利点を活かしてこれを加熱源とし、Bの
除去を行い、より低Bシリコンの精錬方法を提案するこ
とを目的とする。
In order to solve the above problems, in particular, to avoid the complexity of the step of removing each impurity element and to simplify it as much as possible, the advantage of evaporation and removal of impurities by electron beam melting is utilized. It is an object to propose a refining method for lower B silicon by using a heating source to remove B.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、原
料シリコン粉に減圧下で電子ビームを照射し溶解精錬す
るに際して、予め該原料シリコン粉の表面を酸化しSiO2
をSi 1kg当たりSiO2量として 1.5〜15 g形成させてお
き、Bを酸化除去することを特徴とする電子ビーム溶解
によるシリコンの精錬方法であり、原料シリコン粉の表
面を酸化しSiO2を形成させる方法として、O2 、H2O お
よびCO2 の群から選ばれた1種以上の気体を 1〜20 vol
%含むArまたはN2ガス中で 600〜1000℃に加熱する方法
が望ましい。
Means for Solving the Problems That is, according to the present invention, when a raw material silicon powder is irradiated with an electron beam under a reduced pressure to be melted and refined, the surface of the raw material silicon powder is oxidized in advance by SiO 2
Is a method for refining silicon by electron beam melting, characterized in that 1.5 to 15 g of SiO 2 is formed per 1 kg of Si, and B is oxidized and removed. The surface of raw material silicon powder is oxidized to form SiO 2 . As a method of causing the reaction, one or more gases selected from the group of O 2 , H 2 O and CO 2 are added in an amount of 1 to 20 vol.
%, The method of heating to 600 to 1000 ° C. in Ar or N 2 gas is preferable.

【0008】[0008]

【作用】本発明は、シリコン溶湯中のBが溶湯中のOと
結びついてBOとなり蒸発するため、溶湯中にこれらの酸
化源を導入すればBは除去可能となるだろうとの着想の
基に完成されたものである。Oが十分に存在すればBは
完全に除去される。よって本発明者らは、酸素源として
溶解前のシリコン粉の表面に形成されたSiO2に着目し、
シリコン溶解時の電子ビーム照射による高温によってSi
O2のOを解離せしめ、Bを酸化除去せんとしたものであ
る。
The present invention is based on the idea that B in silicon melt will be combined with O in the melt to become BO and evaporate, so that it will be possible to remove B by introducing these oxidation sources into the melt. It has been completed. If O is present sufficiently, B will be completely removed. Therefore, the present inventors paid attention to SiO 2 formed on the surface of silicon powder before melting as an oxygen source,
High temperature due to electron beam irradiation during melting of silicon causes Si
O of O 2 is dissociated, and B is used as an oxidative removal group.

【0009】シリコン粉表面のSiO2がシリコン溶湯中に
溶け込む際に、Bと反応し、BOとして蒸発除去に寄与す
るOはシリコン溶湯中に溶解しているもののみと考えら
れ、その他のOはシリコンと反応して SiOとして蒸発す
る。その機構は明確でないが、Si 1kg当たり15 gを越え
る過剰なSiO2は SiOの生成のみ促進し、Bの除去を阻害
する。一方、Si 1kg当たりSiO2量として 1.5 g以下より
少ない場合にはBを酸化するに十分なOを得ることがで
きない。実験によればBを除去するに必要なSiO2の量
は、Si 1kg当たり 1.5〜15 gが適している。
When SiO 2 on the surface of the silicon powder is dissolved in the molten silicon, it is considered that the O that reacts with B and contributes to the evaporation removal as BO is only dissolved in the molten silicon. Reacts with silicon and evaporates as SiO. Although the mechanism is not clear, excess SiO 2 of more than 15 g per kg of Si promotes only the formation of SiO and hinders the removal of B. On the other hand, when the amount of SiO 2 per 1 kg of Si is less than 1.5 g or less, sufficient O cannot be obtained to oxidize B. According to the experiment, the amount of SiO 2 required to remove B is 1.5 to 15 g per 1 kg of Si.

【0010】上記適正量を得るために本発明者らは鋭意
検討した結果、原料シリコン粉の表面のSiO2形成方法と
して、O2 、H2O およびCO2 の群から選ばれた1種以上
の気体を 1〜20 vol%含むArまたはN2ガス中で 600〜10
00℃に加熱する方法が望ましいことを見出した。O2
H2O およびCO2 の群から選ばれた1種以上の気体の濃度
がArまたはN2ガスに対して 1 vol%未満の場合はシリコ
ンの酸化は不十分であり、Bを除去するに必要なSi 1kg
当たりSiO2量の下限であるSi 1kg当たり 1.5 gに達しな
い。同様にO2 、H2O およびCO2 の群から選ばれた1種
以上の気体の濃度がArまたはN2ガスに対して20 vol%以
上の場合はSi 1kg当たりSiO2量が15g 以上となりBの除
去が妨げられる。
As a result of intensive studies by the present inventors in order to obtain the appropriate amount, as a method of forming SiO 2 on the surface of the raw material silicon powder, one or more kinds selected from the group consisting of O 2 , H 2 O and CO 2. In Ar or N 2 gas containing 1 to 20 vol%
It has been found that the method of heating to 00 ° C is desirable. O 2 ,
If the concentration of at least one gas selected from the group of H 2 O and CO 2 is less than 1 vol% with respect to Ar or N 2 gas, the oxidation of silicon is insufficient and it is necessary to remove B. Si 1kg
The lower limit of the amount of SiO 2 per 1 kg of Si is not reached to 1.5 g. Similarly, when the concentration of one or more gases selected from the group of O 2 , H 2 O and CO 2 is 20 vol% or more with respect to Ar or N 2 gas, the amount of SiO 2 per 1 kg of Si is 15 g or more. Removal of B is hindered.

【0011】また、O2 、H2O およびCO2 の群から選ば
れた1種以上の気体を 1〜20 vol%含むArまたはN2ガス
中でのシリコンの加熱温度が 600℃未満だとSi 1kg当た
りSiO2量が 1.5g に達せず、1000℃を越えるとSiO2量が
15g 超となり前記と同様にBの除去が妨げられる。
If the heating temperature of silicon in Ar or N 2 gas containing 1 to 20 vol% of one or more gases selected from the group consisting of O 2 , H 2 O and CO 2 is less than 600 ° C. If the SiO 2 amount does not reach 1.5 g per 1 kg of Si and exceeds 1000 ° C, the SiO 2 amount will increase.
The amount exceeds 15 g, and the removal of B is hindered in the same manner as above.

【0012】[0012]

【実施例】図2に示す如く、内部に石英製のスクリュー
を有する内径 100mmの石英管内に市販の平均粒径 1.5mm
の金属シリコン 1.5kgを装入し、これにO2 、H2O およ
びCO2 の群から選ばれた1種以上の気体をArまたはN2
スとともに流し、かつ、スクリューを10回/分の速度で
回転しつつ、表1に示す所定の温度で 2時間加熱した。
[Example] As shown in FIG. 2, a commercially available average particle diameter of 1.5 mm was placed in a quartz tube having an inner diameter of 100 mm and having a quartz screw inside.
1.5 kg of metallic silicon, which was charged with at least one gas selected from the group consisting of O 2 , H 2 O and CO 2 together with Ar or N 2 gas, and the screw was rotated 10 times / minute. While rotating at a speed, it was heated at a predetermined temperature shown in Table 1 for 2 hours.

【0013】冷却後、シリコンを取り出し重量増加から
SiO2の生成を測定した。このシリコンを、内径150mm 、
深さ60mmの図3に示す水冷銅るつぼに装入し、真空度1
〜2×10-4Torrでビーム出力30kwの電子ビームを装入物
に照射し溶解した。溶解時間30分後のシリコン中のB濃
度をシリコン粉の酸化条件とともに表1、表2、表3に
示す。
After cooling, the silicon was taken out to increase the weight.
The formation of SiO 2 was measured. This silicon has an inner diameter of 150 mm,
Insert it in a water-cooled copper crucible with a depth of 60 mm as shown in Fig.
The charged material was irradiated with an electron beam with a beam output of 30 kw at ˜2 × 10 −4 Torr and melted. The B concentration in silicon after the dissolution time of 30 minutes is shown in Tables 1, 2 and 3 together with the oxidizing conditions of the silicon powder.

【0014】本発明法により、シリコン中のB<6ppmw
が達成されていることがわかる。
According to the method of the present invention, B <6 ppmw in silicon
It can be seen that has been achieved.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【発明の効果】本発明により、高真空下で金属シリコン
を電子ビームで溶解するに際し、予め原料シリコン粉の
表面を酸化し所定量のSiO2を形成させておくことによ
り、SiO2から解離したOによって、金属シリコン中のB
を酸化除去する事ができ、高純度シリコンに必要なB<
6ppmwを達成することができるようになった。
EFFECTS OF THE INVENTION According to the present invention, when metallic silicon is melted by an electron beam under a high vacuum, the surface of the raw material silicon powder is oxidized in advance to form a predetermined amount of SiO 2 so that it is dissociated from SiO 2 . O in B in metallic silicon
Can be removed by oxidation, and B <required for high-purity silicon
It has become possible to achieve 6 ppmw.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の高純度Siの製造工程図。FIG. 1 is a conventional manufacturing process diagram of high-purity Si.

【図2】本発明に用いる原料シリコン粉表面酸化装置の
概略説明図。
FIG. 2 is a schematic explanatory view of a raw material silicon powder surface oxidation device used in the present invention.

【図3】本発明に用いる電子ビーム溶解炉の概略説明
図。
FIG. 3 is a schematic explanatory view of an electron beam melting furnace used in the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阪口 泰彦 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 湯下 憲吉 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 馬場 裕幸 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Sakaguchi, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Technical Research Division (72) Inventor Kenkichi Yushita 1 Kawasaki-cho, Chuo-ku, Chiba Address Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Hiroyuki Baba 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原料シリコン粉に減圧下で電子ビームを
照射し溶解精錬するに際して、予め該原料シリコン粉の
表面を酸化しSiO2をSi 1kg当たりSiO2量として 1.5〜15
g形成させておき、Bを酸化除去することを特徴とする
電子ビーム溶解によるシリコンの精錬方法。
Upon 1. A under reduced pressure to the raw material silicon powder is irradiated with an electron beam to smelting, the SiO 2 by oxidizing the surface of the pre-raw material silicon powder as the amount of SiO 2 per Si 1 kg 1.5 to 15
A method for refining silicon by electron beam melting, characterized in that g is formed and B is oxidized and removed.
【請求項2】 原料シリコン粉の表面を酸化しSiO2を形
成させる方法として、O2 、H2O およびCO2 の群から選
ばれた1種以上の気体を 1〜20 vol%含むArまたはN2
ス中で 600〜1000℃に加熱することを特徴とする請求項
1記載の電子ビーム溶解によるシリコンの精錬方法。
2. A method of oxidizing the surface of a raw material silicon powder to form SiO 2 by using Ar containing 1 to 20 vol% of one or more gases selected from the group of O 2 , H 2 O and CO 2 or The method for refining silicon by electron beam melting according to claim 1, wherein heating is performed at 600 to 1000 ° C in N 2 gas.
JP5153121A 1993-06-24 1993-06-24 Method for refining silicon by dissolution with electron beam Pending JPH0717704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5153121A JPH0717704A (en) 1993-06-24 1993-06-24 Method for refining silicon by dissolution with electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5153121A JPH0717704A (en) 1993-06-24 1993-06-24 Method for refining silicon by dissolution with electron beam

Publications (1)

Publication Number Publication Date
JPH0717704A true JPH0717704A (en) 1995-01-20

Family

ID=15555438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5153121A Pending JPH0717704A (en) 1993-06-24 1993-06-24 Method for refining silicon by dissolution with electron beam

Country Status (1)

Country Link
JP (1) JPH0717704A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0796820A1 (en) * 1996-03-19 1997-09-24 Kawasaki Steel Corporation Process and apparatus for refining silicon
WO1999033749A1 (en) * 1997-12-25 1999-07-08 Nippon Steel Corporation PROCESS FOR THE PREPARATION OF HIGH-PURITY Si AND EQUIPMENT THEREFOR
US5961944A (en) * 1996-10-14 1999-10-05 Kawasaki Steel Corporation Process and apparatus for manufacturing polycrystalline silicon, and process for manufacturing silicon wafer for solar cell
JP2006089361A (en) * 2004-09-27 2006-04-06 Iis Materials:Kk Method and apparatus for refining boron-containing silicon using electron beam
WO2009036686A1 (en) * 2007-09-14 2009-03-26 Shaoguang Li Method of manufacturing polycrystalline silicon for solar cell
CN101913608A (en) * 2010-07-29 2010-12-15 大连理工大学 Method for removing boron from industrial silicon
WO2012049300A1 (en) * 2010-10-15 2012-04-19 Institut Polytechnique De Grenoble Production of polycrystalline silicon by natural sintering for photovoltaic applications
US8536290B2 (en) 2010-12-21 2013-09-17 Dow Global Technologies Llc Procatalyst composition with alkoxyalkyl 2-propenoate internal electron donor and polymer from same
US8604146B2 (en) 2010-12-21 2013-12-10 Dow Global Technologies Llc Catalyst composition with alkoxyalkyl ester internal electron donor and polymer from same
US9315592B2 (en) 2010-12-21 2016-04-19 W. R. Grace & Co.-Conn. Process for producing procatalyst composition with alkoxyalkyl ester internal electron donor and product
US9382342B2 (en) 2010-12-21 2016-07-05 W. R. Grace & Co.-Conn. Procatalyst composition with alkoxyalkyl 2-propenoate internal electron donor and polymer from same
US9382343B2 (en) 2010-12-21 2016-07-05 W. R. Grace & Co.-Conn. Procatalyst composition with alkoxypropyl ester internal electron donor and polymer from same
US9434796B2 (en) 2010-12-21 2016-09-06 W. R. Grace & Co.-Conn. Catalyst composition with alkoxyalkyl ester internal electron donor and polymer from same
CN107010629A (en) * 2017-01-16 2017-08-04 大工(青岛)新能源材料技术研究院有限公司 A kind of method that electronic torch melting purifies monocrystalline flavoring food

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231826B1 (en) 1996-03-19 2001-05-15 Kawasaki Steel Corporation Process and apparatus for refining silicon
EP0796820A1 (en) * 1996-03-19 1997-09-24 Kawasaki Steel Corporation Process and apparatus for refining silicon
US5961944A (en) * 1996-10-14 1999-10-05 Kawasaki Steel Corporation Process and apparatus for manufacturing polycrystalline silicon, and process for manufacturing silicon wafer for solar cell
WO1999033749A1 (en) * 1997-12-25 1999-07-08 Nippon Steel Corporation PROCESS FOR THE PREPARATION OF HIGH-PURITY Si AND EQUIPMENT THEREFOR
AU738233B2 (en) * 1997-12-25 2001-09-13 Nippon Steel Corporation Production Process and apparatus for high purity silicon
AU738233C (en) * 1997-12-25 2002-10-24 Nippon Steel Corporation Production Process and apparatus for high purity silicon
JP4665479B2 (en) * 2004-09-27 2011-04-06 株式会社 アイアイエスマテリアル Method and apparatus for refining boron-containing silicon using electron beam
JP2006089361A (en) * 2004-09-27 2006-04-06 Iis Materials:Kk Method and apparatus for refining boron-containing silicon using electron beam
WO2009036686A1 (en) * 2007-09-14 2009-03-26 Shaoguang Li Method of manufacturing polycrystalline silicon for solar cell
CN101913608A (en) * 2010-07-29 2010-12-15 大连理工大学 Method for removing boron from industrial silicon
WO2012049300A1 (en) * 2010-10-15 2012-04-19 Institut Polytechnique De Grenoble Production of polycrystalline silicon by natural sintering for photovoltaic applications
FR2966287A1 (en) * 2010-10-15 2012-04-20 Inst Polytechnique Grenoble DEVELOPMENT OF POLYCRYSTALLINE SILICON BY NATURAL FRITTAGE FOR PHOTOVOLTAIC APPLICATIONS
US8536290B2 (en) 2010-12-21 2013-09-17 Dow Global Technologies Llc Procatalyst composition with alkoxyalkyl 2-propenoate internal electron donor and polymer from same
US8604146B2 (en) 2010-12-21 2013-12-10 Dow Global Technologies Llc Catalyst composition with alkoxyalkyl ester internal electron donor and polymer from same
US9315592B2 (en) 2010-12-21 2016-04-19 W. R. Grace & Co.-Conn. Process for producing procatalyst composition with alkoxyalkyl ester internal electron donor and product
US9382342B2 (en) 2010-12-21 2016-07-05 W. R. Grace & Co.-Conn. Procatalyst composition with alkoxyalkyl 2-propenoate internal electron donor and polymer from same
US9382343B2 (en) 2010-12-21 2016-07-05 W. R. Grace & Co.-Conn. Procatalyst composition with alkoxypropyl ester internal electron donor and polymer from same
US9434796B2 (en) 2010-12-21 2016-09-06 W. R. Grace & Co.-Conn. Catalyst composition with alkoxyalkyl ester internal electron donor and polymer from same
CN107010629A (en) * 2017-01-16 2017-08-04 大工(青岛)新能源材料技术研究院有限公司 A kind of method that electronic torch melting purifies monocrystalline flavoring food

Similar Documents

Publication Publication Date Title
JP3325900B2 (en) Method and apparatus for producing polycrystalline silicon, and method for producing silicon substrate for solar cell
JPH0717704A (en) Method for refining silicon by dissolution with electron beam
US5510095A (en) Production of high-purity silicon ingot
US8329133B2 (en) Method and apparatus for refining metallurgical grade silicon to produce solar grade silicon
US4837376A (en) Process for refining silicon and silicon purified thereby
US20080289150A1 (en) Method of Purifying Metal
JP2007051047A (en) Silicon refining method and device using electron beam
JPH11209195A (en) Purification method of silicon
JPH10245216A (en) Production of silicon for solar cell
JP4305792B2 (en) Metal refining method and refining method
JP4638002B2 (en) Method and apparatus for manufacturing silicon for solar cell
JP2009114026A (en) Method for refining metal silicon
JP2005255417A (en) Method for purifying silicon
JP5513389B2 (en) Silicon purification method
JPH05262512A (en) Purification of silicon
JPH10182134A (en) Refining of silicon
JPH10273311A (en) Purification of silicon for solar battery and apparatus therefor
JP2905353B2 (en) Purification method of metallic silicon
JPH07315827A (en) Method for purifying silicon and purifying device therefor
JP3673919B2 (en) High-purity titanium recovery method
JPH06345416A (en) Refining of silicon by electron beam fusion
JP2000327488A (en) Production of silicon substrate for solar battery
CN110923476A (en) Method for producing high-purity metal vanadium ingot by three-step method
JP4209964B2 (en) Method for melting and casting metal vanadium and / or metal vanadium alloy
KR20100099396A (en) Apparatus and method for refining of high purity silicon