JPH07172931A - Highly dense silicone nitride sintered compact and its production - Google Patents

Highly dense silicone nitride sintered compact and its production

Info

Publication number
JPH07172931A
JPH07172931A JP5345166A JP34516693A JPH07172931A JP H07172931 A JPH07172931 A JP H07172931A JP 5345166 A JP5345166 A JP 5345166A JP 34516693 A JP34516693 A JP 34516693A JP H07172931 A JPH07172931 A JP H07172931A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintering
sintered body
sio
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5345166A
Other languages
Japanese (ja)
Other versions
JP3159350B2 (en
Inventor
Masanori Okabe
昌規 岡部
Yoshikatsu Higuchi
義勝 樋口
Yasunobu Kawakami
泰伸 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP34516693A priority Critical patent/JP3159350B2/en
Publication of JPH07172931A publication Critical patent/JPH07172931A/en
Application granted granted Critical
Publication of JP3159350B2 publication Critical patent/JP3159350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce the subject sintered compact having a high strength at high temperatures and provide a method for producing the silicon nitride sintered compact. CONSTITUTION:This method for producing a highly dense silicon nitride sintered compact is to (1) prepare a compact from silicon nitride powder and sintering assistant powder composed of Y2O3 or the Y2O3 and one or two or more oxides selected from the group of Yb2O3, HfO2, Er2O3, Cr2O3 and Sc2O3 and sinter the resultant compact and (2) resinter the resultant sintered compact in an atmosphere containing SiO2 and an oxide capable of forming a low-melting compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化珪素焼結体及びその
製造方法に関し、特に高緻密質な窒化珪素焼結体及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body and a manufacturing method thereof, and more particularly to a highly dense silicon nitride sintered body and a manufacturing method thereof.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
金属よりも高温で安定であり、軽量で、酸化腐食やクリ
ープ変形を受けにくい窒化珪素系のセラミックス焼結体
が、高温構造材として多方面にわたって使用されてい
る。
2. Description of the Related Art In recent years,
BACKGROUND ART A silicon nitride-based ceramics sintered body, which is more stable than a metal at a higher temperature, is lightweight, and is less susceptible to oxidative corrosion and creep deformation, is widely used as a high-temperature structural material.

【0003】窒化珪素焼結体は難焼結性のため、Al2
3 、MgO、Y2 O等の焼結助剤を添加する必要がある。
しかしながら、これらの焼結助剤を添加した場合、焼結
時に焼結助剤が低融点粒界相を形成し、得られる焼結体
が高温下で強度低下を引き起こしやすくなる。
Since silicon nitride sintered bodies are difficult to sinter, Al 2 O
It is necessary to add a sintering aid such as 3 , MgO or Y 2 O.
However, when these sintering aids are added, the sintering aids form a low-melting-point grain boundary phase during sintering, and the resulting sintered body is likely to cause strength reduction at high temperatures.

【0004】そこで、高温における焼結体の強度向上を
図るために、焼結助剤としてY2 3 、Yb2 3 、HfO
2 、Er2 3 、Cr2 3 、Sc2 3 等の酸化物を添加す
ることが提案された。しかしながら、これらの酸化物は
SiO2 との融点が高いため、焼結の際に液相を形成し、
焼結体を高緻密化することが困難であった。緻密でない
焼結体は、破壊靭性や曲げ強度等が低いという欠点を有
する。
Therefore, in order to improve the strength of the sintered body at a high temperature, Y 2 O 3 , Yb 2 O 3 and HfO as sintering aids are used.
It has been proposed to add oxides such as 2 , Er 2 O 3 , Cr 2 O 3 , Sc 2 O 3 . However, these oxides
Since it has a high melting point with SiO 2, it forms a liquid phase during sintering,
It was difficult to make the sintered body highly dense. A non-dense sintered body has a defect that fracture toughness, bending strength, etc. are low.

【0005】従って本発明の目的は、高温下での強度が
高く、かつ高緻密質な窒化珪素焼結体を提供することで
ある。また、本発明のもう一つの目的は、そのような窒
化珪素焼結体を製造する方法を提供することである。
Therefore, an object of the present invention is to provide a silicon nitride sintered body which has high strength at high temperature and is highly dense. Another object of the present invention is to provide a method for producing such a silicon nitride sintered body.

【0006】[0006]

【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者等は、窒化珪素粉末と特定の焼結助剤
粉末とから作製した焼結体を、SiO2 と低融点化合物を
形成する酸化物を含有する雰囲気下で再焼結すれば、高
緻密質な窒化珪素焼結体が得られることを見出し、本発
明に想到した。
As a result of earnest research in view of the above object, the inventors of the present invention have found that a sintered body made of silicon nitride powder and a specific sintering aid powder can be used as SiO 2 and a low melting point compound. The inventors have found that a highly dense silicon nitride sintered body can be obtained by re-sintering in an atmosphere containing an oxide that forms a metal oxide.

【0007】すなわち、本発明の高緻密質窒化珪素焼結
体の製造方法は、(1) 窒化珪素粉末と、Y2 3 、又は
2 3 と、Yb2 3 、HfO2 、Er2 3、Cr2 3
びSc2 3 からなる群から選ばれた1種又は2種以上の
酸化物とからなる焼結助剤粉末とから作製した成形体を
焼結し、(2) 得られた焼結体を、SiO2 と低融点化合物
を形成する酸化物を含有する雰囲気下で再焼結すること
により、前記焼結体を高緻密化することを特徴とする。
That is, the method for producing a highly dense silicon nitride sintered body of the present invention is as follows: (1) Silicon nitride powder, Y 2 O 3 or Y 2 O 3 and Yb 2 O 3 , HfO 2 , Er A compact formed from a sintering aid powder made of one or more oxides selected from the group consisting of 2 O 3 , Cr 2 O 3 and Sc 2 O 3 is sintered, and (2 ) It is characterized in that the obtained sintered body is re-sintered in an atmosphere containing an oxide forming a low melting point compound with SiO 2 to highly densify the sintered body.

【0008】また、本発明の高緻密質窒化珪素焼結体
は、窒化珪素と焼結助剤とを含有する成形体を焼結し、
次いでSiO2 と低融点化合物を形成する酸化物を含有す
る雰囲気の下で再焼結して得られ、前記焼結助剤のSiO
2 との融点が1600℃以上であり、前記酸化物のSiO2
の融点が1600℃以下であることを特徴とする。
Further, the highly dense silicon nitride sintered body of the present invention is obtained by sintering a molded body containing silicon nitride and a sintering aid,
Then, it is obtained by re-sintering under an atmosphere containing an oxide forming a low melting point compound with SiO 2 ,
The melting point with respect to 2 is 1600 ° C. or higher, and the melting point with respect to SiO 2 of the oxide is 1600 ° C. or lower.

【0009】以下、本発明を詳細に説明する。最初に、
高緻密質窒化珪素焼結体の製造方法を説明する。 (1) 出発原料窒化珪素粉末 窒化珪素粉末としては、平均粒径が0.1 〜1μm程度の
ものを用いるのが好ましい。平均粒径が0.1 μm未満の
窒化珪素粉末を用いると、パッキング性が悪く、成形が
困難となる。一方、1μmを超す窒化珪素粉末を用いる
と焼結性が劣り、緻密な焼結体を得るのが難しい。この
ような平均粒径を有する窒化珪素粉末の比表面積は8m
2 /g以上であるのが好ましい。窒化珪素粉末の比表面
積が8m2 /g未満であると、焼結性が劣り、緻密な焼
結体とすることができない。より好ましい窒化珪素粉末
の比表面積は9〜12m2 /gである。また、窒化珪素粉
末に含まれる金属不純物の総量は200 ppm 以下であるの
が好ましい。金属不純物の総量が200 ppm を超えると、
粒界に不純物相が生成して高温強度が低下する。なお、
通常窒化珪素粉末に含まれる金属不純物としては、Fe、
Ca、Al等が挙げられる。
The present invention will be described in detail below. At first,
A method of manufacturing the highly dense silicon nitride sintered body will be described. (1) Starting Material Silicon Nitride Powder As the silicon nitride powder, it is preferable to use one having an average particle size of about 0.1 to 1 μm. If silicon nitride powder having an average particle size of less than 0.1 μm is used, the packing property is poor and molding becomes difficult. On the other hand, if a silicon nitride powder having a thickness of more than 1 μm is used, the sinterability is poor and it is difficult to obtain a dense sintered body. The specific surface area of the silicon nitride powder having such an average particle diameter is 8 m
It is preferably 2 / g or more. If the specific surface area of the silicon nitride powder is less than 8 m 2 / g, the sinterability will be poor and a dense sintered body cannot be obtained. The more preferable specific surface area of the silicon nitride powder is 9 to 12 m 2 / g. The total amount of metal impurities contained in the silicon nitride powder is preferably 200 ppm or less. If the total amount of metallic impurities exceeds 200 ppm,
Impurity phases are generated at the grain boundaries, and the high temperature strength decreases. In addition,
As the metal impurities usually contained in the silicon nitride powder, Fe,
Examples thereof include Ca and Al.

【0010】焼結助剤 本発明では、焼結助剤としてY2 3 単独、又はY2
3 にさらに、Al2 3、Yb2 3 、HfO2 、Er2 3 、C
r2 3 及びSc2 3 からなる群から選ばれた1種又は
2種以上の酸化物を併用する。これらの酸化物は、SiO
2 との融点が1600℃以上であり、焼結時にSi3 4 中に
不純物として存在する(又は生成する)SiO2 と液相を
形成しにくい。
[0010] Sintering aids in the present invention, Y 2 O 3 alone as a sintering aid, or Y 2 O
In addition to 3 , Al 2 O 3 , Yb 2 O 3 , HfO 2 , Er 2 O 3 , C
One or more oxides selected from the group consisting of r 2 O 3 and Sc 2 O 3 are used in combination. These oxides are SiO
And a melting point of 2 1600 ° C. or higher, there is (or generated) as an impurity in Si 3 N 4 during sintering is difficult to form the SiO 2 and a liquid phase.

【0011】Y2 3 、Al2 3 、Yb2 3 、HfO2
Er2 3 、Cr2 3 及びSc2 3 は粉末の形態で用い
る。焼結助剤粉末の平均粒径は0.1 〜2.0 μmであるの
が好ましく、特に0.5 〜1.0 μmであるのが好ましい。
また、最大粒径は5μm以下であるのが好ましい。
Y 2 O 3 , Al 2 O 3 , Yb 2 O 3 , HfO 2 ,
Er 2 O 3 , Cr 2 O 3 and Sc 2 O 3 are used in powder form. The average particle size of the sintering aid powder is preferably 0.1 to 2.0 μm, and particularly preferably 0.5 to 1.0 μm.
The maximum particle size is preferably 5 μm or less.

【0012】(2) 成形体の製造 上記窒化珪素粉末と焼結助剤とを混合する。その混合比
としては、窒化珪素粉末100 重量%に対して、焼結助剤
が2〜15重量%であるのが好ましく、特に3〜8重量%
であるのが好ましい。焼結助剤が2重量%未満では良好
な焼結ができず、一方焼結助剤が15重量%を超すと焼結
体の高温強度が低下する。
(2) Production of molded body The above-mentioned silicon nitride powder and a sintering aid are mixed. The mixing ratio is preferably 2 to 15% by weight, particularly 3 to 8% by weight, based on 100% by weight of silicon nitride powder.
Is preferred. If the amount of the sintering aid is less than 2% by weight, good sintering cannot be achieved, while if the amount of the sintering aid exceeds 15% by weight, the high temperature strength of the sintered body decreases.

【0013】混合は公知の方法、例えばボールミル、分
散機等により行うことができる。なおボールミルによる
混合では、混合粉末にエタノール等を加えて行うのが好
ましい。
The mixing can be carried out by a known method such as a ball mill or a disperser. In addition, it is preferable to add ethanol or the like to the mixed powder in the mixing by the ball mill.

【0014】得られた混合粉は、金型プレス、スリップ
キャスト、または冷間静水圧プレス(CIP)等を用い
た公知の方法により所望の形状の成形体とする。なお、
成形に際して、必要に応じてポリビニルアルコール溶液
等の成形助剤を添加してもよい。
The obtained mixed powder is molded into a desired shape by a known method using a die press, slip casting, cold isostatic pressing (CIP) or the like. In addition,
Upon molding, a molding aid such as a polyvinyl alcohol solution may be added if necessary.

【0015】(3) 焼結 得られた成形体を焼結する。焼結は窒素含有雰囲気下で
行うのが好ましく、特に窒素ガス雰囲気下で行うのが好
ましい。窒素ガス中で焼結を行うことにより窒化珪素の
分解を効果的に防止することができる。焼結における窒
素含有雰囲気圧は1.0 〜2000kg/cm2 とするのが好まし
く、特に1〜9kg/cm2 とするのが好ましい。
(3) Sintering The obtained compact is sintered. Sintering is preferably performed in a nitrogen-containing atmosphere, particularly preferably in a nitrogen gas atmosphere. Sintering in nitrogen gas can effectively prevent decomposition of silicon nitride. The nitrogen-containing atmosphere pressure during sintering is preferably 1.0 to 2000 kg / cm 2, and particularly preferably 1 to 9 kg / cm 2 .

【0016】焼結温度は1800℃以上とするのが好まし
く、特に1850〜1950℃とするのが好ましい。焼結温度が
1800℃未満であると空孔が形成されやすく、焼結体の密
度が上がらない。焼結時間は1〜10時間が好ましく、特
に2〜6時間が好ましい。1時間未満では十分な焼結が
できず、10時間を超えるとSi3 4 の粗大粒が生成する
おそれがある。
The sintering temperature is preferably 1800 ° C. or higher, and particularly preferably 1850 to 1950 ° C. Sintering temperature
If the temperature is lower than 1800 ° C, pores are easily formed and the density of the sintered body does not increase. The sintering time is preferably 1 to 10 hours, particularly preferably 2 to 6 hours. If it is less than 1 hour, sufficient sintering cannot be performed, and if it exceeds 10 hours, coarse particles of Si 3 N 4 may be generated.

【0017】(4) 再焼結 本発明の方法においては、上記焼結後、雰囲気中にSiO
2 と低融点化合物を形成する酸化物を存在させて再焼結
し、高緻密化を図る。SiO2 と低融点化合物を形成する
酸化物としては、SiO2 との融点が1600℃以下であるAl
2 3 、MgO及びY2 3 が好ましく、それらを組み合
わせて使用してもよい。
(4) Re-sintering In the method of the present invention, after the above sintering, SiO 2 is added in the atmosphere.
2) Re-sinter in the presence of an oxide that forms a low melting point compound with 2 to achieve high densification. The oxides and SiO 2 to form a low melting compound, melting point of SiO 2 is 1600 ° C. or less Al
2 O 3 , MgO and Y 2 O 3 are preferred, and they may be used in combination.

【0018】これらの酸化物を再焼結の雰囲気に含有さ
せると、比較的低い温度でSiO2 と反応し、液相を形成
して窒化珪素粒子の粒成長を促す。成長した窒化珪素粒
子は焼結体中の空間を埋めるため、得られる焼結体が高
緻密化する。なお、上記酸化物を最初の焼結の際に雰囲
気に含有させると、窒化珪素の内部に入り込み、高温強
度を低下させてしまう。
When these oxides are contained in a re-sintering atmosphere, they react with SiO 2 at a relatively low temperature to form a liquid phase and promote grain growth of silicon nitride particles. Since the grown silicon nitride particles fill the space in the sintered body, the sintered body obtained is highly densified. If the above oxide is contained in the atmosphere during the first sintering, it will enter the inside of silicon nitride and reduce the high temperature strength.

【0019】上記酸化物は、焼結雰囲気中にガスとして
導入してもよいが、粉末として雰囲気中に載置するのが
好ましい。その場合、Al2 3 等の酸化物は、再焼結雰
囲気の温度により気化し、雰囲気中のSiO2 成分ととも
に再焼結に寄与する。なお、酸化物の粉末は焼結体と接
触させない。
The above oxide may be introduced as a gas into the sintering atmosphere, but is preferably placed in the atmosphere as a powder. In that case, the oxide such as Al 2 O 3 is vaporized by the temperature of the re-sintering atmosphere and contributes to the re-sintering together with the SiO 2 component in the atmosphere. Note that the oxide powder is not brought into contact with the sintered body.

【0020】雰囲気中に載置する酸化物の分量は、SiO
2 との液相を十分に形成する量であれば、特に限定され
ない。
The amount of oxide placed in the atmosphere is
There is no particular limitation as long as it is a sufficient amount to form a liquid phase with 2 .

【0021】なお、再焼結の雰囲気も窒素ガスからなる
のが好ましく、その圧力は1〜2000kg/cm2 とするのが
好ましく、特に1〜9kg/cm2 とするのが好ましい。
[0021] Incidentally, the re-sintering atmosphere is preferably made of a nitrogen gas, the pressure is preferably a 1~2000kg / cm 2, particularly preferably in the 1~9kg / cm 2.

【0022】再焼結の温度は1500〜1950℃とするのが好
ましく、特に1600〜1900℃とするのが好ましい。再焼結
の温度が1500℃未満であると上記酸化物がSiO2 と低融
点化合物を形成することができず、1950℃を超えるとSi
3 4 が分解するおそれがある。
The temperature of the re-sintering is preferably 1500 to 1950 ° C, and particularly preferably 1600 to 1900 ° C. If the re-sintering temperature is less than 1500 ° C, the above oxide cannot form a low-melting compound with SiO 2, and if it exceeds 1950 ° C,
3 N 4 may decompose.

【0023】焼結時間は1〜10時間が好ましく、特に2
〜6時間が好ましい。1時間未満では十分な高緻密化が
できず、10時間を超えるとSi3 4 の粗大粒が生成する
おそれがある。この再焼結において、SiO2 と低融点化
合物を形成する酸化物は焼結体中に0.5 〜3重量%程度
入り込む。
The sintering time is preferably 1 to 10 hours, especially 2
~ 6 hours preferred. If it is less than 1 hour, sufficient densification cannot be achieved, and if it is more than 10 hours, coarse particles of Si 3 N 4 may be generated. In this re-sintering, the oxide forming the low melting point compound with SiO 2 enters the sintered body in an amount of about 0.5 to 3% by weight.

【0024】以上のようにして得られた窒化珪素焼結体
においては、通常の焼結体中に多数存在する孔径3μm
以下の空孔が非常に少ない。また、この高緻密質窒化珪
素焼結体の密度は、96%以上(対理論密度)であり、高
温強度のみならず、破壊靭性や曲げ強度等に優れてい
る。
In the silicon nitride sintered body obtained as described above, a large number of pores of 3 μm which are present in a normal sintered body
Very few holes below. Further, the density of this highly dense silicon nitride sintered body is 96% or more (vs theoretical density), and it is excellent not only in high temperature strength but also in fracture toughness, bending strength and the like.

【0025】[0025]

【実施例】以下、具体的実施例により本発明を詳細に説
明する。実施例1 窒化珪素粉末(宇部興産 (株) 製:平均粒径1.0 μm、
酸素含有量1.5 重量%、金属不純物総量200 ppm 以下、
BET比表面積9m2 /g)96.0gと、HfO2粉末(平
均粒径1.0 μm、高純度化学 (株) 製)2.5 gと、Y2
3 粉末(平均粒径1.4 μm、日本イットリウム (株)
製)1.5 gとをポリエチレン製の1000mlポットミルに取
り、エタノール100 gを加え、20時間のボールミル混合
を行った。
EXAMPLES The present invention will be described in detail below with reference to specific examples. Example 1 Silicon nitride powder (manufactured by Ube Industries, Ltd .: average particle size 1.0 μm,
Oxygen content 1.5% by weight, total metal impurities less than 200 ppm,
BET specific surface area 9 m 2 / g) 96.0 g, HfO 2 powder (average particle size 1.0 μm, manufactured by Kojundo Chemical Co., Ltd.) 2.5 g, and Y 2
O 3 powder (average particle size 1.4 μm, Yttrium Japan Co., Ltd.)
1.5 g) was placed in a polyethylene 1000 ml pot mill, 100 g of ethanol was added, and the mixture was mixed in a ball mill for 20 hours.

【0026】得られた混合物をロータリーエバポレータ
により乾燥し、金型プレスにより30mm×50mm×6mmの大
きさに成形した。この成形体を、9気圧の窒素ガス雰囲
気下及び以下の温度条件下で焼結した。 室温〜1200℃: 20℃/分の速度で昇温 1200〜1900℃: 6℃/分の速度で昇温 1900℃ : 4時間保持 1900〜1200℃: 6℃/分の速度で降温 1200℃〜室温: 炉冷
The obtained mixture was dried by a rotary evaporator and molded into a size of 30 mm × 50 mm × 6 mm by a die press. The compact was sintered under a nitrogen gas atmosphere of 9 atm and under the following temperature conditions. Room temperature ~ 1200 ℃: 20 ℃ / min temperature increase 1200 ~ 1900 ℃: 6 ℃ / min temperature increase 1900 ℃: Hold for 4 hours 1900 ~ 1200 ℃: 6 ℃ / min temperature decrease 1200 ℃ ~ Room temperature: furnace cooling

【0027】次いで、Al2 3 粉末(住友化学(株)
製、平均粒径0.4 μm)、MgO粉末(高純度化学(株)
製、平均粒径0.9 μm)及びY2 3 粉末(日本イット
リウム(株)製、平均粒径0.5 μm)を各々5g炉内に
載置し、1回目の焼結と同様の条件の下で再焼結した。
Next, Al 2 O 3 powder (Sumitomo Chemical Co., Ltd.)
Made, average particle size 0.4 μm), MgO powder (Kojundo Chemical Co., Ltd.)
And average particle size 0.9 μm) and Y 2 O 3 powder (manufactured by Japan Yttrium Co., Ltd., average particle size 0.5 μm) were placed in a furnace each under 5 g, and under the same conditions as the first sintering. Resintered.

【0028】得られた焼結体の断面を研磨し、SEMに
て組織を観察したところ、焼結体は空孔を有さない高緻
密質な組織となっていた。
When the cross section of the obtained sintered body was polished and the structure was observed by SEM, the sintered body had a highly dense structure having no pores.

【0029】この焼結体を3mm×4mm×40mmの大きさの
板状に切り出してテストピースとした。このテストピー
スについて、密度を測定するとともに、JIS R16
01に準拠して、室温及び1300℃における3点曲げ試験
を行った。また、SEPB法によって破壊靭性値を測定
した。各々の結果を表1に示す。
This sintered body was cut into a plate having a size of 3 mm × 4 mm × 40 mm to obtain a test piece. Regarding this test piece, the density was measured and the JIS R16
In accordance with No. 01, a three-point bending test was performed at room temperature and 1300 ° C. Further, the fracture toughness value was measured by the SEPB method. The results of each are shown in Table 1.

【0030】比較例1 再焼結を行わない以外は、実施例1と同様にして焼結体
を製造した。得られた焼結体の断面を研磨し、SEMに
て組織を観察したところ、焼結体は径が3μm以下の空
孔を多数有し、高緻密質でない組織となっていた。
Comparative Example 1 A sintered body was manufactured in the same manner as in Example 1 except that re-sintering was not performed. When the cross section of the obtained sintered body was polished and the structure was observed by SEM, the sintered body had a large number of pores with a diameter of 3 μm or less and was not a highly dense structure.

【0031】この焼結体を実施例1と同様にして切り出
し、密度、3点曲げ強度及び破壊靭性値を測定した。各
々の結果を表1に示す。
This sintered body was cut out in the same manner as in Example 1 and the density, 3-point bending strength and fracture toughness were measured. The results of each are shown in Table 1.

【0032】 表 1 実施例1 比較例1 密度(%) 96.5 93.83点曲げ強度(MPa ) 室温 937 720 1300℃ 473 450 破壊靭性値(MNm 3/2 ) 6.7 3.5 Table 1 Example 1 Comparative Example 1 Density (%) 96.5 93.8 Three-point bending strength (MPa) Room temperature 937 720 1300 ° C 473 450 Fracture toughness value (MNm 3/2 ) 6.7 3.5

【0033】表1から明らかなように、再焼結した焼結
体は、再焼結していない焼結体と比較して密度が高く、
曲げ強度及び破壊靭性に優れている。
As is apparent from Table 1, the re-sintered sintered body has a higher density than the non-re-sintered sintered body.
Excellent in bending strength and fracture toughness.

【0034】[0034]

【発明の効果】以上説明したように、本発明の方法によ
れば、窒化珪素粉末と特定の焼結助剤粉末とから作製し
た焼結体を、SiO2 と低融点化合物を形成する酸化物を
含有する雰囲気下で再焼結するため、高緻密質な窒化珪
素焼結体を製造することができる。この高緻密質窒化珪
素焼結体は、高温強度のみならず、破壊靭性や曲げ強度
等に優れているため、高温条件下で使用される構造材等
に好適である。
As described above, according to the method of the present invention, a sintered body prepared from silicon nitride powder and a specific sintering aid powder is used as an oxide which forms a low melting point compound with SiO 2 . Since it is re-sintered under an atmosphere containing, it is possible to manufacture a highly dense silicon nitride sintered body. This high-density silicon nitride sintered body is excellent not only in high-temperature strength but also in fracture toughness, bending strength, etc., and is therefore suitable as a structural material or the like used under high-temperature conditions.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (1) 窒化珪素粉末と、Y2 3 、又はY
2 3 と、Yb2 3、HfO2 、Er2 3 、Cr2 3 及びS
c2 3 からなる群から選ばれた1種又は2種以上の酸
化物とからなる焼結助剤粉末とから作製した成形体を焼
結し、(2) 得られた焼結体を、SiO2 と低融点化合物を
形成する酸化物を含有する雰囲気下で再焼結することに
より、前記焼結体を高緻密化することを特徴とする高緻
密質窒化珪素焼結体の製造方法。
1. (1) Silicon nitride powder and Y 2 O 3 or Y
2 O 3 and Yb 2 O 3 , HfO 2 , Er 2 O 3 , Cr 2 O 3 and S
(2) The obtained sintered body is sintered by sintering a molded body prepared from a sintering aid powder composed of one or more oxides selected from the group consisting of c 2 O 3 and the oxide. A method for producing a highly dense silicon nitride sintered body, characterized in that the sintered body is highly densified by re-sintering in an atmosphere containing an oxide forming a low melting point compound with SiO 2 .
【請求項2】 請求項1に記載の高緻密質窒化珪素焼結
体の製造方法において、SiO2 と低融点化合物を形成す
る前記酸化物が、Al2 3 、MgO及びY2 3 からなる
群から選ばれた1種又は2種以上からなることを特徴と
する方法。
2. The method for producing a highly dense silicon nitride sintered body according to claim 1, wherein the oxide forming the low melting point compound with SiO 2 is Al 2 O 3 , MgO and Y 2 O 3. A method comprising one or more selected from the group consisting of:
【請求項3】 窒化珪素と焼結助剤とを含有する成形体
を焼結し、次いでSiO2 と低融点化合物を形成する酸化
物を含有する雰囲気の下で再焼結して得られる窒化珪素
焼結体であって、前記焼結助剤のSiO2 との融点が1600
℃以上であり、前記酸化物のSiO2 との融点が1600℃以
下であることを特徴とする高緻密質窒化珪素焼結体。
3. A nitride obtained by sintering a compact containing silicon nitride and a sintering aid, and then re-sintering in an atmosphere containing SiO 2 and an oxide forming a low melting point compound. A silicon sintered body having a melting point of 1600 with respect to the sintering aid SiO 2
° C. or more, high dense silicon nitride sintered body having a melting point of the SiO 2 of the oxide is characterized in that it is 1600 ° C. or less.
JP34516693A 1993-12-21 1993-12-21 Highly dense silicon nitride sintered body and method for producing the same Expired - Fee Related JP3159350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34516693A JP3159350B2 (en) 1993-12-21 1993-12-21 Highly dense silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34516693A JP3159350B2 (en) 1993-12-21 1993-12-21 Highly dense silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07172931A true JPH07172931A (en) 1995-07-11
JP3159350B2 JP3159350B2 (en) 2001-04-23

Family

ID=18374739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34516693A Expired - Fee Related JP3159350B2 (en) 1993-12-21 1993-12-21 Highly dense silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3159350B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039306A (en) * 2005-07-07 2007-02-15 Kyocera Corp Silicon nitride-based sintered compact, method of manufacturing the same, member for semiconductor manufacturing apparatus and member for liquid crystal manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039306A (en) * 2005-07-07 2007-02-15 Kyocera Corp Silicon nitride-based sintered compact, method of manufacturing the same, member for semiconductor manufacturing apparatus and member for liquid crystal manufacturing apparatus

Also Published As

Publication number Publication date
JP3159350B2 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
JPH0255263A (en) Silicon nitride sintered body and production thereof
KR960016070B1 (en) Sintered aluminium nitride and its production
JPS6346031B2 (en)
JPH07172931A (en) Highly dense silicone nitride sintered compact and its production
US5605871A (en) Process of produciing sintered materials based on Si3 N4 /BN using Si-B-N component
JP2742619B2 (en) Silicon nitride sintered body
JPH04260669A (en) Production of silicon nitride composite material containing silicon carbide
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JPH01160870A (en) Silicon nitride sintered compact and production thereof
JP3570676B2 (en) Porous ceramic body and method for producing the same
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JPH082961A (en) Sintered compact of metal particle-dispersed aluminum oxide base and its production
JPH06116045A (en) Silicon nitride sintered compact and its production
JP2692377B2 (en) Silicon nitride sintered body and method for producing the same
JP2720201B2 (en) Method for producing silicon nitride sintered body
JP3144178B2 (en) Silicon nitride sintered body and method for producing the same
JPH06345535A (en) Production of silicon nitride sintered compact
JP3124866B2 (en) Method for producing silicon nitride based sintered body
JP2506519B2 (en) Low-temperature low-pressure sintered silicon nitride sintered body manufacturing method
JP3564164B2 (en) Silicon nitride sintered body and method for producing the same
JP2003040679A (en) Method of manufacturing silicon nitride sintered compact
JP2890849B2 (en) Method for producing silicon nitride sintered body
JPH07206526A (en) Production of silicon nitride sintered compact
JPH05294735A (en) Production of silicon nitride sintered compact
JPH10279365A (en) Dense silicon nitride sintered compact

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees