JPH07169566A - Connecting nipple of graphite electrode for dc electric steel making furnace - Google Patents

Connecting nipple of graphite electrode for dc electric steel making furnace

Info

Publication number
JPH07169566A
JPH07169566A JP5341865A JP34186593A JPH07169566A JP H07169566 A JPH07169566 A JP H07169566A JP 5341865 A JP5341865 A JP 5341865A JP 34186593 A JP34186593 A JP 34186593A JP H07169566 A JPH07169566 A JP H07169566A
Authority
JP
Japan
Prior art keywords
nipple
diameter
hole
electrode
graphite electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5341865A
Other languages
Japanese (ja)
Inventor
Hajime Ito
肇 伊藤
Keizo Motoyama
慶蔵 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP5341865A priority Critical patent/JPH07169566A/en
Publication of JPH07169566A publication Critical patent/JPH07169566A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Discharge Heating (AREA)

Abstract

PURPOSE:To prevent pressing crack damage of a socket part caused by thermal stress generated in a DC arc furnace by boring a through-hole having a specific range diameter in a taper nipple. CONSTITUTION:A hollow through-hole 4 is bored in the shaft direction in an end surface center part of a taper nipple 3. A diameter of this through-hole 4 is set within a range of 10 to 50% as a ratio d/D to a nipple maximum diameter D. In order to relieve push-dividing force of a socket part by thermal expansion of the nipple, it is effective to enlarge a through-hole diameter (d) to the nipple maximum diameter D. When a value of d/D is increased, reduction in effective strength of the nipple is incurred in the relationship that a hollow part becomes large. Thereby, the value of d/D must not exceed 50%. The lower limit of d/D is necessary to be set in 10% from a reduction degree of pressing crack stress of the socket part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、直流電気製鋼炉に用い
る黒鉛電極の改良された接続ニップルに関する。
FIELD OF THE INVENTION The present invention relates to an improved connecting nipple for a graphite electrode for use in a DC electric steelmaking furnace.

【0002】[0002]

【従来の技術】電気製鋼炉に使用される黒鉛電極は、操
業時に先端部分から消耗するため、逐次接続ニップルを
介して新たな電極を継ぎ足しながら連続的に操業されて
いる。黒鉛電極相互の接続は、図1に示すように消耗し
た下部電極2のソケット部(接続凹部)にニップル3の
下半長をねじ嵌合し、補充する上部電極1のソケット部
にニップル3の上半長をねじ嵌合する接続構造となって
おり、具体的な接続部の設計仕様についてはJISによ
って規格化されている。
2. Description of the Related Art A graphite electrode used in an electric steelmaking furnace is consumed from its tip portion during operation, and therefore, it is continuously operated while replenishing a new electrode via a sequentially connected nipple. The graphite electrodes are connected to each other by screwing the lower half length of the nipple 3 into the socket portion (connection recess) of the consumed lower electrode 2 as shown in FIG. It has a connection structure in which the upper half length is screw-fitted, and specific design specifications of the connection part are standardized by JIS.

【0003】しかしながら、黒鉛電極は比較的脆弱な人
造黒鉛の円柱成形体により構成されているため、炉内の
固形物との接触や衝突による機械的応力、あるいは半径
方向の温度差による熱応力により材質破損して炉中に脱
落する事故が発生する。この際、脱落する電極部分が大
きいと操業性を乱す原因となり、操炉の安定性が著しく
損なわれる。
However, since the graphite electrode is composed of a relatively fragile cylindrical molded body of artificial graphite, it is subject to mechanical stress due to contact or collision with solid matter in the furnace or thermal stress due to a temperature difference in the radial direction. An accident occurs in which the material is damaged and falls into the furnace. At this time, if the electrode portion that falls off is large, it will disturb the operability, and the stability of the furnace will be significantly impaired.

【0004】電気製鋼炉は、その電源の種類によって交
流アーク式と直流アーク式に区別されているが、これら
は炉構造が異なるため破損事故の態様にも相違が現れ
る。すなわち、前者の交流アーク式の炉においては複数
本の電極が同時に炉内に挿入されている関係でスクラッ
プのもたれ込みその他の原因で固形物に接触・衝突する
機会が多くなるため、主に機械的応力の偏りに基づく材
質破損が発生する。この折損事故を防止するための接続
部分の改良については、古くから数多くの提案がなされ
ている。例えば、実公昭56−7115号公報には、ニ
ップル端部に、その直径の50〜80%の径を有する肉
ぬすみを設けると共に、この肉ぬすみ部をポールのソケ
ット底部に螺合してなる電極継手が、また実公昭56−
18629号公報には、ニップルの端面から内部に向け
て1−数個の孔を設け、その孔の直径がその端面直径の
1/15以上、1/4以下で且つ深さが孔直径の25倍
以上、ニップル全長の2/3以下である黒鉛電極の接続
ニップルが開示されている。
The electric steelmaking furnace is classified into an AC arc type and a DC arc type according to the type of its power source. However, since the furnace structures are different, a difference occurs in the mode of damage accident. In other words, in the former AC arc type furnace, since multiple electrodes are inserted into the furnace at the same time, the chances of scrap coming in and contacting or colliding with solid matter due to other causes are increased, and so the machine is mainly used. Material damage occurs due to the bias of dynamic stress. Many proposals have been made for a long time to improve the connection portion for preventing the breakage accident. For example, in Japanese Utility Model Publication No. 56-7115, an electrode is provided in which a flesh shaving having a diameter of 50 to 80% of the diameter is provided at the end of the nipple, and the slushing is screwed onto the socket bottom of the pole. The joint is again the actual Kosho 56-
In Japanese Patent No. 18629, one to several holes are provided from the end face of the nipple toward the inside, and the diameter of the hole is 1/15 or more and 1/4 or less of the end face diameter and the depth is 25 of the hole diameter. A connection nipple for a graphite electrode is disclosed that is more than double and less than or equal to 2/3 of the total length of the nipple.

【0005】一方、直流アーク炉の電極は表皮効果がな
い関係で、交流アーク炉に比べて断面積方向に均一に電
流が流れる。したがって、半径方向の温度差が大きくな
り易く、この傾向は直流アーク炉用の黒鉛電極サイズが
大径であるため一層顕著となる。このようなことから、
直流アーク炉では固形物との接触や衝突による機械的応
力よりも半径方向の温度差に基づく熱応力による材質破
損の方が問題となり、とくに電極接続部において内部に
位置するニップルが熱膨張してソケット部を押し割る破
損事故が多く発生する。
On the other hand, since the electrodes of the DC arc furnace have no skin effect, a current flows more uniformly in the cross-sectional area direction than the AC arc furnace. Therefore, the temperature difference in the radial direction tends to be large, and this tendency becomes more remarkable because the size of the graphite electrode for a DC arc furnace is large. From such a thing,
In a DC arc furnace, material damage due to thermal stress due to the temperature difference in the radial direction becomes more problematic than mechanical stress due to contact or collision with solid matter, and especially the nipple located inside the electrode thermal expansion expands. There are many accidents that break the socket.

【0006】しかしながら、上記した従来技術によるニ
ップルの改良はいずれも交流アーク炉を対象とした機械
的応力による破損に着目したものであって、熱応力に基
づく破損への対策については考慮されていない。すなわ
ち、現状では直流アーク炉に使用する黒鉛電極の接続部
に発生する熱応力に基づく破損事故の対策は未だ不十分
である。
However, any of the above-mentioned improvements of the nipple according to the prior art focuses on the damage due to mechanical stress in the AC arc furnace, and no consideration is given to measures against damage due to thermal stress. . That is, at present, measures against damage accidents due to thermal stress generated in the connection portion of the graphite electrode used in the DC arc furnace are still insufficient.

【0007】[0007]

【発明が解決しようとする課題】一般に、電極の半径方
向に生じるニップルの熱膨張によるソケット部の押し割
りに対しては、電極材質よりもニップル材質の熱膨張係
数を小さくすることが有効な対応手段とされているが、
高電流を使用する直流アーク炉においてはニップルの温
度が高くなり、高温ではニップル材の方が電極よりも熱
膨張量が大きくなるため、ニップル材質の熱膨張係数を
小さく設計する方法は必ずしも万全な対策とはならな
い。
Generally, for the cracking of the socket portion due to the thermal expansion of the nipple which occurs in the radial direction of the electrode, it is effective to make the thermal expansion coefficient of the nipple material smaller than that of the electrode material. It is said that
In a DC arc furnace that uses a high current, the temperature of the nipple is high, and at high temperatures, the nipple material has a larger amount of thermal expansion than the electrode.Therefore, it is not always possible to design a method with a small thermal expansion coefficient for the nipple material. It is not a countermeasure.

【0008】本発明は、材質物性を変更せずに単純なニ
ップル形状の設計変更によって破損事故の軽減化を図っ
たもので、その目的は、直流アーク炉において発生する
熱応力に基づくソケット部の押し割り破損を効果的に防
止することができる黒鉛電極の接続ニップルを提供する
ことにある。
The present invention is intended to reduce damage accidents by simply changing the design of the nipple shape without changing the physical properties of the material, and the purpose thereof is to improve the socket part based on the thermal stress generated in the DC arc furnace. It is intended to provide a connecting nipple for a graphite electrode which can effectively prevent breakage by crushing.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による直流電気製鋼用黒鉛電極の接続ニップ
ルは、直流アーク式の電気製鋼炉に使用する黒鉛電極相
互を接続するためのテーパーニップルにおいて、端面中
心部に軸方向に沿ってニップル最大径に対し10〜50
%に相当する直径の貫通孔を穿設してなることを構成上
の特徴とする。
A connecting nipple for a graphite electrode for direct current electric steelmaking according to the present invention for achieving the above object is a taper for connecting graphite electrodes used in a direct current arc electric steelmaking furnace. In the nipple, 10 to 50 with respect to the maximum diameter of the nipple along the axial direction at the center of the end surface.
The structural feature is that a through hole having a diameter corresponding to% is formed.

【0010】図1(断面図)および図2(図1のA−A
断面図)は、本発明の接続ニップルを嵌合した電極接続
部を例示したもので、2は下部電極、1は上部電極、そ
して3は上下電極のソケット部にねじ嵌合されたテーパ
ーニップルである。この接続構造は従来と相違はない
が、本発明ではテーパーニップル3の端面中心部に軸方
向に沿って中空状の貫通孔4が穿設されている。前記貫
通孔4の直径(d) は、ニップル最大径(D) に対する比率
(以下「d/D」という。) として10〜50%の範囲
になるように設定することが本発明の重要な要件とな
る。
FIG. 1 (cross-sectional view) and FIG. 2 (A-A in FIG. 1)
(Cross-sectional view) shows an example of an electrode connection part in which the connection nipple of the present invention is fitted, 2 is a lower electrode, 1 is an upper electrode, and 3 is a tapered nipple screwed into the socket parts of the upper and lower electrodes. is there. Although this connection structure is not different from the conventional structure, in the present invention, a hollow through hole 4 is bored in the center of the end surface of the tapered nipple 3 along the axial direction. It is an important requirement of the present invention that the diameter (d) of the through hole 4 is set to be in the range of 10 to 50% as a ratio (hereinafter referred to as "d / D") to the maximum diameter (D) of the nipple. Becomes

【0011】熱応力によるソケット部の押し割り現象は
非常に複雑であるが、数値解析の一手法である有限要素
法により解析することができる。この際、ニップルと電
極ソケット部で構成される三次元構造物の接続部を軸対
称と仮定し、図3に示した1/4(右下部分)の図形と
して要素分割する。この手法により、常温で無負荷の状
態で嵌合している標準仕様の電極接続部において、ニッ
プルが1000℃に、ソケット部が800℃にそれぞれ
昇温した場合の熱膨張のみによる熱応力解析をおこなう
と、ニップルが熱膨張してソケット部を押し割る際、ソ
ケット部は縦割れ破損する。このソケット部の縦割れは
図3のフープ応力(σθ)成分の偏りによって発生する
が、接続部分のフープ応力(σθ)成分の分布は図4の
ようになる。そして、ソケット部の縦割れの主因となる
フープ応力(σθ)が最も高い箇所は図4に示すA位置
であり、この部位からソケット部の縦割れが発生する。
The cracking phenomenon of the socket portion due to thermal stress is very complicated, but it can be analyzed by the finite element method which is one of the numerical analysis methods. At this time, the connection portion of the three-dimensional structure composed of the nipple and the electrode socket portion is assumed to be axisymmetric, and the elements are divided into the 1/4 (lower right portion) figure shown in FIG. With this method, thermal stress analysis is performed only by thermal expansion when the temperature of the nipple is raised to 1000 ° C and the temperature of the socket is raised to 800 ° C in the standard specification electrode connection part that is fitted at room temperature with no load. If this is done, when the nipple thermally expands and pushes the socket portion, the socket portion is broken by vertical cracks. The vertical cracking of the socket portion occurs due to the bias of the hoop stress (σθ) component in FIG. 3, but the distribution of the hoop stress (σθ) component in the connection portion is as shown in FIG. The position where the hoop stress (σθ), which is the main cause of the vertical cracking of the socket portion, is highest is the position A shown in FIG. 4, and the vertical cracking of the socket portion occurs from this position.

【0012】図4のA位置のフープ応力(σθ)は、接
続構造を変えずにニップルの端面中心部に軸方向に沿っ
て貫通孔を穿設し、この貫通孔のニップル最大径(D) に
対する直径(d) の比率(d/D%)を大きくするに従って低下
する傾向を示す。すなわち、d/D(%) とソケット部の
A位置におけるフープ応力(σθ)との関係は、表1の
ようになる。
The hoop stress (σθ) at the position A in FIG. 4 is obtained by forming a through hole along the axial direction in the center of the end surface of the nipple without changing the connection structure, and the maximum diameter (D) of the nipple of this through hole. It shows a tendency to decrease as the ratio of the diameter (d) to (d / D%) increases. That is, Table 1 shows the relationship between d / D (%) and the hoop stress (σθ) at the position A of the socket.

【0013】[0013]

【表1】 [Table 1]

【0014】したがって、ニップルの熱膨張によるソケ
ット部の押し割り力を緩和するためには、単純にニップ
ル最大径(D) に対する貫通孔の直径(d) を大きく設計す
ることが効果的である。ところが、接続部の全体強度と
しては、ソケット部だけでなく、ニップル自体の実効強
度も考慮しなければならない。d/D(%) の値を増大す
ると、中空部分が大きくなる関係で当然ながらニップル
実効強度の低下を招く。図4の応力分布から認められる
ように、ニップルの破壊は図4に示すB位置で横に割れ
るタイプのもので、破壊の応力成分はσzである。この
B位置における応力成分(σz)は上記の有限要素解析
で求められており、これとd/D(%) との関係は表1に
示すとおり、d/D(%) を大きくするに従って応力成分
(σz)の値も増大する。
Therefore, it is effective to simply design the diameter (d) of the through hole to be larger than the maximum diameter (D) of the nipple in order to alleviate the pushing force of the socket portion due to the thermal expansion of the nipple. However, as the overall strength of the connecting portion, not only the socket portion but also the effective strength of the nipple itself must be considered. When the value of d / D (%) is increased, the hollow portion becomes large, which naturally causes a decrease in the effective nipple strength. As can be seen from the stress distribution of FIG. 4, the fracture of the nipple is of a type that is laterally split at the position B shown in FIG. 4, and the stress component of the fracture is σz. The stress component (σz) at this B position is obtained by the above finite element analysis, and the relationship between this and d / D (%) is as shown in Table 1, as the d / D (%) is increased. The value of the component (σz) also increases.

【0015】このように、d/D(%) を大きくすると、
ニップルの熱膨張によるソケット押し割り力は低下して
ソケット部の実効強度は高くなる一方、ニップルの実効
強度は低下する。d/Dの値が50%の時の応力成分
(σz)は260kg/cm2で、ニップルの引張り強度の最
高値と一致する。したがって、d/Dの値は50%を越
えてはならない。また、ソケット部の押し割り応力(σ
θ)の低減度合から、d/Dの下限は10%とする必要
がある。本発明において限定したd/D=10〜50%
の範囲は、上記の理由に基づいて設定されたものである
が、好ましいd/Dの範囲は20〜40%、より好まし
くは10〜13%に設定することである。
Thus, when d / D (%) is increased,
The socket pushing force due to the thermal expansion of the nipple decreases and the effective strength of the socket portion increases, while the effective strength of the nipple decreases. When the value of d / D is 50%, the stress component (σz) is 260 kg / cm 2 , which coincides with the maximum tensile strength of the nipple. Therefore, the value of d / D should not exceed 50%. Also, the split stress (σ
The lower limit of d / D needs to be 10% from the degree of reduction of θ). D / D limited in the present invention = 10 to 50%
The range d is set based on the above reason, but a preferable range of d / D is 20 to 40%, more preferably 10 to 13%.

【0016】[0016]

【作用】本発明によれば、直流アーク式の電気製鋼炉に
使用する黒鉛電極の接続ニップルを、端面中心部に軸方
向に沿ってニップル最大径に対し10〜50%に相当す
る直径の貫通孔を設ける構造に改良することにより、ニ
ップルの実効強度を損ねることなしに、操業時、ニップ
ルの熱膨張に基づくソケット部の熱応力の偏りを巧みに
緩和し、その押し割り破損を効果的に防止することが可
能となる。
According to the present invention, the connecting nipple of the graphite electrode used in the DC arc type electric steelmaking furnace is penetrated through the center of the end face along the axial direction with a diameter corresponding to 10 to 50% of the maximum diameter of the nipple. By improving the structure with holes, the bias of thermal stress in the socket part due to the thermal expansion of the nipple during operation is skillfully mitigated without impairing the effective strength of the nipple, and the breakage of the cracks is effectively prevented. It becomes possible to do.

【0017】この作用により、操業時、電極接続部の破
損事故が全体として減少し、かつ電極先端部の脱落長さ
が短くなるとともに、電極先端部が脱落した後に露出し
たニップルの耐用回数が向上する。この作用効果は、下
記の実施例による実証データによって十分に確認され
る。
By this action, the accidental damage to the electrode connecting portion during operation is reduced as a whole, and the falling length of the electrode tip portion is shortened, and the service life of the nipple exposed after the electrode tip portion is dropped is improved. To do. This effect is fully confirmed by the empirical data of the examples below.

【0018】[0018]

【実施例】以下、本発明の接続ニップルを嵌合した黒鉛
電極を用い、実際の直流電気製鋼炉に実用した実施例を
示す。
EXAMPLE An example in which a graphite electrode fitted with the connection nipple of the present invention is used in an actual DC electric steelmaking furnace will be described below.

【0019】実施例1、比較例1 直径764mm、長さ2700mmの黒鉛電極を、ニップル
最大径(D) が406mmで、その端面中心部に軸方向に沿
って直径(d) 50mmの貫通孔を穿設した構造のテーパー
ニップル(d/D=12%)で嵌合接続し、直流電気製鋼炉(1
50t)で製鋼操業を実施した。黒鉛電極の材質は、曲
げ強度130kgf/cm2 、熱膨張係数は0.40×10-6
/℃(常温〜100 ℃) であり、ニップルを構成する黒鉛
材質は、曲げ強度300kgf/cm2 、熱膨張係数は0.0
1×10-6/℃(常温〜100 ℃)であった。この場合の
実用成績を全接続部の破損事故件数として表2に示し
た。なお、比較のために同一の黒鉛電極に貫通孔を穿設
しない同一の標準ニップルを嵌合し、同様に操業した際
の実用成績(比較例1)を表2に併載した。
Example 1 and Comparative Example 1 A graphite electrode having a diameter of 764 mm and a length of 2700 mm was formed with a through hole having a maximum nipple diameter (D) of 406 mm and a diameter (d) of 50 mm along the axial direction at the center of the end face. Fitted and connected with a tapered nipple (d / D = 12%) with a drilled structure, and a DC electric steelmaking furnace
Steelmaking operation was carried out at 50 t). The graphite electrode material has a bending strength of 130 kgf / cm 2 and a thermal expansion coefficient of 0.40 × 10 -6.
/ ° C (normal temperature to 100 ° C), the graphite material forming the nipple has a bending strength of 300 kgf / cm 2 and a thermal expansion coefficient of 0.0.
It was 1 × 10 −6 / ° C. (normal temperature to 100 ° C.). The practical results in this case are shown in Table 2 as the number of damage accidents on all the connection parts. For comparison, Table 2 also shows practical results (Comparative Example 1) when the same graphite electrode was fitted with the same standard nipple having no through holes and the same operation was performed.

【0020】[0020]

【表2】 [Table 2]

【0021】表2の結果から、d/Dが12%の貫通孔
を穿設した実施例1の接続ニップルを使用した実施例1
の接続部は、比較例1に比べて中間および先端接続部の
ソケット縦割りによる破損事項件数が大幅に減少するこ
とが認められた。
From the results of Table 2, Example 1 using the connecting nipple of Example 1 having a through hole with d / D of 12% was drilled.
It was confirmed that the number of damages to the connection portion of No. 2 was significantly reduced as compared with Comparative Example 1 due to vertical division of the sockets of the intermediate and tip connection portions.

【0022】実施例2〜3、比較例2〜3 直径714mm、長さ2700mmの黒鉛電極を、ニップル
最大径(D) が375mmで、端面中心部に軸方向に沿って
d/Dが10%および13%に相当する直径(d) の貫通
孔(d) を穿設した構造のテーパーニップルで嵌合接続
し、直流電気製鋼炉(120t)で製鋼操業を実施し
た。黒鉛電極およびニップルは、実施例1と同一材質と
した。操業時における電極先端部分の平均脱落長さと先
端電極脱落後に露出したニップルの耐用回数を測定し、
結果を表3に示した。比較のために、ニップルに貫通孔
を設けないほかは同一の接続部について実施した場合の
結果を表3に併載した(比較例2、3)。
Examples 2 to 3, Comparative Examples 2 to 3 A graphite electrode having a diameter of 714 mm and a length of 2700 mm was used, and the maximum diameter (D) of the nipple was 375 mm and d / D was 10% along the axial direction at the center of the end face. And a through hole (d) having a diameter (d) corresponding to 13% were fitted and connected by a tapered nipple having a structure having a through hole (d), and a steelmaking operation was carried out in a DC electric steelmaking furnace (120 t). The graphite electrode and the nipple were made of the same material as in Example 1. During operation, measure the average drop length of the electrode tip and the service life of the exposed nipple after tip electrode drop,
The results are shown in Table 3. For comparison, the results of the case where the same connection portion was carried out except that no through hole was provided in the nipple were also shown in Table 3 (Comparative Examples 2 and 3).

【0023】[0023]

【表3】 [Table 3]

【0024】表3の結果から、貫通孔を形成したニップ
ルによる実施例の接続部では、標準ニップルを用いた比
較例に比べて先端脱落長さが短くなり、またニップルが
破損しないため露出ニップルの耐用回数も改善されてい
ることが判明した。
From the results shown in Table 3, in the connection portion of the embodiment using the nipple having the through hole, the tip drop length is shorter than that of the comparative example using the standard nipple, and the nipple is not damaged, so that the exposed nipple is not damaged. It was found that the service life was also improved.

【0025】[0025]

【発明の効果】以上のとおり、本発明によればテーパー
ニップルに特定範囲の直径をもつ貫通孔を穿設する簡単
な構造変更を施すことにより、ニップルの材質強度を損
ねることなしに直流電気製鋼時における電極ソケット部
の破損事故を大幅に低減することができる。したがっ
て、直流電気製鋼の炉操業の効率性と安定性を高めるこ
とが可能となる。
As described above, according to the present invention, the taper nipple is provided with a through hole having a diameter in a specific range by simply changing the structure, so that the DC electric steelmaking can be performed without deteriorating the material strength of the nipple. It is possible to greatly reduce the damage accident of the electrode socket portion at the time. Therefore, it is possible to improve the efficiency and stability of the furnace operation of DC electric steelmaking.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の接続ニップルを嵌合した電極接続部を
例示した断面説明図である。
FIG. 1 is a cross-sectional explanatory view illustrating an electrode connection portion fitted with a connection nipple of the present invention.

【図2】図1のA−A線に沿う断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】電極接続部の1/4(右下部分)の熱応力解析
のための要素分割図である。
FIG. 3 is an element division diagram for thermal stress analysis of ¼ (lower right portion) of an electrode connection portion.

【図4】電極接続部の応力分布図である。FIG. 4 is a stress distribution diagram of an electrode connecting portion.

【符号の説明】[Explanation of symbols]

1 上部電極 2 下部電極 3 テーパーニップル 4 貫通孔 1 Upper electrode 2 Lower electrode 3 Tapered nipple 4 Through hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 直流アーク式の電気製鋼炉に使用する黒
鉛電極相互を接続するためのテーパーニップルにおい
て、端面中心部に軸方向に沿ってニップル最大径に対し
10〜50%に相当する直径の貫通孔を穿設してなるこ
とを特徴とする直流電気製鋼炉用黒鉛電極の接続ニップ
ル。
1. A tapered nipple for connecting graphite electrodes used in a DC arc type electric steelmaking furnace, which has a diameter corresponding to 10 to 50% of the maximum diameter of the nipple along the axial direction at the center of the end face. A connection nipple for a graphite electrode for a DC electric steelmaking furnace, characterized in that a through hole is formed.
JP5341865A 1993-12-13 1993-12-13 Connecting nipple of graphite electrode for dc electric steel making furnace Pending JPH07169566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5341865A JPH07169566A (en) 1993-12-13 1993-12-13 Connecting nipple of graphite electrode for dc electric steel making furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5341865A JPH07169566A (en) 1993-12-13 1993-12-13 Connecting nipple of graphite electrode for dc electric steel making furnace

Publications (1)

Publication Number Publication Date
JPH07169566A true JPH07169566A (en) 1995-07-04

Family

ID=18349349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5341865A Pending JPH07169566A (en) 1993-12-13 1993-12-13 Connecting nipple of graphite electrode for dc electric steel making furnace

Country Status (1)

Country Link
JP (1) JPH07169566A (en)

Similar Documents

Publication Publication Date Title
US8101882B2 (en) Plasma torch electrode with improved insert configurations
CN101010840B (en) Spark plug configuration having a metal noble tip
US4152533A (en) Electrode joint
CN104350387A (en) Test probe and machining method thereof
JPH07169566A (en) Connecting nipple of graphite electrode for dc electric steel making furnace
EP1878314B1 (en) Electrode joint
JP3105440B2 (en) Fixing device to prevent loosening of electrode joint
JP3669662B2 (en) Connection structure of graphite electrode for electric furnace
JPH10321364A (en) Graphite electrode for electric furnace
CN210564412U (en) Integral metal slip
EP0101819A1 (en) Tapered threaded electrode joint and method for joining two electrode sections
CN214950544U (en) Top beam not easy to sink for push plate kiln
JP2003092179A (en) Structure of graphite electrode connection part
WO2023119772A1 (en) Electrode assembly
CN209766658U (en) Carbon electrode joint with step-type thread structure and carbon electrode
JPS58958Y2 (en) Joints of graphite electrodes for steelmaking
JPH11345685A (en) Nipple for electrode
CN210937522U (en) Spiral point sawtooth screw tap
US4691324A (en) Electrode connection
KR19980034246A (en) Drill bits for rock drilling
CN210137465U (en) Carbon electrode with step-type thread structure
CN214198767U (en) Semiconductor ignition gun
CN216046818U (en) Anti-deformation high-precision ultrathin aluminum profile
CN214032572U (en) Electrode lengthening device
CN217192790U (en) High-temperature alloy integral hard drill bit with tool grinding coating

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041104