JPH07167627A - Detector for external-size abnormality - Google Patents

Detector for external-size abnormality

Info

Publication number
JPH07167627A
JPH07167627A JP31673993A JP31673993A JPH07167627A JP H07167627 A JPH07167627 A JP H07167627A JP 31673993 A JP31673993 A JP 31673993A JP 31673993 A JP31673993 A JP 31673993A JP H07167627 A JPH07167627 A JP H07167627A
Authority
JP
Japan
Prior art keywords
light
light receiving
diffraction pattern
wire rod
receiving sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31673993A
Other languages
Japanese (ja)
Inventor
Samon Oya
左門 大家
Takashi Ota
尚 太田
Takashi Matsuoka
孝志 松岡
Susumu Fukushima
晋 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP31673993A priority Critical patent/JPH07167627A/en
Publication of JPH07167627A publication Critical patent/JPH07167627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To detect the abnormality of external size at high speed with high accuracy by monitoring the movement of a diffraction pattern due to the fluctuation of the external size of a specimen by a pair of photosensors. CONSTITUTION:When laser beams 31 are formed into a parallel luminous flux by a lens 32 and converged by a lens 33, the diffraction pattern 30 of a wire rod 2 as a specimen arranged between the two lenses 32, 33 is observed on a detecting surface 34, and the direction of the expansion of the pattern 30 crosses at a right angle with the direction of the extension of the wire rod 2. Two pairs of photosensors 41 consisting of photosensors 41a, 41b are arranged at places, where for example primary diffracted light in a specified order is received in the pattern 30 on a substrate 40 disposed on the detecting surface 34 at that time. Consequently, the sensors 41a, 41b mutually receive the primary diffracted light by the same quantity of light when the wire rod 2 has size in conformity with the stipulations. When the wire rod 2 has thicker (thinner) than the stipulations, light having the larger quantity of light is projected to the sensor 41a,(41b). Accordingly, the difference of the light-receiving signals of the sensors 41a, and 41b, is arithmetically operated, thus detecting the normality and abnormality of the external size of the wire rod 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、線材や球体等の被検体
の外形寸法の異常を検出する外形寸法異常検出装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an external dimension abnormality detecting device for detecting an abnormality in the external dimension of a subject such as a wire rod or a sphere.

【0002】[0002]

【従来の技術】従来より、例えば糸やワイヤの線材の製
造工程や、例えば糸から布を織る工程や銅線を束ねて被
覆し電気ケーブルを製造する工程等、その線材を用いた
製品を製造する製造工程において、その長手方向に連続
的に送られてくる線材の外形寸法をチェックし、異常の
有無の検査を行なう検査工程が置かれている。この外形
寸法のチェックは線材に限らず球体やその他の形状の製
品検査においても行なわれている。
2. Description of the Related Art Conventionally, for example, a process of manufacturing a wire material of a thread or a wire, a process of weaving a cloth from a thread, a process of bundling and covering copper wires to manufacture an electric cable, and manufacturing a product using the wire material. In the manufacturing process described above, there is an inspection process for checking the outer dimensions of the wire continuously fed in the longitudinal direction and inspecting for abnormalities. This external dimension check is performed not only for wire rods but also for product inspection of spheres and other shapes.

【0003】従来、外形寸法のチェックを行なう手法と
して、例えば以下の手法が考えられている。図16は、
外形寸法のチェックを行なう一手法を示した模式図であ
る。光源10から発せられた光ビーム11を矢印方向に
高速で回転する回転多面鏡12で反射させ被検体1を横
切るようにその被検体1を走査し、その被検体1の背後
に配置された受光素子アレイ13で受光し、その受光信
号に基づいて被検体1の影の部分の寸法が測定され、被
検体1の外形寸法の正常,異常が判定される。
Conventionally, for example, the following method has been considered as a method for checking the external dimensions. 16
It is a schematic diagram showing one method of checking the external dimensions. A light beam 11 emitted from a light source 10 is reflected by a rotating polygon mirror 12 that rotates at a high speed in the direction of an arrow, and the subject 1 is scanned so as to cross the subject 1, and the light received behind the subject 1 is received. Light is received by the element array 13, and the size of the shaded portion of the subject 1 is measured based on the received light signal to determine whether the outer dimensions of the subject 1 are normal or abnormal.

【0004】図17は、外形寸法のチェックを行なうも
う1つの手法を示した模式図である。光源20から発せ
られた発散光束21がレンズ22で平行光束23に変換
され、レンズ24を経由して受光素子アレイ25上に照
射される。2つのレンズ22,24の中間に被検体1を
配置すると受光素子アレイ25にその被検体1の影が形
成され、その影の寸法が測定されて被検体1の外形寸法
の正常,異常が判定される。
FIG. 17 is a schematic diagram showing another method for checking the external dimensions. The divergent light beam 21 emitted from the light source 20 is converted into a parallel light beam 23 by the lens 22 and is irradiated onto the light receiving element array 25 via the lens 24. When the subject 1 is arranged between the two lenses 22 and 24, a shadow of the subject 1 is formed on the light-receiving element array 25, and the dimension of the shadow is measured to determine whether the outer dimension of the subject 1 is normal or abnormal. To be done.

【0005】[0005]

【発明が解決しようとする課題】図16,図17に示し
た外形寸法をチェックする手法は、いずれも受光素子ア
レイ上に形成された被検体の影のエッジをとらえてその
影の寸法を測定し、その寸法から被検体の外形寸法の正
常,異常を検出する手法である。ところが、一例を挙げ
ると、糸から布を織る工程では、糸が例えば6000m
/分もの高速で織機に搬送されて布が織られており、そ
の糸の搬送の途中で、図16,もしくは図17に示す手
法を用いて糸の外形寸法のチェックを行なうことを考え
た場合、受光素子アレイの走査速度等の問題から例えば
約10cmおきにしか外形寸法を測定することができ
ず、検出の間隔が粗すぎるという問題がある。例えば上
述の布を織る工程を例にとると、高速で搬送されてきた
糸が切れると途中まで織った布が製品化できず多大の損
失となる場合があり、10cmおきどころが、常に連続
的にモニタしている必要がある。
Both of the techniques for checking the external dimensions shown in FIGS. 16 and 17 measure the size of the shadow of the subject formed on the light-receiving element array by capturing the edge of the shadow. Then, it is a method of detecting whether the external dimensions of the subject are normal or abnormal from the dimensions. However, to give an example, in the process of weaving cloth from yarn, the yarn is, for example, 6000 m.
When the cloth is conveyed to the loom at a speed as high as 1 / min, and it is considered to check the external dimensions of the thread using the method shown in FIG. 16 or 17 during the conveyance of the thread. However, due to problems such as the scanning speed of the light-receiving element array, the external dimensions can be measured only every about 10 cm, and the detection interval is too coarse. For example, taking the above-mentioned cloth weaving process as an example, if the yarn conveyed at a high speed is broken, the cloth woven halfway may not be commercialized, resulting in a great loss. Need to be monitored.

【0006】また、検出の間隔の問題とは別に、受光素
子アレイを構成する受光素子のピッチの問題から、寸法
の検出分解能が十分ではないという問題もある。本発明
は、上記事情に鑑み、被検体の外形寸法の異常を、従来
と比べ高速かつ高精度に検出することのできる外形寸法
異常検出装置を提供することを目的とする。
In addition to the problem of the detection interval, there is also a problem that the dimensional detection resolution is not sufficient due to the problem of the pitch of the light receiving elements that form the light receiving element array. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an external dimension abnormality detecting device capable of detecting an abnormality in the external dimension of a subject at a higher speed and with higher accuracy than in the past.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明の外形寸法異常検出装置は、 (1)所定の検出面上に被検体の回析パターンを形成す
る回折光学系 (2)検出面上に、被検体の外形寸法の変動により回折
パターンが伸縮する方向に互いに離れて配置された少な
くとも2つの受光センサ (3)受光センサそれぞれで得られた信号どうしの相違
を表す信号に基づいて被検体の外形寸法の正常、異常を
判定する信号処理部を備えたことを特徴とするものであ
る。
The external dimension abnormality detecting apparatus of the present invention which achieves the above object is (1) a diffractive optical system for forming a diffraction pattern of an object on a predetermined detection surface (2) a detection surface Above, at least two light-receiving sensors arranged apart from each other in the direction in which the diffraction pattern expands and contracts due to fluctuations in the external dimensions of the subject. (3) Based on the signals representing the differences between the signals obtained by the light-receiving sensors, respectively. It is characterized in that it is provided with a signal processing unit for judging whether the external dimensions of the sample are normal or abnormal.

【0008】ここで、上記2つの受光センサを、上記回
折パターンのうち、互いに同一次数の回折光を受光する
ように配置することが好ましい。
Here, it is preferable that the two light receiving sensors are arranged so as to receive diffracted lights of the same order among the diffraction patterns.

【0009】[0009]

【作用】上記本発明の外形寸法異常検出装置は、回析パ
ターンの移動を一対の受光センサで常にモニタするもの
であり、高精度かつ高分解能の検出が可能となる。また
信号処理部は、一対の受光センサの出力の差分の検出等
の簡単なアナログ処理ですむため、応答速度が速く、連
続的かつ高速な検出が可能となる。
The above-mentioned apparatus for detecting an abnormality in external dimensions according to the present invention constantly monitors the movement of the diffraction pattern with a pair of light receiving sensors, and can detect with high accuracy and high resolution. Further, since the signal processing unit only needs to perform simple analog processing such as detection of the difference between the outputs of the pair of light receiving sensors, the response speed is fast and continuous and high speed detection is possible.

【0010】[0010]

【実施例】ここでは先ず回折パターンの原理について説
明し、次いで本発明の実施例について説明する。図1
は、回折パターンを得る光学系の模式図、図2は線材の
回折パターンの模式図、図3は線材の回折パターンの強
度分布を表した図である。
EXAMPLES First, the principle of the diffraction pattern will be described, and then examples of the present invention will be described. Figure 1
2 is a schematic diagram of an optical system for obtaining a diffraction pattern, FIG. 2 is a schematic diagram of a diffraction pattern of a wire, and FIG. 3 is a diagram showing an intensity distribution of the diffraction pattern of the wire.

【0011】レーザ光31をレンズ32で平行光束に
し、レンズ33で集光すると、そのレンズ33の後側焦
点面(検出面)34に、2つのレンズ32,33の間に
配置された被検体(ここでは線材2)の回折パターン3
0が観測される。この回折パターン30の広がる方向
は、図2に示すように、線材2の延びる方向と直交する
方向である。
When the laser light 31 is made into a parallel light flux by the lens 32 and is condensed by the lens 33, the subject positioned between the two lenses 32, 33 on the rear focal plane (detection surface) 34 of the lens 33. Diffraction pattern 3 of (here, wire 2)
0 is observed. The spreading direction of the diffraction pattern 30 is, as shown in FIG. 2, a direction orthogonal to the extending direction of the wire 2.

【0012】ここで、もしレンズ32,33の間を通る
線材2の径が太くなると、図3(A)に示すように回折
パターン30が矢印A方向に縮まり、線材2の径が細く
なると、図3(B)に示すように回折パターン30が矢
印B方向に広がる。このように、回折パターン30は、
線材2の太さに関係するが、線材2が2つのレンズ3
2,33(図1参照)の間のどこを通過してもその回折
パターンおよびその回折パターンが形成される位置は不
変である。
Here, if the diameter of the wire 2 passing between the lenses 32 and 33 becomes thicker, the diffraction pattern 30 shrinks in the direction of arrow A as shown in FIG. 3A, and if the diameter of the wire 2 becomes thinner, As shown in FIG. 3B, the diffraction pattern 30 spreads in the direction of arrow B. Thus, the diffraction pattern 30 is
Although it depends on the thickness of the wire rod 2, the lens 3 with two wire rods 2
The diffraction pattern and the position where the diffraction pattern is formed remain unchanged regardless of where the beam passes between 2, 33 (see FIG. 1).

【0013】本発明は、この原理を応用したものである
が、受光センサに工夫があり、高速かつ高精度な外形寸
法異常検出を可能としたものである。図4は図1に示す
ような線材2の外形寸法の異常検出に用いられる受光セ
ンサの第1の実施例を示す正面図である。図1に示す検
出面34に配置される基板40上の、図3に示すような
回折パターン30のうちの所定の次数の回折光、例えば
図3に示す1次回折光30aを受光する位置に、受光セ
ンサ41aと受光センサ41bとからなる受光センサ対
41が2対配置されている。ただし、図示のように2つ
の受光センサ41aどうしの出力は互いに接続されてお
り、また2つの受光センサ41bどうしの出力も互いに
接続されている。
Although the present invention is an application of this principle, the light receiving sensor is devised to enable high-speed and highly accurate external dimension abnormality detection. FIG. 4 is a front view showing a first embodiment of a light receiving sensor used for detecting an abnormality in the outer dimension of the wire 2 as shown in FIG. On the substrate 40 arranged on the detection surface 34 shown in FIG. 1, at a position for receiving diffracted light of a predetermined order in the diffraction pattern 30 as shown in FIG. 3, for example, first-order diffracted light 30a shown in FIG. Two light receiving sensor pairs 41 each including a light receiving sensor 41a and a light receiving sensor 41b are arranged. However, as shown in the figure, the outputs of the two light receiving sensors 41a are connected to each other, and the outputs of the two light receiving sensors 41b are also connected to each other.

【0014】線材2が、レンズ32,33の間のどの位
置を通過しても回折パターン30が形成される位置は不
変であるが、線材2が傾いて通過すると、回折パターン
30も傾くことになる。この回折パターン30が傾いて
も各受光センサ41a,41bに入射する光量が変化し
ないよう、各受光センサ41a,41bは、中心点0を
中心とした円弧状に形成されている。
Although the position where the diffraction pattern 30 is formed does not change regardless of where the wire 2 passes between the lenses 32 and 33, when the wire 2 tilts and passes, the diffraction pattern 30 also tilts. Become. Each light receiving sensor 41a, 41b is formed in an arc shape centered on the center point 0 so that the amount of light incident on each light receiving sensor 41a, 41b does not change even if the diffraction pattern 30 is tilted.

【0015】図5は、図4に示す基板40が検出面34
に配置され、そこに線材2の回折パターン30が形成さ
れたときの、受光センサ41a,41bと1次回折光3
0aとの位置関係を示した図である。図5(A)は、線
材2が規定どおりの太さにある場合であり、受光センサ
対41を構成する2つの受光センサ41a,41bは、
1次回折光を、互いに同一の光量だけ受光している。
In FIG. 5, the substrate 40 shown in FIG.
When the diffraction pattern 30 of the wire 2 is formed on the light receiving sensors 41a and 41b and the first-order diffracted light 3
It is the figure which showed the positional relationship with 0a. FIG. 5A shows a case where the wire 2 has a prescribed thickness, and the two light receiving sensors 41a and 41b forming the light receiving sensor pair 41 are
The first-order diffracted light is received by the same amount of light.

【0016】図5(B)は、図1に示す2つのレンズ3
2,33の間を規定よりも太い線材2が通過している場
合であり、1次回折光30aが矢印A方向に寄り、2つ
の受光センサ41a,41bのうち受光センサ41a
に、より大光量の光が入射している。図5(C)は、図
1に示す2つのレンズ32,33の間を、規定よりも細
い線材2が通過している場合であり、1次回折光30a
が矢印B方向に寄り、2つの受光センサ41a,41b
のうち受光センサ41bの方に、より大光量の光が入射
している。したがって2つの受光センサ41a,41b
の受光信号どうしの差を演算することにより、線材2の
外形寸法の正常、異常を検出することができる。
FIG. 5B shows the two lenses 3 shown in FIG.
In the case where the wire rod 2 thicker than the regulation is passing between 2 and 33, the first-order diffracted light 30a shifts in the direction of arrow A, and the light receiving sensor 41a of the two light receiving sensors 41a and 41b
A larger amount of light is incident on. FIG. 5C shows a case where the wire rod 2 thinner than the standard is passing between the two lenses 32 and 33 shown in FIG.
Is closer to the direction of arrow B, and the two light receiving sensors 41a and 41b
A larger amount of light is incident on the light receiving sensor 41b. Therefore, the two light receiving sensors 41a and 41b
By calculating the difference between the received light signals, it is possible to detect whether the outer dimensions of the wire 2 are normal or abnormal.

【0017】図6は、図4に示す受光センサ41a,4
1bと接続された、線材2の外形寸法の異常検出を行な
う信号処理回路を示した回路ブロック図である。図4に
示す受光センサ41a,41bによる各受光信号JA
B がこの信号処理回路に入力され、受光信号JA は直
接に引算器51に入力され、受光信号J B はアンプ52
を経由してx倍された後、引算器51に入力される。ア
ンプ51は、線材2が規定どおりの寸法にあるときの、
2つの受光信号JA ,JB の差異を補正するためのもの
であり、JA =xJB となるようにアンプ52のゲイン
xが調整されている。
FIG. 6 shows the light receiving sensors 41a, 4a shown in FIG.
1b is connected to the wire 2 to detect the external dimensions of abnormalities.
3 is a circuit block diagram showing a signal processing circuit. In Figure 4
Each light receiving signal J by the light receiving sensors 41a and 41b shownA ,
JB Is input to this signal processing circuit and the received light signal JA Is straight
It is input to the subtractor 51 immediately and the received light signal J B Is the amplifier 52
After being multiplied by x, the input is input to the subtractor 51. A
The pump 51 is provided when the wire rod 2 has a specified size.
Two received light signals JA , JB For correcting the difference in
And JA = XJB Gain of amplifier 52 so that
x is adjusted.

【0018】引算器51では、差分△J=JA −xJB
が演算されて、割算器53に入力される。また、受光信
号JA ,アンプ52を経由した受光信号xJB は加算器
54に入力されて互いに加算され、その加算結果JA
xJB が減算器55で1/2に減衰され、これにより得
られた平均値<J>=(JA +xJB )/2も割算器5
3に入力される。この平均値<J>は、レーザ光の光量
変化等をキャンセルするためのものであり、割算器53
では、差分△Jが平均値<J>で割り算されて規格化さ
れた差分 △J/<J>=(JA −xJB )/{(JA +xJB )/2} が求められる。
[0018] In subtracter 51, the difference △ J = J A -xJ B
Is calculated and input to the divider 53. Further, the received light signal J A and the received light signal xJ B passed through the amplifier 52 are input to the adder 54 and added to each other, and the addition result J A +
xJ B is attenuated to 1/2 by the subtractor 55, and the average value <J> = (J A + xJ B ) / 2 obtained by this is also divided by the divider 5
Input to 3. The average value <J> is for canceling a change in the light amount of the laser light, and the divider 53
In the difference △ J average value <J> is divided by normalized difference △ J / <J> = ( J A -xJ B) / {(J A + xJ B) / 2} is determined.

【0019】この規格化された差分△J/<J>は、比
較器54に入力される。この比較器54には2つのしき
い値SH ,SL (SL <SH )が設定されており、 SL ≦△J/<J>≦SH のときに、その線材2の太さは正常、 △J/<J><SL もしくは SH <△J/<J> のときにその線材2の太さは異常であると判定される。
The standardized difference ΔJ / <J> is input to the comparator 54. Two thresholds S H and S L (S L <S H ) are set in the comparator 54, and when S L ≦ ΔJ / <J> ≦ S H , the thickness of the wire 2 is increased. Is normal, and when ΔJ / <J><S L or SH <ΔJ / <J>, the thickness of the wire 2 is determined to be abnormal.

【0020】この判定結果は比較器54から出力され、
太さが異常であると判定された場合に警報等が発せられ
る等の処置が採られる。図7は、本発明の外形寸法異常
検出装置の受光センサの第2実施例を示す正面図であ
る。前述したように、線材2が傾くと、その回折パター
ン30は、図7に示す中心点0を中心に回転する方向に
傾く。したがって、この第2実施例に示すように、外側
の受光センサ41bの長さよりも内側の受光センサ41
aの長さの方が短くてすみ、そのような受光センサ41
a,41bを形成することにより内側の受光センサ41
aに、外側の受光センサ41bと対応しない無駄な部分
が生じない。
This determination result is output from the comparator 54,
If the thickness is determined to be abnormal, measures such as issuing an alarm are taken. FIG. 7 is a front view showing a second embodiment of the light receiving sensor of the external dimension abnormality detecting device of the present invention. As described above, when the wire 2 tilts, the diffraction pattern 30 tilts in the direction of rotation around the center point 0 shown in FIG. Therefore, as shown in the second embodiment, the light receiving sensor 41 on the inner side than the length of the light receiving sensor 41b on the outer side.
Since the length of a is shorter, such a light receiving sensor 41
By forming a and 41b, the inner light receiving sensor 41
There is no useless portion in a that does not correspond to the outer light receiving sensor 41b.

【0021】図8は、本発明の外形寸法異常検出装置の
受光センサの第3の実施例を示す正面図である。中心点
0から離れるほど回折光強度が弱まる。この第3実施例
では、外側の受光センサ41bの幅WB が内側の受光セ
ンサ41aの幅WA よりも幅広(WA <WB )に形成さ
れているため、光量差が補償された受光信号を得ること
ができる。
FIG. 8 is a front view showing a third embodiment of the light receiving sensor of the external dimension abnormality detecting device of the present invention. The diffracted light intensity becomes weaker as the distance from the center point 0 increases. In the third embodiment, since the width W B of the outer light receiving sensor 41b is wider than the width W A of the inner light receiving sensor 41a (W A <W B ), the light receiving with the light amount difference compensated is received. You can get a signal.

【0022】図9は、本発明の外形寸法異常検出装置の
受光センサの第4実施例を示す正面図である。この第4
の実施例には、1次回折光30aを受光する位置に配置
された受光センサ対41のほか、2次回折光30b(図
3参照)を受光する位置に配置された、受光センサ42
aと受光センサ42bからなる受光センサ対42が配置
されている。
FIG. 9 is a front view showing a fourth embodiment of the light receiving sensor of the external dimension abnormality detecting device of the present invention. This 4th
In this embodiment, in addition to the light receiving sensor pair 41 arranged at the position for receiving the first-order diffracted light 30a, the light-receiving sensor 42 arranged at the position for receiving the second-order diffracted light 30b (see FIG. 3).
A light receiving sensor pair 42 including a and a light receiving sensor 42b is arranged.

【0023】図3を参照して説明したように、線材2の
太さに応じて回折パターン30が伸縮するが、その伸縮
の際、2次回折光30bは1次回折光30aよりも大き
く移動する。図9に示す第4実施例では、1次回折光3
0aを受光する位置と2次回折光30bを受光する位置
との双方に受光センサ対41,42が配置されているた
め、そのいずれを使用するかに応じて検出感度を切り換
えることができる。
As described with reference to FIG. 3, the diffraction pattern 30 expands and contracts according to the thickness of the wire rod 2. When the expansion and contraction occur, the second-order diffracted light 30b moves more than the first-order diffracted light 30a. In the fourth embodiment shown in FIG. 9, the first-order diffracted light 3
Since the light receiving sensor pairs 41 and 42 are arranged at both the position for receiving 0a and the position for receiving the second-order diffracted light 30b, the detection sensitivity can be switched depending on which one is used.

【0024】図10は、本発明の外形寸法異常検出装置
の受光センサの第5実施例を示す正面図、図11は線材
の一部分を示した図である。図10に示す第5実施例に
は、受光センサ対41のほか図の左右に受光センサ43
a,43b,43c,43dが配置されている。被検体
としての線材2に、図11に示すような凹凸2aや毛羽
2bが存在すると、図10の上下方向に広がる回折光の
みでなく、図10の左右、もしくは斜めに広がる回折光
が発生する。その回折光を受光センサ43a〜43dで
捉えることにより、線材2の外形寸法のモニタのほか、
線材2の凹凸2aや毛羽2b、その他の形状の異常も検
出することができる。
FIG. 10 is a front view showing a fifth embodiment of the light receiving sensor of the external dimension abnormality detecting device of the present invention, and FIG. 11 is a view showing a part of the wire rod. In the fifth embodiment shown in FIG. 10, in addition to the light receiving sensor pair 41, the light receiving sensors 43 are provided on the left and right of the drawing.
a, 43b, 43c, 43d are arranged. When the wire rod 2 as the subject has the unevenness 2a and the fluff 2b as shown in FIG. 11, not only the diffracted light that spreads in the vertical direction of FIG. 10 but also the diffracted light that spreads horizontally or obliquely in FIG. 10 is generated. . By capturing the diffracted light with the light receiving sensors 43a to 43d, in addition to monitoring the external dimensions of the wire rod 2,
It is possible to detect irregularities 2a and fluff 2b of the wire 2 and other abnormalities in the shape.

【0025】図12は、球体3を被検体とした場合の、
図1と同様な模式図である。2つのレンズ32,33の
間に球体3が配置されると、検出面34上に同心円状の
回折パターン50が形成される。球体3が真球を保った
ままその直径のみが変化すると、回折パターン50は中
心点0に吸い込まれるように収縮しあるいは中心点0か
ら湧き出るように拡大する。また球体3が真球からずれ
楕円球状になると、回折パターン50として、ゆがんだ
回折パターンが形成されることになる。
FIG. 12 shows the case where the sphere 3 is used as the subject.
It is a schematic diagram similar to FIG. When the sphere 3 is arranged between the two lenses 32 and 33, a concentric diffraction pattern 50 is formed on the detection surface 34. If only the diameter of the sphere 3 changes while maintaining a perfect sphere, the diffraction pattern 50 contracts so as to be sucked into the center point 0 or expands so as to spring out from the center point 0. Further, when the spherical body 3 deviates from the true sphere and becomes an ellipsoidal shape, a distorted diffraction pattern is formed as the diffraction pattern 50.

【0026】レンズ32,33の間の、球体3の配置位
置によっては回折パターン50は不変であるため、例え
ば上方から多数の球体3を順次レンズ32,33の間を
通過するように落下させること等により、それら多数の
球体3の外形寸法の、正常,異常を順次判定することが
できる。図13は、球体を被検体としたときの、受光セ
ンサの一例を示す正面図である。
Since the diffraction pattern 50 does not change depending on the arrangement position of the sphere 3 between the lenses 32 and 33, for example, a large number of spheres 3 are dropped from above so as to sequentially pass between the lenses 32 and 33. Thus, it is possible to sequentially determine whether the external dimensions of the large number of spherical bodies 3 are normal or abnormal. FIG. 13 is a front view showing an example of a light receiving sensor when a sphere is the subject.

【0027】この図13に示す例では基板60上の、1
次回折光を受光する位置に3対の受光センサ61,6
2,63、2次回折光を受光する位置に他の3対の受光
センサ対64,65,66が備えられている。図14
は、図13に示す複数の受光センサ対の受光信号を入力
して球体3の外形寸法の正常,異常を判定する信号処理
回路の回路ブロック図である。
In the example shown in FIG. 13, 1 on the substrate 60
Three pairs of light receiving sensors 61, 6 are provided at positions for receiving the second-order diffracted light.
The other three pairs of light receiving sensor pairs 64, 65, 66 are provided at the positions for receiving the 2, 63, and 2nd order diffracted light. 14
FIG. 14 is a circuit block diagram of a signal processing circuit that receives the light receiving signals of the plurality of light receiving sensor pairs shown in FIG. 13 and determines whether the outer dimensions of the sphere 3 are normal or abnormal.

【0028】図14に示す信号処理回路には、図6に示
す信号処理回路と同様な構成の信号処理回路が複数備え
られており、各受光センサ対61〜66で得られた受光
センサは、各個別の信号処理回路に入力されそれぞれ個
別に正常,異常が判定される。球体2が真球の場合は、
それらの受光センサ対61〜66の全てで同時に正常,
異常が検出されることになるが、球体2が真球からずれ
ると、ある受光センサ対の信号処理回路では正常と判定
され、他の受光センサ対の信号処理回路では異常と判定
される場合が生じる。そこで図14に示す信号処理回路
には、アンド回路55が備えられており、全ての個別の
信号処理回路で正常と判定された場合のみを正常、個別
の信号処理回路のうちのいずいれか1つででも異常と判
定された場合は異常と判定するように構成されている。
The signal processing circuit shown in FIG. 14 is provided with a plurality of signal processing circuits having the same configuration as the signal processing circuit shown in FIG. 6, and the light receiving sensors obtained by the respective light receiving sensor pairs 61 to 66 are: The signal is input to each individual signal processing circuit and is individually judged as normal or abnormal. If sphere 2 is a true sphere,
All of the light receiving sensor pairs 61 to 66 are normal at the same time,
Although an abnormality will be detected, if the sphere 2 deviates from the true sphere, the signal processing circuit of a certain light receiving sensor pair may determine that it is normal, and the signal processing circuit of another light receiving sensor pair may determine that it is abnormal. Occurs. Therefore, the signal processing circuit shown in FIG. 14 is provided with an AND circuit 55, which is normal only when all the individual signal processing circuits are determined to be normal, and which one of the individual signal processing circuits is selected. If even one is determined to be abnormal, it is determined to be abnormal.

【0029】図15は、球体3の、互いに異なる方向か
らみた外形寸法の正常,異常を検出するように構成され
た光学系を示す模式図である。このように、被検体の外
形寸法の正常,異常をより正確に判定するために、複数
の方向の回析パターンを得、それら複数の方向の回析パ
ターンをモニタするように構成してもよい。
FIG. 15 is a schematic diagram showing an optical system configured to detect normality and abnormality of the outer dimensions of the spherical body 3 when viewed from different directions. As described above, in order to more accurately determine whether the external dimensions of the subject are normal or abnormal, diffraction patterns in a plurality of directions may be obtained and the diffraction patterns in the plurality of directions may be monitored. .

【0030】尚、上記実施例は線材もしくは球体を被検
体とする例であるが、本発明の外形寸法異常検出装置は
線材ないし球体を被検体とするものに限られるものでは
なく、その外形形状の規格が定まっているものであれば
どのような外形形状のものを被検体とすることもでき
る。また上記実施例では、1次回折光ないし2次回折光
を検出するものとして説明したが、本発明では1次回折
光ないし2次回折光を検出するものに限られるものでは
なく、3次回折光ないしそれ以上の次数の回折光を受光
するように構成してもよい。
Although the above embodiment is an example in which a wire or a sphere is the subject, the external dimension abnormality detecting device of the present invention is not limited to the one in which the wire or the sphere is the subject, and its outer shape. Any external shape can be used as the subject as long as the standard is defined. Further, in the above-described embodiment, the description is made assuming that the first-order diffracted light or the second-order diffracted light is detected, but the present invention is not limited to the detection of the first-order diffracted light or the second-order diffracted light, and the third-order diffracted light or more is detected. It may be configured to receive diffracted light of the order.

【0031】[0031]

【発明の効果】以上説明したように、本発明の外形寸法
異常検出装置は、回析パターンの移動を受光センサのペ
アで常にモニタするものであり、高精度かつ高分解能の
検出を、連続的にリアルタイムで行なうことができる。
また、本発明の外形寸法異常検出装置は、可動部分は不
要であり、また、CCD等を受光センサアレイとして用
いた従来例と比べ処理回路が簡単ですみ、安価であり、
しかも長期に渡り高い信頼性が維持される。
As described above, the external dimension abnormality detecting device of the present invention constantly monitors the movement of the diffraction pattern by a pair of light receiving sensors, and continuously detects highly accurate and high resolution detection. Can be done in real time.
Further, the external dimension abnormality detecting device of the present invention does not require a movable part, and has a simple processing circuit as compared with a conventional example using a CCD or the like as a light receiving sensor array, which is inexpensive,
Moreover, high reliability is maintained for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】回折パターンを得る光学系の模式図である。FIG. 1 is a schematic diagram of an optical system that obtains a diffraction pattern.

【図2】線材の回折パターンの模式図である。FIG. 2 is a schematic diagram of a diffraction pattern of a wire.

【図3】線材の回折パターンの強度分布を表した図であ
る。
FIG. 3 is a diagram showing an intensity distribution of a diffraction pattern of a wire.

【図4】図1に示すような線材の外形寸法の異常検出に
用いられる受光センサの第1の実施例を示す正面図であ
る。
FIG. 4 is a front view showing a first embodiment of a light receiving sensor used for detecting an abnormality in the outer dimensions of a wire as shown in FIG.

【図5】図4に示す基板が検出面に配置され、そこに線
材の回折パターンが形成されたときの、受光センサと1
次回折光との位置関係を示した図である。
5 is a diagram illustrating a light receiving sensor and a light receiving sensor when the substrate shown in FIG. 4 is arranged on a detection surface and a diffraction pattern of a wire is formed thereon.
It is the figure which showed the positional relationship with the next-order diffracted light.

【図6】図4に示す受光センサと接続される、線材の外
形寸法の異常検出を行なう信号処理回路を示した回路ブ
ロック図である。
6 is a circuit block diagram showing a signal processing circuit that is connected to the light receiving sensor shown in FIG. 4 and performs abnormality detection of the outer dimension of a wire.

【図7】本発明の外形寸法異常検出装置の受光センサの
第2実施例を示す正面図である。
FIG. 7 is a front view showing a second embodiment of the light receiving sensor of the external dimension abnormality detecting device of the present invention.

【図8】本発明の外形寸法異常検出装置の受光センサの
第3の実施例を示す正面図である。
FIG. 8 is a front view showing a third embodiment of the light receiving sensor of the external dimension abnormality detecting device of the present invention.

【図9】本発明の外形寸法異常検出装置の受光センサの
第4実施例を示す正面図である。
FIG. 9 is a front view showing a fourth embodiment of the light receiving sensor of the external dimension abnormality detecting device of the present invention.

【図10】本発明の外形寸法異常検出装置の受光センサ
の第5実施例を示す正面図である。
FIG. 10 is a front view showing a fifth embodiment of the light receiving sensor of the external dimension abnormality detecting device of the present invention.

【図11】線材の一部分を示した図である。FIG. 11 is a diagram showing a part of a wire rod.

【図12】球体を被検体とした場合の、図1と同様な模
式図である。
FIG. 12 is a schematic view similar to FIG. 1 when a sphere is used as a subject.

【図13】球体を被検体としたときの、受光センサの一
例を示す正面図である。
FIG. 13 is a front view showing an example of a light receiving sensor when a sphere is used as a subject.

【図14】図13に示す複数の受光センサ対の受光信号
を入力して球体の外形寸法の正常,異常を判定する信号
処理回路の回路ブロック図である。
FIG. 14 is a circuit block diagram of a signal processing circuit that receives the light receiving signals of the plurality of light receiving sensor pairs shown in FIG. 13 and determines whether the outer dimensions of the sphere are normal or abnormal.

【図15】球体3の、互いに異なる方向からみた外形寸
法の正常,異常を検出するように構成された光学系を示
す模式図である。
FIG. 15 is a schematic diagram showing an optical system configured to detect normality / abnormality of external dimensions of the spherical body 3 when viewed from different directions.

【図16】外形寸法のチェックを行なう一手法を示した
模式図である。
FIG. 16 is a schematic diagram showing a method for checking the external dimensions.

【図17】外形寸法のチェックを行なうもう1つの手法
を示した模式図である。
FIG. 17 is a schematic diagram showing another method for checking the external dimensions.

【符号の説明】[Explanation of symbols]

2 線材 3 球体 30,50 回折パターン 30a 1次回折光 30b 2次回折光 31 レーザ光 32,33 レンズ 34 検出面 40,160 基板 41,42,61,62,…,66 受光センサ対 41a,41b,42a,42b 受光センサ 51 引算器 50 アンプ 54 比較器 2 wire 3 spherical body 30,50 diffraction pattern 30a first-order diffracted light 30b second-order diffracted light 31 laser light 32,33 lens 34 detection surface 40,160 substrate 41,42,61,62, ..., 66 light-receiving sensor pair 41a, 41b, 42a , 42b Light receiving sensor 51 Subtractor 50 Amplifier 54 Comparator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定の検出面上に被検体の回析パターン
を形成する回折光学系と、 前記検出面上に、前記被検体の外形寸法の変動により前
記回折パターンが伸縮する方向に互いに離れて配置され
た少なくとも2つの受光センサと、 該受光センサそれぞれで得られた信号どうしの相違を表
す信号に基づいて前記被検体の外形寸法の正常、異常を
判定する信号処理部とを備えたことを特徴とする外形寸
法異常検出装置。
1. A diffractive optical system that forms a diffraction pattern of a subject on a predetermined detection surface, and is separated from each other in the direction in which the diffraction pattern expands and contracts on the detection surface due to fluctuations in the outer dimensions of the subject. And at least two light receiving sensors arranged in parallel, and a signal processing unit that determines whether the external dimensions of the subject are normal or abnormal based on the signals representing the difference between the signals obtained by the respective light receiving sensors. External dimension abnormality detection device characterized by.
【請求項2】 前記2つの受光センサが、前記回折パタ
ーンのうち、互いに同一次数の回折光を受光するように
配置された受光センサであることを特徴とする請求項1
記載の外形寸法異常検出装置。
2. The two light-receiving sensors are light-receiving sensors arranged so as to receive diffracted lights of the same order among the diffraction patterns.
External dimension abnormality detection device described.
JP31673993A 1993-12-16 1993-12-16 Detector for external-size abnormality Pending JPH07167627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31673993A JPH07167627A (en) 1993-12-16 1993-12-16 Detector for external-size abnormality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31673993A JPH07167627A (en) 1993-12-16 1993-12-16 Detector for external-size abnormality

Publications (1)

Publication Number Publication Date
JPH07167627A true JPH07167627A (en) 1995-07-04

Family

ID=18080373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31673993A Pending JPH07167627A (en) 1993-12-16 1993-12-16 Detector for external-size abnormality

Country Status (1)

Country Link
JP (1) JPH07167627A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008001018U1 (en) 2008-01-29 2009-06-25 Pepperl + Fuchs Gmbh Sensor for the detection of objects by light diffraction
WO2019239845A1 (en) * 2018-06-14 2019-12-19 パナソニックIpマネジメント株式会社 Object detection device and photodetector
CN112902852A (en) * 2021-01-25 2021-06-04 上海兰宝传感科技股份有限公司 Device and method for detecting size of micro object

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008001018U1 (en) 2008-01-29 2009-06-25 Pepperl + Fuchs Gmbh Sensor for the detection of objects by light diffraction
WO2009095193A1 (en) * 2008-01-29 2009-08-06 Pepperl + Fuchs Gmbh Sensor for detecting objects by means of light diffraction
WO2019239845A1 (en) * 2018-06-14 2019-12-19 パナソニックIpマネジメント株式会社 Object detection device and photodetector
JPWO2019239845A1 (en) * 2018-06-14 2021-07-26 パナソニックIpマネジメント株式会社 Object detector and photodetector
CN112902852A (en) * 2021-01-25 2021-06-04 上海兰宝传感科技股份有限公司 Device and method for detecting size of micro object

Similar Documents

Publication Publication Date Title
US5309222A (en) Surface undulation inspection apparatus
US6922254B2 (en) Method for measuring the diameter of an elongated article of a circular cross section
JP3197529B2 (en) Non-contact measurement method of wheel alignment characteristics and its measurement device
US4583857A (en) Apparatus for automatic optical property testing
US4395119A (en) Method for automatic, non-destructive measurement of eccentricity of coated electrodes
GB2135769A (en) Detecting faults in transparent objects
US4906097A (en) Imaging and inspection apparatus and method
US5701173A (en) Method and apparatus for reducing the unwanted effects of noise present in a three dimensional color imaging system
JPH07167627A (en) Detector for external-size abnormality
US5414517A (en) Method and apparatus for measuring the shape of glossy objects
WO2007025350A1 (en) Fibre assessment apparatus and method
US5523844A (en) Displacement detection apparatus
CN101091426B (en) Component shape profiling method and component mounting method
EP1265051B1 (en) A method of monitoring a moving linear textile formation and a device for carrying out the method
JPH0226164B2 (en)
JP3570488B2 (en) Measurement method of alloying degree of galvanized steel sheet using laser beam
JPH02114146A (en) Method and device for measuring crack length and strain in structure part and test piece
WO2024004166A1 (en) Distance measurement device
JPH0769271B2 (en) Defect inspection equipment
JP2890942B2 (en) Defect inspection equipment
JPH1123239A (en) Inspection apparatus
JP2518484B2 (en) Optical stranded wire flaw detection method and equipment
JPH0486548A (en) Packaged substrate appearance inspection device
JPH05157700A (en) Surface state inspecting device
JPH0642168Y2 (en) Smoothness / Glossiness meter

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031216